Mercer's Theorem and Fredholm resolvents

C.S. Withers

Multivariate versions of Mercer's Theorem and the usual expansions of the resolvent and Fredholm determinant are shown to hold for an $n \times n$ symmetric kernel N(x, y) with arbitrary domain in \mathbb{R}^p under weakened continuity conditions. Further, the resolvent and determinant of N(x, y) - a(x)b(y) are given in terms of those of N(x, y).

1. Introduction

Our main result, given in §3, deals with eigenfunction expansions of the $n \times n$ matrix kernel N(x,y) (Mercer's Theorem) and its iterates $N_j(x,y)$ and resolvent $N(x,y,\lambda)$. As well as allowing n to be arbitrary and the domain to be unbounded, we weaken the usual continuity assumptions of this important theorem, which has found applications in optimum detection theory (for example, Deutsch [2], p. 244) and statistics. These expansion formula are basic to the study of the distribution of the random variable $\int |X(t)|^2 dt \quad \text{where} \quad X: R^p \to R^n \quad \text{is a Gaussian process}$ with covariance N. Such random variables arise in connection with the asymptotic distribution and power of certain statistical tests; see Withers [8].

In §4 we give a simple but useful result: formulae for the resolvent and Fredholm determinant of N(x, y) - a(x)b(y) in terms of those of N(x, y), where a(x), b(y) are $n \times q$ and $q \times n$ functions. This

Received 9 July 1974.

section was motivated by the study of the random variable $\int |Y(t)|^2 dt$ where

$$Y(t) = X(t) + f(t) \int g(x)X(s)ds ,$$

and f, g are matrix functions, and X is as above; see Withers [9] for statistical applications where such variables arise naturally. The basic results of Fredholm integral equation theory for a matrix kernel N(x, y) defined on a domain $\Omega \times \Omega$ where Ω is an arbitrary domain in p-dimensional euclidean space R^p appear to have been stated only for the case n=p=1 and Ω a bounded interval. However the technique of deducing these results for general n is well known and some authors have realised such extensions are possible (cf. Riesz and Nagy [6], p. 145), although others have suggested that Ω must be bounded (cf. Pogorzelski [5], p. 95). We therefore begin with a summary of these results for general n and arbitrary domain in R^p .

Some basic results

We give here generalisations of some basic results. These are easily deduced by the method of Carleman [1] (given for n=p=1, $\Omega=[a,b]$, N real), the technique of reducing to n=1 (for example, Pogorzelski [5], p. 181) and the standard proofs.

Throughout this paper we shall use A^* to denote the conjugate transpose of a complex matrix $A=\begin{pmatrix} A_{ij} \end{pmatrix}$, and $\|\cdot\|$ to denote the norm defined by $\|A\|^2=\sum_i |A_{ij}|^2$. All integrals will be with respect to Lebesgue measure over Ω , an arbitrary subset of R^p .

Given $\Omega \subset R^p$ consider a complex measurable $n \times n$ function N(x, y) on $\Omega \times \Omega$ such that

$$(1) \qquad 0 < \iint ||N(x, y)||^2 dxdy < \infty.$$

For f a complex measurable $n \times q$ function on Ω such that $\int \|f\|^2 < \infty \text{ , let } Nf(x) = \int N(x,s)f(s)ds \text{ and } f(y)^*N = \int f(s)^*N(s,y)ds \text{ .}$

Let $N_j=N^{j-1}N$, $j\geq 1$, where $N^0=1$, the identity operator. Then $N(x,\,y,\,\lambda)$, the *resolvent* of $N(x,\,y)$ exists and for y in Ω , $h(x)=N(x,\,y,\,\lambda)$ is the unique solution of

$$h = N(\cdot, y) + \lambda Nh,$$

and for x in Ω , $g(y) = N(x, y, \lambda)$ is the unique solution of $q = N(x, \cdot) + \lambda_{Q}N$

When

(2)
$$\sum \int |N_{ii}(x, x)| dx < \infty ,$$

then the Fredholm determinant $D(\lambda)$ exists and is given by

$$\frac{d}{d\lambda} \log D(\lambda) = - \int \text{trace } N(x, x, \lambda) dx , D(0) = 1 .$$

When

(3)
$$N^*(y, x) = N(x, y)$$
 for x, y in Ω ,

then there exist real numbers $\{\lambda_1, \lambda_2, \ldots\}$ (eigenvalues) and complex n-vectors on Ω , $\{\phi_1, \phi_2, \ldots\}$ (eigenvectors) satisfying

$$\lambda_{i}N\phi_{i} = \phi_{i} , \quad \int \phi_{i}^{*}\phi_{j} = \begin{cases} 1 , & i = j \\ & \\ 0 , & i \neq j \end{cases}, \quad 0 < |\lambda_{1}| \leq |\lambda_{2}| \leq \dots,$$

such that if

$$\lambda N \phi = \phi , \int |\phi|^2 < \infty , \phi n \times 1 ,$$

then $\lambda=\lambda_k$ for some k , and ϕ is a linear combination of those ϕ_r such that $\lambda_r=\lambda$.

When (3) and

(5)
$$\sup_{y} \int \|N(x, y)\|^2 dx < \infty ,$$

then for x in Ω , and almost all y in Ω ,

$$N(x, y, \lambda) = N(x, y) + \lambda \sum_{i=1}^{\infty} \left\{ \frac{\phi_{i}(x)\phi_{i}(y)^{*}}{\lambda_{i}(\lambda_{i}-\lambda)} \right\}$$
, λ not an eigenvalue,

and

(6)
$$N_{j}(x, y) = \sum_{i=1}^{\infty} \lambda_{i}^{-j} \phi_{i}(x) \phi_{i}(y)^{*}, \quad j \geq 2,$$

and the convergence of these series is (element-wise) absolute and uniform in $\,\Omega^2$

3. Mercer's Theorem

Mercer's Theorem concerns the expansion of N in terms of its eigenfunctions and eigenvalues:

$$N(x, y) = \sum \phi_{i}(x)\phi_{i}(y)^{*}/\lambda_{i}$$
.

Statements of the theorem in the literature all make unnecessary continuity and other assumptions. For example sometimes (5) is assumed (for example, Pogorzelski [5], p. 150). Our aim here is to impose as few conditions on N as seems possible. It is worth noting that a useful weakening of our continuity assumptions (9)-(11) may be made by excluding from Ω the set of points P at which they do not hold, provided P has Lebesgue measure zero.

Our version of Mercer's Theorem is as follows.

THEOREM 1. Suppose N satisfies (1), (3), and the following

(7)
$$\int \phi^* N \phi = \iint \phi^*(x) N(x, y) \phi(y) dx dy \ge 0$$

for all complex $n \times 1$ functions ϕ such that $\int |\phi|^2 < \infty$,

(8)
$$\sup_{x \in \Omega} \operatorname{trace} N(x, x) < \infty,$$

(9)
$$N(x, y)$$
 is continuous at $y = x \in \Omega$,

(10)
$$N_2(x, x)_{ii}$$
 is continuous in Ω , $1 \le i \le n$,

(11)
$$N_2(x, y)_{ii}$$
 is continuous at $y = x$ in Ω , $1 \le i \le n$,

then for $\{\lambda_i, \phi_i\}$ above, $\{\phi_i\}$ are continuous and $\sum\limits_{1}^{\infty} \lambda_i^{-1} \phi_i(x) \phi_i(y)^*$ converges (elementwise) absolutely and uniformly in Ω^2 and equals N(x, y) almost everywhere in Ω^2 .

NOTES. (i) Since a uniformly convergent series of continuous functions converges to a continuous function, equality holds at continuity points of N, such as x=y.

- (ii) Since (4) implies $\phi = \lambda^m N^m \phi$, (10) and (11) may be replaced by (11)¹ for some $m \ge 1$, $N_{2m}(x, y)_{ii}$ and $N_{2m}(x, x)_{ii}$ are continuous at y = x for x in Ω , $1 \le i \le n$; (cf. Hobson [3] who gives for continuity of $\{\phi_i\}$);
- (11) for some $m \ge 1$, $N_m(x, y)$ is continuous in x for almost all y in Ω and for $j \ge m$, N_j is bounded.

Proof of Theorem 1. We may without loss take n=1 . $\{\phi_{\vec{t}}\}$ are continuous because (4) implies

$$|\phi(x)-\phi(y)|^2 \le |\lambda|^2 I(x, y) \int |\phi|^2$$
,

where $I(x, y) = \int |N(x, s)-N(y, s)|^2 ds \to 0$ by (3), (10), (11).

By (9) and the standard method (for example, [5], p. 151), N(x, x) and $N(x, x) - \sum_{i=1}^{q} \lambda_{i}^{-1} |\phi_{i}(x)|^{2}$ are real and non-negative for $q \ge 1$. Hence by (8) for $\epsilon > 0$, there exists M such that

$$\sum_{M}^{\infty} \lambda_{i}^{-1} |\phi_{i}(x)|^{2} < \varepsilon \text{ in } \Omega,$$

so that for $n_2 \ge n_1 \ge M$,

$$\sum_{n_1}^{n_2} \lambda_i^{-1} |\phi_i(x)\phi_i(y)^*| < \varepsilon \text{ in } \Omega^2.$$

Hence $\sum \lambda_i^{-1} \phi_i(x) \phi_i(y)^*$ converges absolutely and uniformly in Ω^2 , so that by [5], pp. 130, 131, the sum equals N(x, y) almost everywhere.

COROLLARY. Under the conditions of Theorem 1,

The usual expansions now follow:

- (12) for $j \ge 1$, $N_j(x, y) = \sum_i \lambda_i^{-j} \phi_i(x) \phi_i(y)^*$ almost everywhere in Ω^2 .
- (13) $N(x, y, \lambda) = \sum_{i=1}^{n} (\lambda_i \lambda)^{-1} \phi_i(x) \phi_i(y)^*$ almost everywhere in Ω^2 , if λ is not an eigenvalue,
- (14) for $j \ge 1$, $\int \operatorname{trace} N_j(x, x) dx = \sum \lambda_i^{-j}$, (possibly infinite for j = 1), and the (elementwise) convergence in (12) and (13) is absolute and uniform.

If also (2) holds, that is, $\int \operatorname{trace} N(x, x) dx < \infty$, then

(15)
$$D(\lambda) = \prod_{i=1}^{\infty} (1 - \lambda/\lambda_{i}).$$

4. The kernel N(x, y) - a(x)b(y)

Carleman [1] gave expansions in λ for $D(x,\,y,\,\lambda)$ and $D(\lambda)$ for N=G+H and $N=G\cdot H$ in terms of multiple integrals of determinants, akin to Fredholm's series. Here we give more convenient formulae for $K(x,\,y,\,\lambda)$ and $D_K(\lambda)$, the resolvent and Fredholm determinant for the particular case

$$K(x, y) = N(x, y) - a(x)b(y),$$

where we assume a, b are $n \times q$ and $q \times n$ functions on Ω such that

$$\int \|a\|^2 < \infty , \quad \int \|b\|^2 < \infty ,$$

when $D_N(\lambda)$, $N(x,y,\lambda)$ are known, and where we set $D_N(\lambda)=D(\lambda)$ to avoid confusion with $D_{\nu}(\lambda)$.

THEOREM 2. Let N satisfy (1) and (2). Let T denote the operator

$$(I-\lambda N)^{-1}$$
 so that

$$Ta(x) = a(x) + \lambda \int N(x, y, \lambda)a(y)dy$$

and

$$b(x)T = b(x) + \lambda \int b(y)N(y, x, \lambda)dy$$
.

Let
$$B(\lambda) = 1_q + \lambda \int bTa$$
, where $1_q = diag(1, ..., 1)$. Then

(16)
$$K(x, y, \lambda) = N(x, y, \lambda) - Ta(x)B(\lambda)^{-1}b(y)T,$$

for x, y in Ω and $D_{\nu}(\lambda) \neq 0$. Also

$$D_{\mathcal{K}}(\lambda) = D_{\mathcal{N}}(\lambda) \cdot \det B(\lambda) .$$

Further, if $\det B(\lambda)=0$, then eigenfunctions of K with eigenvalue λ all have the form Tac where $c\neq 0$ is a q-vector such that

$$B(\lambda)c = 0$$
.

NOTE. Michlin [4] has given a special case of (16) without proof.

Proof. Suppose $D_{N}(\lambda) \neq 0$ and $D_{K}(\lambda) = 0$.

Then $f=\lambda Kf$ has a non-trivial solution where $Kf(x)=\int K(x,\,y)f(y)dy$. Hence $c=\int bf\neq 0$ and $f=-\lambda Tac$. Hence $\det B(\lambda)=0$.

Suppose $D_N(\lambda)$ • $\det B(\lambda) \neq 0$. Then $D_K(\lambda) \neq 0$ and for h such that $\Big| |h|^2 < \infty \;, \quad f = h + \lambda K f \;\; \text{has solution}$

$$f = (I - \lambda K)^{-1} h = T(h - \lambda ac) .$$

Hence c = Rh where $R = B(\lambda)^{-1}bT$, so that $(I-\lambda K)^{-1} = T(I-\lambda aR)$, which proves (16).

If
$$D_K(\lambda)D_N(\lambda) \neq 0$$
,

$$\frac{d}{d\lambda} \log(D_{K}(\lambda)/D_{N}(\lambda)) = -\int \operatorname{trace}(K(x, x, \lambda)-N(x, x, \lambda)) dx$$

$$= \operatorname{trace} B(\lambda)^{-1}C \cdot \operatorname{by} (14),$$

where $C = \int bT^2 a$. For $|\lambda|$ small,

$$\frac{d}{d\lambda} \lambda T = I + 2\lambda N + 3\lambda^2 N^2 + \dots = T^2 ,$$

so that $C = d/d\lambda B(\lambda)$ for all λ by analytic continuation. (17) follows.

References

- [1] T. Carleman, "Zur Theorie der linearen Integralgleichungen", Math. Z. 9 (1921), 196-217.
- [2] Ralph Deutsch, Estimation theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1965).
- [3] E.W. Hobson, "On the representation of the symmetrical nucleus of a linear integral equation", *Proc. London Math. Soc.* (2) 14 (1915), 5-30.
- [4] S. Michlin, "On the convergence of Fredholm series", C.R. (Doklady)

 Acad. Sci. URSS (NS) 42 (1944), 373-376.
- [5] W. Pogorzelski, Integral equations and their applications. Vol. 1
 (International Series of Monographs in Pure and Applied
 Mathematics, 88. Pergamon, Oxford, New York, Frankfurt; PWNPolish Scientific Publishers, Warsaw, 1966).
- [6] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis (Frederick Ungar, New York, 1955).
- [7] F. Smithies, Integral equations (Cambridge Tracts in Mathematics and Mathematical Physics, 49. Cambridge University Press, Cambridge, 1958).
- [8] C.S. Withers, "The characteristic function of the L_2 -norm of a Gaussian process", submitted.
- [9] C.S. Withers, "On the asymptotic power of statistics which are $L_{\rm o}$ -norms", submitted.

Applied Mathematics Division, Department of Scientific and Industrial Research, Wellington, New Zealand.