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Mercer's Theorem and

Fredholm resolvents

C.S. Withers

Multivariate versions of Mercer's Theorem and the usual

expansions of the resolvent and Fredholm determinant are shown to

hold for an n x n symmetric kernel N(x, y) with arbitrary-

domain in If under weakened continuity conditions. Further,

the resolvent and determinant of N(x, y) - a{x)b(y) are given

in terms of those of N(x, y) .

1. Introducti on

Our main result, given in §3, deals with eigenfunction expansions of

the n x n matrix kernel N{x, y) (Mercer's Theorem) and its iterates

N .(x, y) and resolvent N(x, y, X) . As well as allowing n to be
3

arbitrary and the domain to be unbounded, we weaken the usual continuity

assumptions of this important theorem, which has found applications in

optimum detection theory (for example, Deutsch [2], p. 2UU) and statistics.

These expansion formula are basic to the study of the distribution of the

random variable |#(t)| dt where X : If -*• it is a Gaussian process

with covariance N . Such random variables arise in connection with the

asymptotic distribution and power of certain statistical tests; see

Withers [«].

In §4 we give a simple but useful result: formulae for the resolvent

and Fredholm determinant of N(.x, y) - a(x)b(y) in terms of those of

N(x, y) , where a{x), b(y) are n x q and q x n functions. This
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374 C.S. Withers

section was motivated by the study of the random variable

where

Y(t) = X(t) + /(*) f g(x)X(s)d8 ,

and / , g are matrix functions, and X is as above; see Withers [9] for

stat is t ical applications where such variables arise naturally. The basic

results of Fredholm integral equation theory for a matrix kernel N(x, y)

defined on a domain ft x ft where ft is an arbitrary domain in

p-dimensional euclidean space Fr appear to have been stated only for the

case n = p = 1 and ft a bounded interval. However the technique of

deducing these results for general n is well known and some authors have

realised such extensions are possible (of. Riesz and Nagy [6], p. XU5),

although others have suggested that ft must be bounded (of. Pogorzelski

[5] , p. 95). We therefore begin with a summary of these results for

general n and arbitrary domain in If .

2. Some b a s i c r e s u l t s

We give here generalisations of some basic r e su l t s . These are easily

deduced by the method of Carleman [/] (given for n = p = l , ft = [a, £>] ,

N r e a l ) , the technique of reducing to n = 1 (for example, Pogorzelski

[ 5 ] , p . l 8 l ) and the standard proofs.

Throughout t h i s paper we shall use A* to denote the conjugate

transpose of a complex matrix A = [A..) , and ||*|| to denote the norm

defined by ||i4|| = £ \A •-\ . All integrals wi l l be with respect to

Lebesgue measure over ft , an arbitrary subset of If .

Given ft c iP consider a complex measurable n x n function N(x, y)

on ft x J} such that

(1) 0 < J | ||ff(x, y)fdxdy < - .

For f a complex measurable n x q function on Q such that

II/II2 < » , let W/(x) = | Nix, s)f(s)ds and f(y)*N = f f(s)*N(s, y)ds .
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Mercer's Theorem 375

Let N. = W7"1/? , 3 > 1 , where N° = I , the ident i ty operator.
«7

Then iV(x, y, X) , the resolvent of ff(«, y) ex is t s and for y in ft ,

7z(x) = tf(x, j / , X) i s the unique solution of

h = N{-, y) + XNh ,

and for x in ft , £(#) = ̂ (x, y , X) i s the unique solution of

g = ff(x, •) + XgN .

When

(2) I j \Nu(x, *)\dx < » ,

then the Fredholm determinant D(X) exists and i s given by

J^logD(X) = - J trace tf(x, x, X)dx , D(o) = 1 .

When

(3) N*(y, x) = N(x, y) for x , y in ft ,

then there exist rea l numbers {X , X . . . } {eigenvalues) and complex

n-vectors on ft , {$ , <t> , . . . } {eigenvectors') satisfying

1 , i = /
X . N < f > . = ( f i . , f <j>1<t>. =

0 , i * 3,

• , 0 — • • • »

such that if

(U)

then X = X- for some k , and (j) i s a l inear combination of those

such that X = X .r

When (3) and

(5) sup [ \\N{x, y)fdx < °
y '

then for x in ft , and almost all y in ft ,
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and

(x, y, A) = N(x, y) + A £ < . fX.—Xl—I ' X n o t ^ e igenva lue ,

(6) ff.d, y) = I ATJ4.(*)*.(!/)* , J > 2 ,
<7 ^ i t- t-

and the convergence of. these series is (element-wise) absolute and uniform

in Q2

3. Mercer's Theorem

Mercer's Theorem concerns the expansion of N in terms of its eigen-

functions and eigenvalues:

Nix, y) =1 <f> .(*)*.(»)* A . •
Is Is is

Statements of the theorem in the l i t e r a tu re a l l make unnecessary

continuity and other assumptions. For example sometimes (5) i s assumed

(for example, Pogorzelski [ 5 ] , p. 150). Our aim here i s to impose as few

conditions on N as seems possible. I t is worth noting that a useful

weakening of our continuity assumptions (9 ) - ( l l ) may be made by excluding

from fl the set of points P at which they do not hold, provided P has

Lebesgue measure zero.

Our version of Mercer's Theorem is as follows.

THEOREM 1 . Suppose N satisfies (l), (3), and the following

(7 ) j <f>*N<f> = J J <!>*(*)#(*, yH(y)dxdy > 0

for all complex n x 1 functions (j) such that |<j)| < °° 3

(8) sup t r a c e N(x, x) < °° ,

(9) N(x, y) is continuous at y = x € ft ,

(10) N'(x, x).. is continuous in Q , 1 5 i 5 n ,

(11) N'_(x, y).. is continuous at y = x in f J , 1 5 i
C. Is Is
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oo

t h e n f o r { X . , <$>.} a b o v e , { ( j ) . } a r e c o n t i n u o u s and J" XT $ . { x ) § . ( y ) *
If If If - If 1* Is

converges (elementwise) absolutely and uniformly in Q and equals

N(x, y) almost everywhere in 9, .

NOTES. ( i ) Since a uniformly convergent series of continuous

functions converges to a continuous function, equality holds at continuity

points of N , such as x = y .

( i i ) Since (h) implies $ = X N<|> , (10) and ( l l ) may be replaced by

( l l ) 1 for some m > 1 , N (x, y).. and N (x, x).. are continuous

at y = x for x in fi, l S t S n ; [cf. Hobson [3] who

gives for continuity of {()).} ) ;

2

( l l) for some m > 1 , N (x, y) is continuous in x for almost all

y in £2 and for j 2 m , N. is bounded.
3

Proof of Theorem 1. We may without loss take n = 1 . {*.} are

continuous because (U) implies

|(j)(x)-<tl(j/) | - |A| I ( X , y) I |<J>| ,

where I (x , y) = j |iV(x, s)-N{y, s)\2ds + 0 by (3) , (10), ( l l ) .

Ety (9) and the standard method (for example, [ 5 ] , p . 151), N(x, x)

% -1 2
and iy(x, x) - I \~. |<J>.(a:)| are rea l and non-negative for q 2 1 . Hence

by (8) for E > 0 , there exis ts M such that

00

[ AT1!* ( X ) | 2 < E in n ,
,1 if if

so that for n 2 n >

< e in a2 .
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Hence £ XT <j> .(x)(j> .(y)* converges absolutely and uniformly in Q ,

so tha t by [ 5 ] , pp. 130, 131, the sum equals N(x, y) almost everywhere.

The usual expansions now follow:

COROLLARY, Under the conditions of Theorem 1,

(12) for j > 1 , / V - ( x , y) = 7 X. <}>.(x)<f> . ( y ) * almost everywhere in

(13) N(x, y , X) = ̂  [X.-X)~ c(i.(x)<j) .(y)* almost everywhere in ft ,
7s 1/ If

if X is not an eigenvalue,

(lU) for j 2 1 , trace i!/.(x, x)<2x = £ X. , (possibly infinite
) 3 i

/or 3=1), and'the (elemenUaise) convergence in (12) and

(13) is absolute and uniform.

If also (2) holds, that is, j trace N(x, x)dx < °° ,

oo

(15) D(X) = ]~T (l-X/X.) .
1

4. The kernel #(x, y) - a{x)b(y)

CaNeman [ / ] gave expansions in X for D(x, y, X) and D(X) for

N = G + H and N = <?•# in terms of multiple integrals of determinants,

akin to Fredholm's s e r i e s . Here we give more convenient formulae for

K(x, y, X) and D (X) , the resolvent and Fredholm determinant for the

par t icu la r case

K(x, y) = tf(x, y) - a(x)Hy) ,

where we assume a, b are n x q and q x n functions on ft such that

when ^«T(^) » ^(x, j/, X) are known, and where we set ^(^J = °(X) to

avoid confusion with D (X) .

THEOREM 2. Let !i satisfy (l) cmd (2). Let T denote the operator
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(I-XN)"1 so that

Ta(x) = a(x) + X I N(x, y, X)a(y)dy

and

Hx)T = b{x) + X J b(y)N(y, x, X)dy .

Let 'S(X) = 1 + X bTa , where 1 = d i a g ( l , . . . , l ) . Then

(16) K{x, y, X) =.N(x, y, X) - Ta(x)B(Xrh(y)T ,

for x, y in £2 and Dv(\) + 0 . Also

(IT) DK(\) = Ds(\) • detS(X) .

Further, if detS(X) = 0 , then eigenfvtnotione of K with eigenvalue

X all have the form Too where c f 0 is a q-vector such that

B(X)a = 0 .

NOTE. Michlin [4] has given a special case of (l6) without proof.

Proof. Suppose D
NW * 0 and D (\) = 0 .

Then / = XKf has a non-trivial solution where

Kf(x) = j K(x, y)f{y)dy . Hence o = I bf * 0 and / = -Xiao . Hence

detB(X) = 0 .

Suppose Dn(X) • detB(X) t 0 . Then D (X) * 0 and for h such t h a t

\h\2 < °° , / = h + XKf has solut ion

/ = (I-XK)"1^ = T(h-Xac) .

Hence c = Kh where R = B(X)~XbT , so that (I-XK)"1 = T(I-XaR) , which

proves (l6).

If DK(X)DN(X) * 0 ,

J^ log(zyX)/zyX)) = - J trace(x(x, x, X)-ff(x, x, X))dx

trace B(X)XC .by
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where C = b\ a . For |X| small,

4r XT = I + 2XN + 3\2l£ + . . . = T2 ,

so tha t C - dld\B{\) for a l l X by analytic continuation. (IT) follows,
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