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Abstract
Power densities have been increasing rapidly at all levels of server
systems. To counter the high temperatures resulting from these den-
sities, systems researchers have recently started work on softwa-
re-based thermal management. Unfortunately, research in this new
area has been hindered by the limitations imposed by simulators
and real measurements. In this paper, we introduce Mercury, a soft-
ware suite that avoids these limitations by accurately emulating
temperatures based on simple layout, hardware, and component-
utilization data. Most importantly, Mercury runs the entire software
stack natively, enables repeatable experiments, and allows the study
of thermal emergencies without harming hardware reliability. We
validate Mercury using real measurements and a widely used com-
mercial simulator. We use Mercury to develop Freon, a system that
manages thermal emergencies in a server cluster without unneces-
sary performance degradation. Mercury will soon become available
from http://www.darklab.rutgers.edu.

Categories and Subject Descriptors D.4 [Operating systems]:
Miscellaneous

General Terms Design, experimentation

Keywords Temperature modeling, thermal management, energy
conservation, server clusters

1. Introduction
Power densities have been increasing rapidly at all levels of server
systems, from individual devices to server enclosures to machine
rooms. For example, modern microprocessors, high-performance
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disk drives, blade server enclosures, and highly populated computer
racks exhibit power densities that have never been seen before.
These increasing densities are due to increasingly power-hungry
hardware components, decreasing form factors, and tighter pack-
ing. High power densities entail high temperatures that now must
be countered by substantial cooling infrastructures. In fact, when
hundreds, sometimes thousands, of these components are racked
close together in machine rooms, appropriate cooling becomes the
main concern.

The reason for this concern is that high temperatures decrease
the reliability of the affected components to the point that they start
to behave unpredictably or fail altogether. Even when components
do not misbehave, operation outside the range of acceptable tem-
peratures causes mean times between failures (MTBFs) to decrease
exponentially [1, 7]. Several factors may cause high temperatures:
hot spots at the top sections of computer racks, poor design of the
cooling infrastructure or air distribution system, failed fans or air
conditioners, accidental overload due to hardware upgrades, or de-
graded operation during brownouts. We refer to these problems as
“thermal emergencies”. Some of these emergencies may go unde-
tected for a long time, generating corresponding losses in reliability
and, when components eventually fail, performance.

Recognizing this state of affairs, systems researchers have re-
cently started work on software-based thermal management. Speci-
fically, researchers from Duke University and Hewlett-Packard
have examined temperature-aware workload placement policies
for data centers, using modeling and a commercial simulator [21].
Another effort has begun investigating temperature-aware disk-
scheduling policies, using thermal models and detailed simulations
of disk drives [12, 16]. Rohou and Smith have implemented and
experimentally evaluated the throttling of activity-intensive tasks
to control processor temperature [26]. Taking a different approach,
Weissel and Bellosa have studied the throttling of energy-intensive
tasks to control processor temperature in multi-tier services [32].

Despite these early initiatives, the infrastructure for software-
based thermal management research severely hampers new efforts.
In particular, both real temperature experiments and temperature
simulators have several deficiencies. Working with real systems
requires heavy instrumentation with (internal or external) sensors
collecting temperature information for every hardware component
and air space of interest. Hardware sensors with low resolution and
poor precision make matters worse. Furthermore, the environment
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where the experiments take place needs to be isolated from unre-
lated computations or even trivial “external thermal disruptions”,
such as somebody opening the door and walking into the machine
room. Under these conditions, it is very difficult to produce repeat-
able experiments. Worst of all, real experiments are inappropriate
for studying thermal emergencies. The reason is that repeatedly in-
ducing emergencies to exercise some piece of thermal management
code may significantly decrease the reliability of the hardware.

In contrast, temperature simulators do not require instrumenta-
tion or environment isolation. Further, several production-quality
simulators are available commercially, e.g. Fluent [9]. Unfortu-
nately, these simulators are typically expensive and may take sev-
eral hours to days to simulate a realistic system. Worst of all, these
simulators are not capable of executing applications or any type
of systems software; they typically compute steady-state tempera-
tures based on a fixed power consumption for each hardware com-
ponent. Other simulators, such as HotSpot [30], do execute appli-
cations (bypassing the systems software) but only model the pro-
cessor, rather than the entire system.

To counter these problems, we introduce Mercury, a software
suite that emulates system and component temperatures in single-
node or clustered systems in a repeatable fashion. As inputs, Mer-
cury takes simple heat flow, air flow, and hardware information, as
well as dynamic component utilizations. To enable thermal man-
agement research, the emulation is performed at a coarse grain and
seeks to approximate real temperatures to within a few degrees
while providing trend-accurate thermal behavior. Although this is
sometimes unnecessary, users can improve accuracy by calibrating
the inputs with a few real measurements or short simulations.

Mercury provides the same interface to user-level software as
real thermal sensors, so it can be linked with systems software to
provide temperature information in real time. In fact, in our ap-
proach the entire software stack runs natively (without noticeable
performance degradation) and can make calls to Mercury on-line,
as if it were probing real hardware sensors. Our suite also provides
mechanisms for explicitly changing temperatures and other emu-
lation parameters at run time, allowing the simulation of thermal
emergencies. For example, one can increase the inlet air temper-
ature midway through a run to mimic the failure of an air con-
ditioner. Finally, Mercury is capable of computing temperatures
from component-utilization traces, which allows for fine-tuning of
parameters without actually running the system software. In fact,
replicating these traces allows Mercury to emulate large cluster in-
stallations, even when the user’s real system is much smaller.

We validate Mercury using measurements and simulations of a
real server. The comparison against Fluent, a widely used commer-
cial simulator, demonstrates that we can approximate steady-state
temperatures to within 0.5oC, after calibrating the inputs provided
to Mercury. The comparison against the real measurements shows
that dynamic temperature variations are closely emulated by our
system as well. We have found emulated temperatures within 1oC
of the running system, again after a short calibration phase.

We are using Mercury to investigate policies for managing ther-
mal emergencies without excessive (throughput) performance de-
gradation. In particular, we are developing Freon, a system that
manages component temperatures in a server cluster fronted by a
load balancer. The main goal of Freon is to manage thermal emer-
gencies without using the traditional approach of turning off the
affected servers. Turning servers off may degrade throughput un-
necessarily during high-load periods. Given the direct relationship
between energy consumption and temperature, as an extension of
Freon, we also develop a policy that combines energy conservation
and thermal management. Interestingly, the combined policy does
turn servers off when this is predicted not to degrade throughput.

To accomplish its goals, Freon constantly monitors tempera-
tures and dynamically adjusts the request distribution policy used
by the load balancer in response to thermal emergencies. By ma-
nipulating the load balancer decisions, Freon directs less load to
hot servers than to other servers. Using our emulation suite, we
have been able to completely develop, debug, and evaluate Freon.

In summary, this paper makes two main contributions:

• We propose Mercury, a temperature emulation suite. Mercury
simplifies the physical world, trading off a little accuracy (at
most 1oC in our experiments) for native software stack execu-
tion, experiment repeatability, and the ability to study thermal
emergencies; and

• We propose Freon, a system for managing thermal emergen-
cies without unnecessary performance degradation in a server
cluster. In the context of Freon, we propose the first policy to
combine energy and thermal management in server clusters.

The remainder of the paper is organized as follows. The next
section describes the details of the Mercury suite. Section 3
presents our validation experiments. Section 4 describes the Freon
policies. Section 5 demonstrates the use of Mercury in the Freon
evaluation. Section 6 overviews the related work. Finally, Section
7 discusses our conclusions and the limitations of our current im-
plementations.

2. The Mercury Suite
In this section we describe the physical model that Mercury em-
ulates, overview the Mercury inputs and emulation approach, and
detail our current implementation.

2.1 Physics

Modeling heat transfer and air flow accurately is a complex pro-
position. To create a very accurate simulation from basic properties,
Mechanical Engineering tools must simulate everything from wall
roughness to fluctuations of the air density to the detailed properties
of the air flow. We believe that this level of detail is unnecessary
for most software-based thermal management research, so we have
simplified our model of the physical world to a few basic equations.
This is the key insight behind Mercury.

Basic terminology. Since many systems researchers are unfamil-
iar with engineering and physics terminology, we will first define
some basic concepts. The temperature of an object is a measure
of the internal energy present in that object. Temperature is typi-
cally measured in degrees Celsius or Kelvin. Heat is energy that is
transferred between two objects or between an object and its en-
vironment. Heat is measured in the same units as energy, such as
Joules or Wh.

Conservation of energy. One of the most basic equations in heat
transfer is the conservation of energy, which translates into the con-
servation of heat in our case. There are two sources of heat for an
object in our system: it converts power into heat while it performs
work, and it may gain (lose) heat from (to) its environment. This
can be expressed as:

Qgained = Qtransfer + Qcomponent (1)

where Qtransfer is the amount of heat transferred from/to the
component during a period of time and Qcomponent is the amount
of heat produced by performing work during a period of time. Next
we define these two quantities in turn.

Newton’s law of cooling. Heat is transferred in direct proportion
to the temperature difference between objects or between an object
and its environment. More formally:

Qtransfer,1→2 = k × (T1 − T2) × time (2)
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Figure 1. Example intra-machine heat-flow (a), intra-machine air-flow (b), and inter-machine air-flow (c) graphs.

where Qtransfer,1→2 is the amount of heat transferred between
objects 1 and 2 or between object 1 and its environment during a
period of time, T1 and T2 are their current temperatures, and k is a
constant that embodies the heat transfer coefficient and the surface
area of the object. The k constant can be approximated by experi-
ment, simulation, or rough numerical approximation using typical
engineering equations. However, in reality, k can vary with tem-
perature and air-flow rates. We assume that k is constant in our
modeling because the extra accuracy of a variable k would not jus-
tify the complexity involved in instantiating it for all temperatures
and rates.

Energy equivalent. The heat produced by a component essentially
corresponds to the energy it consumes, so we define it as:

Qcomponent = P (utilization) × time (3)

where P (utilization) represents the average power consumed by
the component as a function of its utilization.

For the components that we have studied in detail so far, a sim-
ple linear formulation has correctly approximated the real power
consumption:

P (utilization) = Pbase + utilization × (Pmax − Pbase) (4)

where Pbase is the power consumption when the component is idle
and Pmax is the consumption when the component is fully utilized.

Researchers have used similar high-level formulations to model
modern processors and server-style DRAM subsystems [8]. How-
ever, our default formulation can be easily replaced by a more so-
phisticated one for components that do not exhibit a linear rela-
tionship between high-level utilization and power consumption. For
example, we have an alternate formulation for QCPU that is based
on hardware performance counters. (Although our descriptions and
results assume the default formulation, we do discuss this alternate
formulation in Section 2.3.)

Heat capacity. Finally, since pressures and volumes in our sys-
tem are assumed constant, the temperature of an object is directly
proportional to its internal energy. More formally, we define the
object’s temperature variation as:

ΔT =
1

m c
× ΔQ (5)

where m is the mass of the object and c is its specific heat capacity.

2.2 Inputs and Temperature Emulation

Mercury takes three groups of inputs: heat- and air-flow graphs de-
scribing the layout of the hardware and the air circulation, con-

stants describing the physical properties and the power consump-
tion of the hardware components, and dynamic component utiliza-
tions. Next, we describe these groups and how Mercury uses them.

Graphs. At its heart, Mercury is a coarse-grained finite element
analyzer. The elements are specified as vertices on a graph, and
the edges represent either air-flow or heat-flow properties. More
specifically, Mercury uses three input graphs: an inter-component
heat-flow graph, an intra-machine air-flow graph, and possibly an
inter-machine air-flow graph for clustered systems. The heat-flow
graphs are undirected, since the direction of heat flow is solely
dependent upon the difference in temperature between each pair of
components. The air-flow graphs are directed, since fans physically
move air from one point to another in the system.

Figure 1 presents one example of each type of graph. Figure
1(a) shows a heat-flow graph for the real server we use to validate
Mercury in this paper. The figure includes vertices for the CPU,
the disk, the power supply, and the motherboard, as well as the
air around each of these components. As suggested by this figure,
Mercury computes a single temperature for an entire hardware
component, which again is sufficient for whole-system thermal
management research. Figure 1(b) shows the intra-machine air-
flow for the same server. In this case, vertices represent air regions,
such as inlet air and the air that flows over the CPU. Finally,
Figure 1(c) shows an inter-machine air flow graph for a small
cluster of four machines. The vertices here represent inlet and outlet
air regions for each machine, the cold air coming from the air
conditioner, and the hot air to be chilled. The graph represents
the ideal situation in which there is no air recirculation across
the machines. Recirculation and rack layout effects can also be
represented using more complex graphs.

Constants. The discussion above has not detailed how the input
graphs’ edges are labeled. To label the edges of the heat-flow graph
and instantiate the equations described in the previous subsection,
Mercury takes as input the heat transfer coefficients, the compo-
nents’ specific heat capacities, and the components’ surface areas
and masses. The air-flow edges are labeled with the fraction of
air that flows from one vertex to another. For example, the air-
flow edge from the “Disk Air Downstream” vertex to the “CPU
Air” vertex in Figure 1(b) specifies how much of the air that flows
over the disk flows over the CPU as well. (Because some modern
fans change speeds dynamically, we need a way to adjust the air-
flow fractions accordingly. The thermal emergency tool described
in Section 2.3 can be used for this purpose.) Besides these con-
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stants, the inlet air temperatures, fan speeds, and maximum and
base power consumptions for every component must be provided.

There are several ways to find these constants. The heat transfer
properties of a component are sometimes provided by the manu-
facturer (as they are in the case of the Intel CPUs). One may also
use a fine-grained engineering tool to determine the heat- and air-
flow constants. In some cases, the values may also be found using
various engineering equations for forced convection [24].

Determining the constants using any of the previous methods
can be time consuming and quite difficult for a computer scientist
without a background in Mechanical Engineering. Thus, it is of-
ten useful to have a calibration phase, where a single, isolated ma-
chine is tested as fully as possible, and then the heat- and air-flow
constants are tuned until the emulated readings match the calibra-
tion experiment. Since temperature changes are second-order ef-
fects on the constants in our system, the constants that result from
this process may be relied upon for reasonable changes in temper-
ature (ΔT < 40oC) for a given air flow [24].

A final set of input constants relate to the power consump-
tion of the different components. In particular, Mercury needs the
idle and maximum power consumptions of every component of
interest. These values can be determined using microbenchmarks
that exercise each component, power measurement infrastructure,
and standard fitting techniques. The components’ data sheets may
sometimes provide this information, although they often exagger-
ate maximum power consumptions.

Component utilizations. When Mercury is running, it monitors
all the component utilizations in the real system, which are used to
determine the amount of power that each component is consuming
according to Equation 4.

Emulation. Using discrete time-steps, Mercury does three forms of
graph traversals: the first computes inter-component heat flow; the
second computes intra-machine air movement and temperatures;
and the third computes inter-machine air movement and tempera-
tures. The heat-flow traversals use the equations from the previous
subsection, the input constants, and the dynamic component uti-
lizations. The air-flow traversals assume a perfect mixing of the air
coming from different machines (in case of a cluster), and comput-
ing temperatures using a weighted average of the incoming-edge
air temperatures and fractions for every air-region vertex. All tem-
peratures can be queried by running applications or the systems
software to make thermal management decisions.

2.3 Implementation

The Mercury suite comprises four pieces of software: the solver, a
set of component monitoring daemons, a few “sensor” library calls,
and a tool for generating thermal emergencies explicitly. Figure 2
overviews the suite and the relationships between its parts.

Solver. The solver is the part of the suite that actually computes
temperatures using finite-element analysis. It runs on a separate
machine and receives component utilizations from a trace file or
from the monitoring daemons. If the utilizations come from a file,
i.e. the system is run offline, the end result is another file containing
all the usage and temperature information for each component in
the system over time. If the utilizations come from the monitoring
daemons on-line, the applications or system software can query the
solver for temperatures. Regardless of where the utilizations come
from, the solver computes temperatures at regular intervals; one
iteration per second by default. All objects and air regions start the
emulation at a user-defined initial air temperature.

As a point of reference, the solver takes roughly 100 µsec on
average to compute each iteration, when using a trace file and the
graphs of Figure 1. Because the solver runs on a separate machine,
it could execute for a large number of iterations at a time, thereby

Figure 2. Overview of the Mercury suite.

int sd;
float temp;
sd = opensensor("solvermachine", 8367, "disk");
temp = readsensor(sd);
closesensor(sd);

Figure 3. An example use of the library calls.

providing greater accuracy. However, as we demonstrate in Section
3, our default setting is enough to produce temperatures that are
accurate to within 1oC. The thermal emergency tool can force the
solver to set temperatures to user-defined values at any time.

The user can specify the input graphs to the solver using our
modified version of the language dot [10]. Our modifications
mainly involved changing its syntax to allow the specification of
air fractions, component masses, etc. Besides being simple, the
language enables freely available programs to draw the graphs for
visualizing the system.

Monitoring daemon. The monitor daemon, called monitord,
periodically samples the utilization of the components of the ma-
chine on which it is running and reports that information to the
solver. The components considered are the CPU(s), disk(s), and
network interface(s) and their utilization information is computed
from /proc. The frequency of utilization updates sent to the solver
is a tunable parameter set to 1 second by default. Our current im-
plementation uses 128-byte UDP messages to update the solver.

Sensor library. Applications and system software can use Mercury
through a simple runtime library API comprised by three calls:
opensensor(), readsensor(), and closesensor().
The call opensensor() takes as parameters the address of the
machine running the solver, the port number at that machine, and
the component of which we want the temperature. It returns a file
descriptor that can then be read with readsensor(). The read
call involves communication with the solver to get the emulated
sensor reading. The call closesensor() closes the sensor. With
this interface, the programmer can treat Mercury as a regular, local
sensor device. Figure 3 illustrates the use of these three calls to
read the temperature of the local disk.

Our current UDP implementation of readsensor() has an
average response time of 300 µsec. This result compares favorably
with the latency of some real temperature sensors [2]. For instance,
the Mercury response time is substantially lower than the average
access time of the real thermal sensor in our SCSI disks, 500 µsec.

Thermal emergency tool. To simulate temperature emergen-
cies and other environmental changes, we created a tool called
fiddle. Fiddle can force the solver to change any constant or
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#!/bin/bash
sleep 100
fiddle machine1 temperature inlet 30
sleep 200
fiddle machine1 temperature inlet 21.6

Figure 4. An example fiddle script.

temperature on-line. For example, the user can simulate the failure
of an air conditioner or the accidental blocking of a machine’s air
inlet in a data center by explicitly setting high temperatures for
some of the machine inlets. Figure 4 shows an example fiddle
script that simulates a cooling failure by setting the temperature of
machine1’s inlet air to 30oC 100 seconds into the experiment. The
high inlet temperature remains for 200 seconds, at which point we
simulate a restoration of the cooling.

Fiddle can also be used to change air-flow or power-consump-
tion information dynamically, allowing us to emulate multi-speed
fans and CPU-driven thermal management using voltage/frequency
scaling or clock throttling. We discuss this issue in Section 7.

Mercury for modern processors. As we mentioned above, com-
puting the amount of heat produced by a CPU using high-level
utilization information may not be adequate for modern proces-
sors. For this reason, we have recently developed and validated a
version of Mercury for the Intel Pentium 4 processor. In this ver-
sion, monitord monitors the hardware performance counters and
translates each observed performance event into an estimated en-
ergy [2]. (The software infrastructure for handling the Intel per-
formance counters has been provided by Frank Bellosa’s group.)
To avoid further modifications to Mercury, the daemon transforms
the estimated energy during each interval into an average power,
which is then linearly translated into a “low-level utilization” in
the [0% = Pbase, 100% = Pmax] range. This is the utilization
reported to the solver.

3. Mercury Validation
We validated Mercury using two types of single-server experi-
ments. The first type evaluates Mercury as a replacement for real
measurements, which are difficult to repeat and prevent the study of
thermal emergencies. In these validations, we compare the Mercury
temperatures to real measurements of benchmarks running through
a series of different CPU and disk utilizations.

The second type of validations evaluate Mercury as a replace-
ment for time-consuming simulators, which are typically not ca-
pable of executing applications or systems software. In these vali-
dations, we compare the Mercury (steady-state) temperatures for a
simple server case against those of a 2D simulation of the case at
several different, but constant component power consumptions.

3.1 Real Machine Experiments

To validate with a real machine, we used a server with a single Pen-
tium III CPU, 512 MBytes of main memory, and a SCSI 15K-rpm
disk. We configured Mercury with the parameters shown in Table
1 and the intra-machine graphs of Figure 1(a) and 1(b). The ther-
mal constants in the table were defined as follows. As in [12], we
modeled the disk drive as a disk core and a disk shell (base and
cover) around it. Also as in [12], we assumed the specific heat ca-
pacity of aluminum for both disk drive components. We did the
same for the CPU (plus heat sink), representing the specific heat
capacity of the heat sink. We assumed the specific heat capacity
of FR4 (Flame Resistant 4) for the motherboard. The k constant
for the different heat transfers was defined using calibration, as de-
scribed below. We estimated the air fractions based on the layout
of the components in our server. All the component masses were

Component Property Value Unit

Disk Platters Mass 0.336 kg
Specific Heat Capacity 896 J

Kkg
(Min, Max) Power (9, 14) Watts

Disk Shell Mass 0.505 kg
Specific Heat Capacity 896 J

Kkg

CPU Mass 0.151 kg
Specific Heat Capacity 896 J

Kkg
(Min, Max) Power (7, 31) Watts

Power Supply Mass 1.643 kg
Specific Heat Capacity 896 J

Kkg
(Min, Max) Power (40, 40) Watts

Motherboard Mass 0.718 kg
Specific Heat Capacity 1245 J

Kkg
(Min, Max) Power (4, 4) Watts

Inlet Temperature 21.6 Celsius
Fan Speed 38.6 ft3/min

From/To To/From k (Watts/Kelvin)

Disk Platters Disk Shell 2.0
Disk Shell Disk Air 1.9

CPU CPU Air 0.75
Power Supply Power Supply Air 4
Motherboard Void Space Air 10
Motherboard CPU 0.1

From To Air Fraction

Inlet Disk Air 0.4
Inlet PS Air 0.5
Inlet Void Space Air 0.1

Disk Air Disk Air Downstream 1.0
Disk Air Downstream Void Space Air 1.0

PS Air PS Air Downstream 1.0
PS Air Downstream Void Space Air 0.85
PS Air Downstream CPU Air 0.15

Void Space Air CPU Air 0.05
Void Space Air Exhaust 0.95

CPU Air CPU Air Downstream 1.0
CPU Air Downstream Exhaust 1.0

From To Air Fraction

AC Machine 1 0.25
AC Machine 2 0.25
AC Machine 3 0.25
AC Machine 4 0.25

Machine 1 Cluster Exhaust 1.0
Machine 2 Cluster Exhaust 1.0
Machine 3 Cluster Exhaust 1.0
Machine 4 Cluster Exhaust 1.0

Table 1. Constants used in the validation and Freon studies.

measured; the CPU was weighed with its heat sink. The disk power
consumptions came from the disk’s datasheet, whereas we mea-
sured the CPU power consumptions. We also measured the power
consumption of the motherboard without any removable compo-
nents (e.g., the CPU and memory chips) and the power supply at 44
Watts. From this number, we estimated the power supply consump-
tion at 40 Watts, representing a 13% efficiency loss with respect to
its 300-Watt rating.

We ran calibration experiments with two microbenchmarks. The
first set exercises the CPU, putting it through various levels of
utilization interspersed with idle periods. The second does the same
for the disk. We placed a temperature sensor on top of the CPU heat
sink (to measure the temperature of the air heated up by the CPU),
and measured the disk temperature using its internal sensor.

110



 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000  12000  14000
 20

 25

 30

 35

 40

P
er

ce
nt

 U
til

iz
at

io
n

T
em

pe
ra

tu
re

 (
C

)

Time (Seconds)

CPU Util
Emulated

Real

Figure 5. Calibrating Mercury for CPU usage and temperature.
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Figure 6. Calibrating Mercury for disk usage and temperature.
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Figure 7. Real-system CPU air validation.
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Figure 8. Real-system disk validation.

Figures 5 and 6 illustrate the component utilizations and mea-
sured temperatures during the experiments with the CPU and the
disk, respectively. The figures also show the Mercury temperatures
for the CPU air and the disk, after a phase of input calibrations
based on the real measurements. The calibrations were easy to do,
taking one of us less than an hour to perform. From these figures,
we observe that Mercury is able to compute temperatures that are
very close to the measurements for the microbenchmarks.

The calibration allows us to correct inaccuracies in all aspects of
the thermal modeling. After the calibration phase, Mercury can be
used without ever collecting more real temperature measurements,
i.e. Mercury will consistently behave as the real system did during
the calibration run.

To validate that Mercury is indeed accurate after calibration,
we ran a more challenging benchmark without adjusting any input
parameters. Figures 7 (CPU air) and 8 (disk) compare Mercury
and real temperatures for the benchmark. The benchmark exercises
the CPU and disk at the same time, generating widely different
utilizations over time. This behavior is difficult to track, since
utilizations change constantly and quickly. Despite the challenging
benchmark, the validation shows that Mercury is able to emulate
temperatures within 1oC at all times (see the Y-axis on the right
of Figures 7 and 8). For comparison, this accuracy is actually
better than that of our real digital thermometers (1.5oC) and in-
disk sensors (3oC).

We have also run validation experiments with variations of this
benchmark as well as real applications, such as the Web server

and workload used in Section 5. In these (less-challenging) experi-
ments, accuracy was at least as good as in Figures 7 and 8.

3.2 Simulated Machine Experiments

The other main use of the Mercury system is to replace complex
simulators. Thus, in this set of validations, we use Fluent, a widely
used commercial simulator [9]. The Fluent interface does not allow
us to easily vary the power consumption of the simulated CPU,
so we compare Mercury and Fluent in steady-state for a variety of
fixed power consumptions.

We modeled a 2D description of a server case, with a CPU,
a disk, and a power supply. Once the geometry was entered and
meshed, Fluent was able to calculate the heat-transfer properties of
the material-to-air boundaries. Our calibration of Mercury involved
entering these values as input, with a rough approximation of the
air flow that was also provided by Fluent. The steady-state temper-
atures were then found by running Mercury and Fluent for given
values of power supply, CPU, and disk power consumptions. Note
that here we validated CPU temperatures, rather than CPU air tem-
peratures as in the previous subsection. Since the server case was
modeled in 2D, no air flows over the simulated CPU.

Our validation results for 14 experiments, each one for a differ-
ent combination of CPU and disk power consumptions, show that
Mercury approximates the Fluent temperatures quite well (within
0.25oC for the disk and 0.32oC for the CPU). Note that Mer-
cury achieves this high accuracy despite the fact that Fluent mod-
els many hundreds of mesh points, doing a complex analysis of
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Figure 9. Overview of the Freon system.

temperature and (turbulent) air flows, pressure gradients, boundary
conditions, and other effects. For more details on these validations,
please refer to our technical report [13].

4. Managing Thermal Emergencies
We are currently using Mercury to study policies and systems for
managing thermal emergencies in server clusters. Our research is
based on the observation that the traditional approach to dealing
with thermal emergencies, i.e. turning the affected servers off, may
degrade throughput under high enough load.

Our first effort in this direction is called Freon. Freon manages
component temperatures in a Web server cluster fronted by a load
balancer that uses a request distribution policy based on server
weights. The traditional use of weights in server clusters is to
account for heterogeneity; roughly speaking, a server that is twice
as fast as another should be given a weight that is twice as high. The
load balancer we use currently is LVS, a kernel module for Linux,
with weighted least-connections request distribution [33].

The main rationale behind Freon’s thermal management pol-
icy is that periodic temperature monitoring and feedback control
can tackle the complex (and often unpredictable) conditions result-
ing from thermal emergencies. Furthermore, Freon relies on the
direct relationship between the rate of client requests directed to a
server and the utilization (and resulting temperature) of its hard-
ware components. Finally, for portability reasons, Freon’s policy
is completely implemented in user-space without modification to
legacy codes (LVS, Linux, and server software).

Besides the base version of Freon, we have designed and imple-
mented Freon-EC, a system that seeks to conserve energy as well as
manage thermal emergencies in server clusters. Energy consump-
tion has become a critical concern for large cluster installations
[4, 5, 6, 22], not only because of its associated electricity costs,
but also because of the heat to which it translates. Given the direct
relationship between energy and temperature, management policies
that take both into account are clearly warranted.

Our goal with Freon and Freon-EC is to demonstrate that rela-
tively simple policies can effectively manage thermal emergencies
without unnecessary performance degradation, even when they
also seek to conserve energy. Next, we describe Freon and Freon-
EC.

4.1 Freon

As Figure 9 illustrates, Freon is comprised by a couple of com-
municating daemons and LVS. More specifically, a Freon process,
called tempd or temperature daemon, at each server monitors the
temperature of the CPU(s) and disk(s) of the server. Tempd wakes
up periodically (once per minute in our experiments) to check com-
ponent temperatures. The Freon thermal management policy is trig-

gered when tempd observes the temperature of any component c
at any server to have crossed a pre-set “high threshold”, T c

h . At that
point, tempd sends a UDP message to a Freon process at the load-
balancer node, called admd or admission control daemon, to ad-
just the load offered to the hot server. The daemon communication
and load adjustment are repeated periodically (once per minute in
our experiments) until the component’s temperature becomes lower
than T c

h . When the temperature of all components becomes lower
than their pre-set “low thresholds”, T c

l , tempd orders admd to
eliminate any restrictions on the offered load to the server, since it
is now cool and the thermal emergency may have been corrected.
For temperatures between T c

h and T c
l , Freon does not adjust the

load distribution as there is no communication between the dae-
mons.

Freon only turns off a hot server when the temperature of one
of its components exceeds a pre-set “red-line threshold”, T c

r . This
threshold marks the maximum temperature that the component can
reach without serious degradation to its reliability. (Modern CPUs
and disks turn themselves off when these temperatures are reached;
Freon extends the action to entire servers.) T c

h should be set just
below T c

r , e.g. 2oC lower, depending on how quickly the compo-
nent’s temperature is expected to rise in between observations.

Although Freon constantly takes measures for the component
temperatures not to reach the red lines, it may be unable to manage
temperatures effectively enough in the presence of thermal emer-
gencies that are too extreme or that worsen very quickly. For ex-
ample, an intense thermal emergency may cause a temperature that
is just below T c

h to increase by more than T c
r − T c

h in one minute
(Freon’s default monitoring period). Further, it is possible that the
thermal emergency is so serious that even lowering the utilization
of the component to 0 would not be enough to prevent red-lining.
For example, suppose that the inlet area of a server is completely
blocked. However, note that any thermal management system, re-
gardless of how effectively it manages resource states and work-
loads, would have to resort to turning servers off (and potentially
degrading throughput) under such extreme emergencies.

Details. The specific information that tempd sends to admd is the
output of a PD (Proportional and Derivative) feedback controller.
The output of the PD controller is computed by:

outputc = max(kp(T
c
curr − T c

h) + kd(T
c
curr − T c

last), 0)

output = max{outputc}
where kp and kd are constants (set at 0.1 and 0.2, respectively, in
our experiments), and T c

curr and T c
last are the current and the last

observed temperatures. Note that we only run the controller when
the temperature of a component is higher than T c

h and force output
to be non-negative.

Based on output, admd forces LVS to adjust its request dis-
tribution by setting the hot server’s weight so that it receives only
1/(output + 1) of the load it is currently receiving (this requires
accounting for the weights of all servers). Because LVS directs re-
quests to the server i with the lowest ratio of active connections
and weight, min(Connsi/Weighti), the reduction in weight nat-
urally shifts load away from the hot server.

To guarantee that an increase in overall offered load does not
negate this redirection effect, Freon also orders LVS to limit the
maximum allowed number of concurrent requests to the hot server
at the average number of concurrent requests over the last time
interval (one minute in our experiments). To determine this aver-
age, admd wakes up periodically (every five seconds in our exper-
iments) and queries LVS about this statistic.

By changing weights and limiting concurrent requests, Freon
dynamically moves load away from hot servers, increasing the load
on other servers as a result. If the emergency affects all servers
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while (1) {
receive utilization and temperature info from tempd;

if (need to add a server) and (at least one server is off)
in round-robin fashion, select a region that (a) has at

least one server that is off, and (b) preferably is
not under an emergency;

turn on a server from the selected region;

if (temperature of c just became > T c
h

)
increment count of emergencies in region;
if (all servers in the cluster need to be active)

apply Freon’s base thermal policy;
else

if (cannot remove a server)
turn on a server chosen like above;

turn off the hot server;
else

if (temperature of c just became < T c
l )

decrement count of emergencies in region;
apply Freon’s base thermal policy;

if (can still remove servers)
turn off as many servers as possible in increasing

order of current processing capacity;
}

Figure 10. Pseudo-code of admd in Freon-EC.

or the unaffected servers cannot handle the entire offered load,
requests are unavoidably lost.

Finally, note that, under light load, Freon could completely ex-
clude a hot server from the load distribution, allowing it to cool fast.
However, this could make it difficult for Freon to control temper-
atures smoothly when the server eventually needs to be reincluded
to service a moderate or high offered load. (This is equivalent to
the problem of overloading newly added nodes in least-connection
scheduling.) Despite this difficulty, Freon-EC does turn nodes off
under light enough load to conserve energy, as we shall see next.

4.2 Freon-EC

Freon-EC combines energy conservation and thermal management.
This combination is interesting since, for best results, energy must
play a part in thermal management decisions and vice-versa. To
conserve energy, Freon-EC turns off as many servers as it can with-
out degrading performance, as in [4, 6, 14, 22, 25, 27]. However,
unlike these and all other previous works in cluster reconfigura-
tion, Freon-EC selects the servers that should be on/off according
to their temperatures and physical locations in the room. In partic-
ular, Freon-EC associates each server with a physical “region” of
the room. We define the regions such that common thermal emer-
gencies will likely affect all servers of a region. For example, an
intuitive scheme for a room with two air conditioners would create
two regions, one for each half of the servers closest to an air condi-
tioner. The failure of an air conditioner would most strongly affect
the servers in its associated region.

With respect to thermal management, Freon-EC uses Freon’s
base policy when all servers are needed to avoid degrading per-
formance. When this is not the case, Freon-EC actually turns hot
servers off, replacing them with servers that are potentially unaf-
fected by the emergency, i.e. from different regions, if possible.

Details. Freon-EC has the same structure as Freon. Further, in
Freon-EC, tempd still sends feedback controller outputs to admd
when a component’s temperature exceeds T c

h . However, tempd
also sends utilization information to admd periodically (once per
minute in our experiments). With this information, admd imple-
ments the pseudo-code in Figure 10.

Turning off a server involves instructing LVS to stop using the
server, waiting for its current connections to terminate, and then
shutting it down. Turning on a server involves booting it up, waiting
for it to be ready to accept connections, and instructing LVS to
start using the server. Because turning on a server takes quite some
time, Freon-EC projects the current utilization of each component
(averaged across all servers in the cluster) into the future, when the
overall load on the cluster appears to be increasing. Specifically,
Freon-EC projects utilizations two observation intervals into the
future, assuming that load will increase linearly until then.

The decision of whether to add or remove servers from the ac-
tive cluster configuration is based on these projected component
utilizations. We add a server when the projected utilization of any
component is higher than a threshold, Uh (70% in our experi-
ments). Looking at the current (rather than projected) utilization,
Freon-EC removes servers when the removal would still leave the
average utilization of all components lower than another threshold,
Ul (60% in our experiments). Pinheiro et al. [22] used a similar
approach to cluster reconfiguration. Recently, Chen et al. [5] pro-
posed a more sophisticated approach to cluster reconfiguration that
considers multiple costs (not just energy costs) and response times
(instead of throughput). Furthermore, practical deployments have
to consider the location and management of servers that should not
be turned off if possible, such as database servers. These consider-
ations can be incorporated into Freon-EC.

4.3 Freon vs CPU Thermal Management

It is important to compare Freon with thermal management tech-
niques for locally controlling the temperature of the CPU, such as
throttling or scaling voltage/frequency [2, 3, 26, 30]. In a server
cluster with least-connections load balancing, these techniques may
produce a load distribution effect similar to Freon’s. Next, we de-
scribe the advantages of the Freon approach.

Interestingly, Freon does implement a form of throttling by
reducing the amount of load directed to hot servers and, as a result,
reducing their CPU utilizations. Because throttling is performed
by the load balancer rather than the hot CPUs themselves, we call
this approach “remote throttling”. The main advantages of remote
throttling are that it does not require hardware or operating system
support and it allows the throttling of other components besides the
CPU, such as disks and network interfaces.

Voltage/frequency scaling is effective at controlling temperature
for CPU-bound computations. However, scaling voltage/frequency
down slows the processing of interrupts, which can severely de-
grade the throughput achievable by the server. In addition, CPUs
typically support only a limited set of voltages and frequencies. Re-
mote throttling is more flexible; it can generate a wide spectrum of
CPU power consumptions from idle to maximum power (albeit at
the maximum voltage/frequency). Moreover, unlike remote throt-
tling, scaling requires hardware and possibly software support and
does not apply to components other than the CPU.

Finally, high-level thermal management systems can leverage
information about the workload, the temperature of multiple hard-
ware components (as in Freon and Freon-EC), the intensity of the
current and projected load on the cluster (as in Freon-EC), and the
physical location of different servers (as in Freon-EC). So far, we
have not leveraged the characteristics of the workload. For exam-
ple, in the face of a hot CPU, the system could distribute requests
in such a way that only memory or I/O-bound requests were sent to
it. Lower weights and connection limits would only be used if this
strategy did not reduce the CPU temperature enough. The current
version of Freon does not implement this two-stage policy because
LVS does not support content-aware request distribution. We will
consider content-aware load balancers in our future work.
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Figure 11. Freon: CPU temperatures (top) and utilizations (bottom).
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Figure 12. Freon-EC: CPU temperatures (top) and utilizations (bottom).

Despite these benefits, the best approach to thermal manage-
ment in server clusters should probably be a combination of soft-
ware and hardware techniques; the software being responsible
for the higher-level, coarser-grained tasks and the hardware being
responsible for fine-grained, immediate-reaction, low-level tasks.
The exact form of this combination is also a topic of our future
research.

5. Freon Results
In this section, we demonstrate the use of Mercury in evaluating
the Freon policies. Specifically, we ran Freon experiments with 4
Apache servers behind an LVS load balancer. The servers contained
Pentium III processors and 15K-rpm SCSI disks, whereas the load
balancer is a Pentium 4-based machine. Mercury was deployed
on the server nodes and its solver ran on yet another Pentium
III machine. The inputs to Mercury were those of Table 1. We
set T CPU

h = 67oC, T CPU
l = 64oC, T disk

h = 65oC, and
T disk

l = 62oC, which are the proper values for our components.
To load the servers, we used a synthetic trace, as we could

not find a publicly available Web server trace including dynamic
content requests. Our trace includes 30% of requests to dynamic
content in the form of a simple CGI script that computes for 25 ms
and produces a small reply. The timing of the requests mimics the
well-known traffic pattern of most Internet services, consisting of
recurring load valleys (over night) followed by load peaks (in the
afternoon). The load peak is set at 70% utilization with 4 servers,
leaving spare capacity to handle unexpected load increases or a
server failure. The trace is submitted to the load balancer by a client
process running on a separate machine.

5.1 Base Policy Results

The results of Freon’s base policy are shown in Figure 11. Since
the CPU is the most highly utilized component in our experiments,
Figure 11 includes graphs of the CPU temperatures (top graph)
and CPU utilizations (bottom graph), as a function of time. The

horizontal line in the top graph marks T CPU
h . Each point in the

utilization graph represents the average utilization over one minute.
From the temperature graph, we can see that all CPUs heat up

normally for the first several hundred seconds. At 480 seconds,
fiddle raised the inlet temperature of machine 1 to 38.6oC and
machine 3 to 35.6oC. (The emergencies are set to last the entire
experiment.) The emergencies caused the affected CPU tempera-
tures to rise quickly. When the temperature of the CPU at machine
1 crossed T CPU

h at 1200 seconds, Freon adjusted the LVS load dis-
tribution to reduce the load on that server. Only one adjustment was
necessary. This caused the other servers to receive a larger fraction
of the workload than machine 1, as the CPU-utilization graph illus-
trates. As a result of the extra load and the higher inlet temperature,
the temperature of the CPU at machine 3 crossed T CPU

h at 1380
seconds. This shifted even more load to machines 2 and 4 without
affecting machine 1. Around 1500 seconds, the offered load started
to subside, decreasing the utilizations and temperatures.

Throughout this experiment, Freon was able to manage temper-
atures and workloads smoothly. Further, the fact that Freon kept the
temperature of the CPUs affected by the thermal emergencies just
under T CPU

h demonstrates its ability to manage temperatures with
as little potential throughput degradation as possible. In fact, Freon
was able to serve the entire workload without dropping requests.

For comparison, we also ran an experiment assuming the tra-
ditional approach to handling emergencies, i.e. we turned servers
off when the temperature of their CPUs crossed T CPU

r . Because
T CPU

r > T CPU
h , machine 1 was turned off at time 1440 seconds,

whereas machine 3 was turned off just before 1500 seconds. The
system was able to continue handling the entire workload after the
loss of machine 1, but not after the loss of machine 3. Overall, the
traditional system dropped 14% of the requests in our trace.

5.2 Freon-EC Results

The results of Freon-EC for the same trace and thermal events are
also positive. In these experiments, we grouped machines 1 and
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3 in region 0 and the others in region 1. Figure 12 shows these
results. Note that the CPU utilization graph (bottom of Figure 12)
also includes a thick line illustrating the number of server nodes in
the active cluster configuration, as a function of time.

The CPU utilization graph clearly shows how effectively Freon-
EC conserves energy. During the periods of light load, Freon-EC is
capable of reducing the active configuration to a single server, as
it did at 60 seconds. During the time the machines were off, they
cooled down substantially (by about 10oC in the case of machine
4). As the load increased, Freon-EC responded by quickly enlarg-
ing the active configuration up to the maximum number of servers,
without dropping any requests in the process. As aforementioned,
turning on a machine causes its CPU utilization (and temperature)
to spike quickly, an effect that we avoid in the base Freon system.
At the peak load, the CPU temperatures of machines 1 and 3 again
crossed T CPU

h , being handled correctly by the base thermal policy.
This time, machine 3 required two load-distribution adjustments.
During the latter part of the experiment, the decrease in load al-
lowed the active configuration to again be reduced to one server.

6. Related Work
As far as we know, Mercury is the first temperature emulation suite
for systems research. Other computer system temperature studies
(both in Engineering and Computer Science) have either relied on
real measurements or detailed simulations. Next, we discuss related
works that have used these two approaches. We also overview the
related thermal management works.

Simulators. As we mentioned before, the Engineering fields use
detailed simulators extensively [9, 15]. Because these simulators
typically focus on steady-state conditions, they do not actually
execute applications or systems software.

Weatherman [20] also simulates steady-state conditions, but
does so significantly faster than the Engineering simulators. Specif-
ically, Weatherman computes the temperature of the inlet air at all
servers in a data center using a neural network. Although training
the network can be seen as an automatic approach to calibration, it
requires extensive instrumentation (i.e. inlet sensors at all servers)
or numerous detailed simulations to provide training data.

A few simulators have been developed in the computer archi-
tecture community for studying thermal management policies in
microprocessor design [3, 30]. These simulators typically execute
one application at a time directly on a simplified CPU, i.e. they do
not model multiprogramming and bypass the systems software.

Real measurements. Like Weatherman, ConSil [19] uses a neu-
ral network to infer the temperature at the servers’ inlets in a data
center. ConSil’s inputs are the component utilizations and readings
of motherboard thermal sensors at each server. For network train-
ing, readings of the inlet sensors at a number of servers are also
used. ConSil requires extensive instrumentation (i.e. inlet sensors
at a large number of servers physically spread across the data cen-
ter and motherboard sensors at all servers) and seems inappropriate
for studying thermal emergencies.

Bellosa’s group [2, 18, 32] also studied temperature using real
measurements. However, their real measurements are not of tem-
perature, but rather of processor performance counters. Their ap-
proach avoids the repeatability (and high overhead [2]) problems
of using real thermal sensors. However, the limitations of their ap-
proach are that (1) it only applies to estimating the temperature
of CPUs (and only those that provide the required performance
counters), and (2) it relies on a complex, case-by-case extrapolation
from the values of the counters to the energy the CPU consumes.
Mercury can emulate the temperature of all components and im-
portant air spaces, doing so in a simple and general way.

Software-based thermal management. Because temperature is-
sues only recently became an overwhelming concern for systems
software researchers, very few papers have been written in this area
to date. Gurumurthi et al. [12] have considered temperature-aware
disk-scheduling policies using modeling. More recently, the same
group [16] studied the disk temperature implications of real I/O
workloads in simulation. Also using simulation, Powell et al. [23]
studied thread scheduling and migration in chip multiprocessors
with simultaneous multithreading cores. Unlike our work, these
studies focused on single-component scenarios and did not actu-
ally implement their proposed policies in real software systems.

In contrast, researchers have experimentally studied the throt-
tling of tasks to control CPU temperature in single-node systems
[2, 26] and multi-tier services [32]. Unfortunately, they did not con-
sider request redistribution away from hot servers (thermal emer-
gencies apparently reduce the incoming client traffic in their exper-
iments) or components other than the CPU.

In the context of data centers, Sharma et al. [29] and Moore et
al. [20, 21] studied temperature-aware workload placement policies
under normal operating conditions, using modeling and a commer-
cial temperature simulator; no application or system software was
actually executed. Further, the main goal of thermal management
policies for normal operation (reducing cooling costs) and ther-
mal emergencies (preventing reliability degradations) differ sub-
stantially. Sharma et al. [29] proposed the notion of regions (bor-
rowed in Freon-EC) and a policy for keeping servers on during ther-
mal emergencies, but did not discuss a real implementation. Finally,
these works treat each server as black box with a fixed power con-
sumption or utilization, without explicitly considering the dynamic
behaviors of their different internal components.

Architecture-level thermal management. As temperature is a
critical concern for modern CPUs, several researchers have consid-
ered thermal management at the architectural level in simulation,
e.g. [3, 17, 28, 30, 31]. The high level of detail of these simulators
is probably unnecessary for most software systems research.

Furthermore, although the power density of other components
is not increasing as fast as that of CPUs, these components also
need thermal management. For example, the power density of disk
drives is proportional to their rotational speed squared [11], which
has been increasing substantially recently and needs to continue to
increase [12]. To make matters worse, these components are usually
densely packed in groups to try to keep up with CPU speeds.
Disk array and blade server enclosures are good examples of dense
packing of multiple types of components.

7. Conclusions
In this paper, we proposed and validated Mercury, a temperature
emulation suite for research on software-based thermal manage-
ment. We believe that Mercury has the potential to allow research
on temperature issues to flourish in the systems community. For this
reason, we will make the Mercury source code available soon from
http://www.darklab.rutgers.edu. Using Mercury, we developed and
evaluated Freon, a system for managing thermal emergencies in
server clusters without unnecessary performance degradation.

Limitations and future work. Our experience with Mercury to
date has been very good. The system is easy to use and has saved
us substantial hassle in studying Freon. Despite these benefits, the
current version of Mercury needs a few extensions and additional
evaluations. In particular, we are currently extending our models to
consider clock throttling and variable-speed fans. Modeling throt-
tling and variable-speed fans is actually fairly simple, since these
behaviors are well-defined and essentially depend on temperature,
which Mercury emulates accurately albeit at a coarse grain. In fact,
these behaviors can be incorporated either internally (by modify-
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ing the Mercury code) or externally (via fiddle). We also plan to
study the emulation of chip multiprocessors, which will probably
have to be done in two levels, for each core and the entire chip.

Our real implementation of Freon demonstrated that relatively
simple policies and systems can effectively manage thermal emer-
gencies. However, the current version of Freon also needs a few
extensions. In particular, Freon needs to be extended to deal with
multi-tier services and to include other policies. We are currently
addressing these extensions, as well as considering ways to com-
bine Freon with CPU-driven thermal management.
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