BULL. AUSTRAL. MATH. SOC. 62H99, 45H05
VOL. Il (1974), 373-380.

Mercer’s Theorem and
Fredholm resolvents

C.S. Withers

Multivariate versions of Mercer's Theorem and the usual
expansions of the resolvent and Fredholm determinant are shown to

hold for an 7 X n symmetric kernel N(x, y) with arbitrary

domain in Rp under weakened continuity conditions. Further,
the resolvent and determinant of N(x, y) - a(x)b(y) are given

in terms of those of WN(x, y)

1. 1Introduction

Our main result, given in §3, deals with eigenfunction expansions of
the 7 x n matrix kernel WN(z, y) (Mercer's Theorem) and its iterates

Nﬁ(x, y) and resolvent WN(x, y, A) . As well as allowing n to be

arbitrary and the domain to be unbounded, we weaken the usual continuity
assumptions of this important theorem, which has found applications in
optimum detection theory (for example, Deutsch [2], p. 2Ll4) and statistics.

These expansion formula are basic to the study of the distribution of the
random variable J |X(t)[2dt where X : B > B’ is a Gaussian process

with covariance N . Such random varisbles arise in connection with the
asymptotic distribution and power of certain statistical tests; see
Withers [§].

In §4 we give a simple but useful result: formulae for the resolvent
and Fredholm determinant of WN(x, y) - a(z)b(y) in terms of those of

N(z, y) , vhere alxz), b(y) are n xq and q xn functions. This
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section was motivated by the study of the random varisable I |Y(t)]2dt
where

YW)=Hﬂ+fw)JﬂMHM@,

and f, g are matrix functions, and X is as above; see Withers [9] for
statistical applications where such variables arise naturally. The basic
results of Fredholm integral equation theory for a matrix kernel N(z, y)

defined on a domain X  where Q is an arbitrary domain in

p-dimensional euclidean space Rp appear to have been stated only for the
case n=p =1 and § a bounded interval. However the technique of
deducing these results for general #n 1is well known and some authors have
realised such extensions are possible (ef. Riesz and Nagy [6], p. 145),
although others have suggested that § must be bounded (ef. Pogorzelski
[5), p. 95). We therefore begin with a summary of these results for

general n and arbitrary domain in £ .

2. Some basic results

Ve give.here generalisations of some basic results. These are easily
deduced by the method of Carleman [!] (given for n=p =1, = [a, b],
N real), the technique of reducing to # = 1 (for example, Pogorzelski
[5], ﬁ. 181) and the standard proofs.

Throughout this paper we shall use A* to denote the conjugate

transpose of a complex matrix 4 = (A'ij) , and |l*ll to denote the norm
defined by 4% =] lAij|2 . ALl integrals will be with respect to
Lebesgue measure over  , an arbitrary subset of -2 .

Given fc B consider a complex measurable 5 X n function ¥(zx, y)

on  x Q such that
2
(1) o < [[ nta, y)Panty <o .

For f a complex measurable n x ¢ function on Q such that

J A% <o, 1et Nf(z) = j ¥z, s)f(s)ds and f(y)*N = f fls)*n(s, y)ds .
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Let Nj = My » J 21 , where -1 , the identity operator.

Then N(x, y, X) , the resolvent of N(x, y) exists and for y in 2,
h{z) = N(x, y, A) is the unique solution of

ho=N(, y) + Wh,
and for x in 2, g(y) = N(xz, y, A) is the unique solution of
g =Nz, °) + gN .

When
(2) ) f W, (2, )lde <,
then the Fredholm determinant D(A) exists and is given by
C%logD()\) = - J trace N(x, x, A)de , D(0) =1 .

When
(3) N*(y, z) = N(z, y) for x,y in @,
then there exist real numbers {Al’ )\2, } (eigenvalues) and complex

n-vectors on . {¢l, ¢2, ...} (eigenvectors) satisfying

1, i=j
= * = < N
AN =0, J¢i¢j , 0< |A1|_ |x2|s... .
o, 1#J
such that if
(1) Mo =, [loPcm, onxa,

then A = )‘k for some k , and ¢ is a linear combination of those ¢r

such that A_= A .
r
When (3) and

(5) sup [ (e, )P < = |
Y

then for  in f , and almost a1l y in Q ,
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© ¢i(x)¢i(y)*
Mz, y, X)) = Nz, y) + A Z {_XTIXT:XT_} , A not an eigenvalue,
AN

1
and
(6) Nz, y) =1 J¢ @ (y)* , 22,
J 1

and the convergence of. these series is (element-wise) absolute and uniform

in 92

3. Mercer's Theorem

Mercer's Theorem concerns the expansion of N in terms of its eigen-

functions and eigenvalues:

Wz, y) = § 6, (2),(y)*/2;

Statements of the theorem in the literature all make unnecessary
continuity and other assumptions. For example sometimes (5) is assumed
(for example, Pogorzelski {5}, p. 150). Our aim here is to impose as few
conditions on N as seems possible. It is worth noting that a useful
weakening of our continuity assumptions (9)-(11) may be made by excluding
from §! the set of points P at which they do not hold, provided P has

Lebesgue measure zero.
Qur version of Mercer's Theorem is as follows.

THEOREM 1. Suppose N satisfies (1), (3), and the following

(1) wa=[]wmmu,wuw@@z

for all complex n x 1 funetions ¢ such that f |¢|2

(8) sup trace N(x, x) < o,
x€Q
(9) Nz, y) is continuous at y = x € R,
(10) Nz(x, x)ii igs continuwous in Q, 1 <i <n,
(11) N (x, y).. 1is continuous at =z in @, 1=<i<n,
2 ¥ 11 ¥
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then for {Ai, ¢i} above, {¢i} are continuous and § A;l¢i(z)¢i(y)*

converges (elementwise) absolutely and wniformly in o® and equals
N(x, y) almost everywhere in 92 .

NOTES. (i) Since a uniformly convergent series of continuous
functions converges to a continuous function, equality holds at continuity

points of ¥ , suchas x =y .

(ii) Since (4) implies ¢ = XmNm¢ , (10) and (11) may be replaced by
1
(11) for some m=>1, sz(x, y)ii and N2m

at y=z for z in Q, 1si<nj; (ef. Hobson [3] who

(x, x).. are continuous
i1

gives for continuity of {¢i} ];
2
(11) for some m=>1, N (x, y) is continuous in x for almost all
m
Yy in Q and for jz=m, Nj is bounded.

Proof of Theorem 1. We may without loss take =n =1 . {¢i} are

continuous because (4) implies

16(e)-0() |2 = [A[21(z, y) f 612,

where I(x, y) = j |¥(z, 8)-Ny, s)|2ds -0 by (3), (10), (11).
By (9) and the standard method (for example, [5], p. 151), WN(z, x)
-1 2 .
and N(z, x) - § Ai |¢i(x)| are real and non-negative for ¢ = 1 . Hence
1

by (8) for € > 0 , there exists M such that
| 2
¥ A |o.(=)|° <e in @,
y

so that for n2 b nl > M,
n, .
I A7 16, (2)0,(y)*] <& in @

"

2
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Hence z /\‘Zl¢i(x)¢i(y)* converges absolutely and uniformly in 92 .
so that by [5], pp. 130, 131, the sum equals N(x, y) almost everywhere.
The usual expansions now follow:

COROLLARY. Under the conditions of Theorem 1,
(12) for =1, Nj(x', y) =} A;jd)i(x)q)i(y)* almost everywhere in
o,

(13) Mz, y, A) =7} ()\i—)\)—lq)i(x)tbi(y)* almost everywhere in e »

if X s not an eigenvalue,

(1) for =1, j trace IVJ.(:c, z)dx =} A;J > (possibly infinite

for j =1 ), and the (elementwise) convergence in (12) and
(13) is absolute and wniform.

If also (2) holds, that is, J trace N(x, z)dx < © , then

(15) p(x) =TT (2-22)
1

4, The kernel N(z, y) - a(z)b(y)

Carleman [1] gave expansions in A for D{(x, y, A) and D(A) for
N=G+H and N = G*H in terms of multiple integrals of determinants,
akin to Fredholm's series. Here we give more convenient formulae for

K(x, y, A) and DK()‘) , the resolvent and Fredholm determinant for the
particular case
K(x, y) = Nz, y) - alz)bly),

vhere we assume a, b are n xq and g xn functions on £ such that

[ lal? < = f Bl <=,

when DN(A) » Mz, y, A\) are known, and where we set DN()\) = D(\) to

avoid confusion with DK()\) .

THEOREM 2. Let N satisfy (1) and (2). Let T denote the operator
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(1)L g0 that
Ta(z) = alz) + A J Nz, y, Aaly)dy

and
b(z)T = b(z) + A f BNy, =, \)dy .
Let "B(A) = 1+ A J bTa , where 1, = diag(ly ..., 1) . Then
(16) Kz, y, \) =Nz, y, A) - Ta(z)B() BT ,

\
for z,y in Q and DK(A) #0 . Also

(11) D (X) = DN(A) * detB(A) .
Further, if detB()A) = 0 , then eigenfunctions of K with eigenvalue
X all have the form Tac where c¢ # 0 is a q-vector such that
B(AMe =0 .
NOTE. Michlin {4] has given a special case of (16) without proof.

Proof. Suppose DN(A) #0 and DK()\) =0 .

Then f = AKf has a non~trivial solution where
Kf(x) = I Klx, y)fly)dy . Hence c = I bf# 0 and f = -ATac . Hence
detB(A) =0 .

Suppose DN()\) « detB(A) # 0 . Then DK(A) # 0 and for h such that

J |h12 <e  f=h+ Af has solution

f= (I-xK) "2 = T(h-2ae) .

Hence ¢ = Rh vwhere R = B(X)-le , 50 that (I-AKFl = T(I-)\aR) , which
proves (16).

£ D, (MDA # 0 ,

il

adylog(DK()\)/DN()\)) - I trace(K(::, x, \)-N(z, x, A))d‘z:

trace B()\)_]'C s by (14),

https://doi.org/10.1017/50004972700044002 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044002

380 C.S. Withers

where C = J bT2a . For [A] small,

d

d—x>‘r=z+awu+3x2uz+...=T2 ,

so that C = d/dMB{()) for all ) by analytic continuation. (17) follows.
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