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Abstract

Large-scale protein sequence comparison is an important but compute-intensive task in molecular
biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent
years, an exponential increase in the size of protein sequence databases has required either
exponentially more running time or a cluster of machines to keep pace. To address this problem, we
have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury

BLASTP. In this paper, we describe the architecture of the portions of the application that are
accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions
with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity
workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times
faster than software BLASTP on a modern CPU while delivering close to 99% identical results.
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1. Introduction

Comparative sequence analysis is widely used in computational biology to study the
evolutionary relationship between protein sequences. Biologists compare a protein of unknown
function, termed the query, against a database of sequences with known function to detect
sequences with high similarity. Similarity between query and database sequences is described
by an alignment, such as the example in Figure 1. A good alignment of the two sequences
matches up many pairs of identical or biologically similar residues (characters) while keeping
dissimilar pairs and unaligned residues to a minimum. Good alignments provide evidence of
common ancestry between proteins, which can imply shared structure and function.

The classical method for computing the best alignment of two proteins is the Smith-Waterman
algorithm [Smith and Waterman 1981], which uses dynamic programming. However, the cost
of this algorithm, which scales as the product of the sequence lengths, rapidly becomes
prohibitive for comparing a query protein to an entire database. To make large-scale proteomic
comparison feasible, the biological community has resorted to heuristic methods. In particular,
one heuristic-based comparison tool, BLASTP [Altschul et al. 1997], dominates this
community. BLASTP uses a seeded alignment heuristic to limit Smith-Waterman comparison
to pairs of proteins that are a priori likely to be highly similar. This heuristic avoids almost all
the work that Smith-Waterman would normally perform while still delivering results of
sufficient quality to satisfy biologists. Because of its wide adoption, BLASTP's output has
become a de facto standard against which alignments found by other proteomic comparison
tools are compared.

While BLASTP delivers an immense improvement in efficiency – roughly two orders of
magnitude – over Smith-Waterman, it too is subject to ever larger computational demands,
both from larger biosequence databases and from increasing genomic sequencing capacity.
Over the last two decades, public biosequence databases have grown at an exponential rate,
driven in part by widespread whole-genome sequencing and gene prediction in many
organisms. For example, Figure 2 shows the rapid growth of the TrEMBL protein database
[Swiss Institute of Bioinformatics 2006] over the last decade.

At the same time, more and faster genome sequencing has resulted in a high rate of new protein
queries for BLASTP. A single modern genome sequencing machine [Margulies et al. 2005]
can sequence a complete bacterial genome in a day, producing 4000-6000 new putative protein
sequences. Simply comparing all these sequences to the existing public databases with
BLASTP would take more than one day of CPU time today. More ambitious sequencing
projects in the near future, focused on eukaryotic genomes, could potentially produce tens of
thousands of candidate proteins in a day. A second source of high computational load for the
BLASTP application is the aggregation of queries from many different sources to a central
BLAST server. Consider, for example, the BLAST web server maintained by the U.S. National
Center for Biological Information (NCBI). In 2004, this server was backed by a Linux cluster
of ∼200 CPUs that processed 1.4 × 105 queries on a typical weekday – more than one query
per second. Furthermore, NCBI planned to double their computing capabilities to keep up with
demand [McGinnis and Madden 2004].

In short, increases in database size and rate of query generation, as well as the popularity of
the BLASTP application itself, have raised the computational cost of sequence comparison to
the point that running BLASTP can be a bottleneck to proteomic analysis. Architectural
solutions to this bottleneck must exploit parallelism in the BLASTP computation to raise the
application's throughput.
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In this work, we address the BLASTP bottleneck by implementing an engine for accelerated
protein database search, using a combination of FPGAs and general-purpose CPUs. Our
implementation, Mercury BLASTP, departs substantially from prior accelerators targeting the
slower but more accurate Smith-Waterman computation. The full BLASTP algorithm is
actually a pipeline of several different computational stages: discovery of short, highly similar
seed matches between query and database, followed by two successive phases of dynamic
programming extension to determine which matches represent meaningful biological similarity
between sequences. The three stages contribute roughly equally to BLASTP's total running
time in software, so we target all of them for speedup via implementation on our FPGA
platform. Key design choices of our implementation include a streaming architecture, which
allows all stages to run in parallel; fast generation of seed matches using multiple parallel
SRAM lookups; and small, fixed-size dynamic programming extension steps that effectively
filter out most uninteresting seed matches in hardware before they reach the software. These
choices lead to a final design that achieves significant speedup relative to the BLASTP
software, not just relative to the much slower Smith-Waterman algorithm.

To maximize acceptance of our accelerator in the biological community, we strive to produce
an implementation at least as sensitive to biologically meaningful alignments of its inputs as
NCBI BLASTP and to match the latter's command-line interface and output format. An
important limitation of previously published accelerators for proteomic comparison is that few
have included measurements of their sensitivity relative to the BLASTP software. Without such
measurements, there is little reason for BLASTP users to trust the results produced by these
systems. We therefore demonstrate that our BLASTP implementation can compete on both

speed and sensitivity.

We have implemented Mercury BLASTP on a commodity workstation with a pair of Xilinx
Virtex-II 6000 FPGAs. Mercury BLASTP can scan a protein database with throughput 11-15
times faster than the BLASTP software on a modern server while delivering results
approximately 99% identical to those returned by the software. Our design can also be used to
accelerate similar computations in other bioinformatics applications, such as HMMERhead
[Portugaly and Ninio 2004] and PhyloNet [Wang and Stormo 2005].

The remainder of this work is organized as follows. After reviewing related work, we briefly
describe the core computation of the BLASTP software to motivate our design. We then
describe in detail the hardware architectures of the various stages of Mercury BLASTP, as well
as the rationale for choosing numerical parameters used by the implementation. The following
section describes the NCBI BLASTP-based software that communicates with the Mercury
BLASTP FPGA designs. Finally, we report performance of Mercury BLASTP on real-world
proteomic sequence comparisons.

2. Related Work

The Smith-Waterman dynamic programming algorithm for sequence alignment [Smith and
Waterman 1981] has been extensively targeted for parallelization in hardware. FPGA
accelerators for this computation [Hirschberg et al. 1996; Hoang 1993; Yamaguchi et al.
2002] report 1-2 orders of magnitude speedup over software. Unfortunately, hardware Smith-
Waterman, even running 100× faster than a software implementation on current CPUs, runs
at about the same speed as the NCBI BLASTP software on the same CPUs.

Thanks to commercial availability of large FPGAs, several other recent works have accelerated
all or part of the BLAST family of biosequence comparison algorithms. BLASTN, the
algorithm for comparing DNA sequences, has been the target of several implementations.
While BLASTN and BLASTP have significant differences, they share a similar seeded
alignment hardware architecture.
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Our prior work includes an end-to-end BLASTN accelerator, Mercury BLASTN [Buhler et al.
2007; Krishnamurthy et al. 2007; Krishnamurthy et al. 2004; Lancaster et al. 2005; 2008], on
which our BLASTP accelerator is based. Here, we accelerate all three stages on the FPGA
unlike in BLASTN, where the third stage requires an insignificant fraction of total execution
time. Neighborhood matching in BLASTP generates a large number of matches, translating
into far more work in the first stage. Mercury BLASTP therefore uses direct memory lookup
tables and parallel two-hit units to cope with this increased workload. In contrast, BLASTN
produces far fewer matches in the first stage, and so we use compact on-chip Bloom Filters to
build a high-throughput design. Mercury BLASTN is I/O limited unlike Mercury BLASTP.

SGI along with Mitrionics have recently released an FPGA accelerated version of BLASTN
for the SGI RASC appliance. The accelerator is implemented on the Mitrion Virtual Processor,
a soft-core parallel processor implemented on an FPGA. The Mitrion-C implementation is
available as an open-source download1. They report that a dual-blade SGI RASC
implementation is 16× faster than a single Itanium 2 processor core and 10× faster than a quad-
core AMD Opteron processor. The SGI/Mitrionics work is a direct implementation (in a high
level language) of our design for Mercury BLASTN, first published in 2004 [Krishnamurthy
et al. 2004], on a newer-generation FPGA. Their implementation further validates our
architecture and design choices. SGI/Mitrionics have not released a BLASTP accelerator to
date.

RDisk [Lavenier et al. 2003] is another FPGA-based approach to accelerating stage 1 of
BLASTN, claiming 60 Mbases/sec throughput using a single disk. However, their work does
not accelerate the entire BLAST application. Other BLASTN accelerators [Muriki et al.
2005; Sotiriades et al. 2006] display varying degrees of success. However, none of them show
end-to-end numbers.

We next compare Mercury BLASTP with TreeBLASTP [Herbordt et al. 2006; Herbordt et al.
2007], a recent FPGA-based accelerator for BLASTP-like computations. Rather than following
the original NCBI BLAST heuristic, TreeBLASTP uses a one-dimensional systolic array to
directly perform ungapped extension thereby eliminating seed generation. The array requires
as many processing elements as the size of the query sequence. While the asymptotic time
complexity of the two designs remains the same (linear in the size of the database), the systolic
array requires more logic and block RAM resources on the FPGA. The authors claim to achieve
higher sensitivity than NCBI BLASTP but have validated their hardware only on small datasets
(fifteen query sequences).

In contrast, our design implements the BLASTP heuristic using off-chip SRAM as the primary
resource thus freeing up on-chip logic and memories to implement all stages on a single newer-
generation FPGA. In terms of scalability, supporting larger query sequences requires larger
capacity SRAMs in our design, while TreeBLASTP requires larger FPGAs. While the average
protein sequence is small (about 300 residues), supporting larger queries enables us to perform
a query packing optimization. In our design, a 1 MB SRAM supports query sequences of size
2048 on an older-generation Xilinx Virtex-II 6000 FPGA. TreeBLASTP supports a query size
of 1024 on the newer-generation Xilinx Virtex-4 LX 160 FPGA and is on-chip resource limited.

The three stages of Mercury BLASTP (seed generation, ungapped extension and gapped
extension) are designed to operate in a single pass where each stage is connected in a pipeline,
with the database being streamed through. While we currently use two older-generation FPGAs
for this purpose, all three stages can be easily placed on a single newer-generation FPGA.
TreeBLASTP requires another FPGA to implement the Smith-Waterman gapped extension

1http://mitc-openbio.sourceforge.net/
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stage in parallel. The authors of TreeBLASTP do not report end-to-end numbers but estimate
a performance of 178 Mresidues/second for 1024-residue queries in the ungapped extension
stage.

We note that none of the above accelerators other than Mercury BLASTP report their sensitivity
compared to software BLAST. In our experience with the biological community, an accelerated
implementation must not only yield a significant speedup but more importantly produce results
similar to or better than the standard software implementations. Biologists using the BLAST
software have in the past been reluctant to adopt accelerated solutions for fear of missing
alignments that might otherwise have been found by the software2. Mercury BLASTP therefore
aims to closely replicate the software's results. We have integrated our FPGA accelerator with
the NCBI BLAST software and show that Mercury BLASTP yields results almost identical to
those of NCBI's BLAST software on our test computations.

DeCypherBLAST [Timelogic, Inc.] is a commercial product to accelerate BLASTP, utilizing
FPGA-based processing engines attached to high-end CPUs. Given the closed nature of
DeCypherBLAST and our lack of access to a DeCypher machine, we have insufficient
information to compare its performance to that of Mercury BLASTP.

The majority of high-performance BLAST solutions today are based on multiprocessor clusters
[Lin et al. 2005; Rangwala et al. 2005]. Although BLAST can be made to scale well with cluster
size, clusters typically have high acquisition, maintenance, and energy costs when compared
to single-node solutions. Our BLASTP implementation could replace a small computing
cluster; alternatively, it could be used as a building block for a larger system that delivers
performance equivalent to today's thousand-node clusters with many fewer nodes.

3. The Blast Algorithm

BLAST, the Basic Local Alignment Search Tool [Altschul et al. 1997], is the most popular
software for biological sequence analysis. BLAST uses an efficient heuristic approach to
identify strong alignments between a query sequence and a database without the full
computational cost of Smith-Waterman. This section describes the architecture of the existing
BLASTP software, which served as the starting point for our accelerated implementation.
While multiple software implementations of BLASTP exist, our discussion reflects NCBI's
implementation, which is the most popular, as of version 2.2.10.

As described above, BLASTP's goal is to produce alignments between a query and a sequence
database, both of which consist of strings over a protein alphabet Σ of twenty possible residues.
Alignments reported between the query and a database sequence may align only a substring
of each; in bioinformatics parlance, they are local rather than global. The quality of an
alignment is judged by its score, which is computed as follows. Each pair of aligned residues
(x, y) is assigned a score δ(x, y), where δ is a |Σ| × |Σ| matrix of (mostly negative) small integer
scores that assigns higher scores to pairs of identical residues and to pairs of residues that are
biologically similar. δ is defined by the biological end users of BLASTP, either from empirical
observation or from an evolutionary model of mutation [Dayhoff et al. 1978; S. and Henikoff
1992]. Each run of k consecutive unaligned residues in an alignment is assigned a gap

penalty −go −k · ge, where go and ge are constants. The total score of an alignment is then the
sum of scores for all its aligned residue pairs, plus the sum of penalties for all its gaps. This
score is compared to a threshold to determine whether the alignment is worth reporting to the
user.

2S. Eddy, personal communication
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BLAST's search for high-scoring alignments is divided into three stages, as shown in Figure
3: seed generation, ungapped extension, and gapped extension. The seed generation stage
identifies seed matches, or short patterns of highly similar residues, between the query and
database sequences. Seed matches are passed to ungapped extension, where the region around
each match is inspected. This stage separates those matches that occur by chance from those
that are parts of longer pairs of similar substrings that align without gaps, called high-scoring

segment pairs (HSPs). HSPs whose total alignment score exceeds a user-determined threshold
are passed to gapped extension, which further extends their alignment using a Smith-
Waterman-like algorithm allowing for gaps in either sequence. A pair of aligned proteins that
successfully passes all three stages is finally reported to the user along with its alignment.
BLAST's search strategy rapidly discards most pairs of proteins that contain no meaningful
alignment, resulting in a large speedup compared to the traditional approach of running the full
Smith-Waterman algorithm on each pair.

3.1 Seed generation

Seed generation accepts a query sequence Q and a database D and emits a list of paired positions
(q, d) in the two sequences at which seed matches occur. Seed generation consists of two
substages: word matching (stage 1a) and two-hit (stage 1b), as illustrated in Figure 4.

The word matching substage finds pairs of highly similar w-mers, or substrings of length
exactly w, between Q and D. More precisely, word matching generates all pairs (q, d) such that

, for some numerical threshold T. These pairs are called word

matches.

To find word matches efficiently for any fixed δ, stage 1a uses a precomputed neighborhood

N(w, T) of the query sequence, which is a list of all w-mers which, when paired with some w-
mer of the query, exhibit a total score of at least T under the residue-pair scoring matrix δ. Part
of a neighborhood for a w-mer with w = 3 and typical residue pair scoring is illustrated in Figure
5. If a database w-mer occurs in the query's neighborhood, then it is part of a word match with
the query. All w-mers in the neighborhood of a query are stored in a lookup table, against which
each successive w-mer from the database is checked to discover matches.

The two-hit substage filters the stream of word matches generated by the word matching
substage to produce seed matches. Filtering is necessary because, for small w, w-mer matches
between two proteins occur at a high rate by chance alone. The two-hit heuristic exploits the
observation that HSPs of biological interest are typically much longer than a single word and
hence are likely to generate groups of several nearby word matches. Formally, a seed match
is a pair of word matches starting at positions (q, d) and (q′, d′), respectively, such that d − q
= d′ − q′ and w ≤ d − d′ < A, for a specified constant A. Larger A's detect more real HSPs but
also increase the rate at which two word matches arising independently by chance happen to
form a seed match. Seed matches are detected efficiently by tracking, for each possible
difference d − q, the most recent word match (by database position) seen with that difference.

3.2 Ungapped extension

Recall that an HSP is a pair of intervals of common length in two sequences that are aligned
without residue insertions or deletions. BLASTP's ungapped extension computes, for each seed
match, the highest-scoring HSP (under the matrix δ) that contains that seed match. Extension
proceeds in two steps. The pair of aligned w-mers constituting the match are first extended
backwards toward the beginnings of the two sequences, then extended forward toward their
ends. An HSP's score is the sum of the scores of its constituent residue pairs, so extending an
HSP by one residue pair adds that pair's score under δ to the overall score of the HSP. The end
of the HSP in each direction is chosen so as to maximize the total score of that direction's
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extension. If the total score of an HSP exceeds a user-defined threshold, it is passed on to
gapped extension.

For long protein sequences, considering possible extensions an HSP all the way to the ends of
the two sequences is computationally expensive. In the vast majority of cases, seed matches
appear by chance without an underlying biologically meaningful similarity, so this work would
typically be wasted without finding any sufficiently high-scoring HSP. BLASTP therefore
implements early termination of extension, using an X-drop mechanism. The algorithm tracks
the highest score achieved by any extension of the seed match considered thus far. If the current
direction's extension scores at least X below this maximum, further extension in that direction
is terminated. A more detailed explanation of this heuristic is given in [Lancaster et al. 2005;
2008].

3.3 Gapped extension

The gapped extension stage of BLASTP uses a modified version of the Smith-Waterman
algorithm to compute the highest-scoring local alignment between two sequences. We briefly
review this algorithm here to inform the detailed discussion of our implementation later.

Let x and y be sequences of lengths m and n, and let Mi,j be the score of an optimal (highest-
scoring) alignment between any suffixes of strings x[1..i] and y[1..j] (0 < i ≤ m, 0 < j ≤ n).
Smith-Waterman computes Mi,j by the following dynamic programming recurrence:

Mi,j is the best of four possibilities: the best alignment may align residues x[i] and y[j], or it
may leave either x[i] or y[j] unaligned, or (if all these possibilities yield alignments with
negative scores) it may leave x[1..i] and y[1..j] entirely unaligned, with score 0. The I and D
portions of the recurrence track the scores of optimal alignments ending with a gap in x or y,
respectively. The recurrence is initialized with M0,j = Mi,0 = 0 and I0,j = Di,0 = −∞. An optimal
local alignment then has score maxi,j Mi,j, which is computed in time Θ(mn). While the above
algorithm only finds an optimal alignment's score, it is possible to recover the underlying
alignment from the intermediate values computed by the recurrence.

The classical Smith-Waterman algorithm described above differs from BLASTP's
implementation in one key respect: while Smith-Waterman explores all possible local
alignments between two proteins to find the one with highest score, BLASTP's gapped
extension receives a “hint,” in the form of an HSP, indicating where in these proteins a good
alignment may be found. To exploit this hint, BLASTP chooses a fixed pair of coordinates
(q0, d0) within the HSP, then extends the alignment forward and backward from this point in
each sequence, this time allowing for gaps in either. The result is the highest-scoring local
alignment that passes through the point (q0, d0).

The dynamic programming recurrence used by extension is the same as that for Smith-
Waterman, except for its choice of initialization conditions. BLASTP's gapped extension stage
again uses an X-drop heuristic, similar to that used for ungapped extension, to decide when to
terminate extension in each direction. More details are given in [Altschul et al. 1997].
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3.4 Execution profile of BLASTP

Table I shows the performance characteristics of NCBI BLASTP for a typical workload. Seed
generation dominates, accounting for up to half of execution time. However, to achieve more
than a 2× speedup, the other stages must be accelerated as well. All stages except word matching
are extremely good filters, discarding over 95% of their input. In contrast, word matching is a
net expander of data, generating 3.9 w-mer matches on average per input residue from the
database. The two-hit stage discards most of these w-mers. Hence, although it is the least
expensive stage of the pipeline, stage 1b is crucial to reducing the workload of the
computationally more expensive downstream stages.

4. Hardware Architecture

Mercury BLASTP accelerates the BLASTP pipeline by exploiting opportunities for fine-
grained parallelism in its various stages. We strive to maintain the same basic stage algorithms
as software BLASTP, so as to maximize our results' agreement with those of the standard
software implementation. However, the limitations of the target FPGA platform, in particular
its limited on-chip and near-chip storage, sometimes demand changes to achieve high
performance in practice.

This section describes in detail the algorithmic approaches and architectures used to accelerate
each of the three stages of BLASTP.

4.1 Seed generation

Accelerating seed generation requires managing a computation with low input but high output
bandwidth. A w-mer read from the database typically occurs in the neighborhood of multiple
query locations; hence, as shown in Table I, the first sub-stage of seed generation typically
expands each input w-mer into a stream of several word hits. Efficiently retrieving these hits
and filtering them to produce two-hit seed matches is the key challenge faced by this stage.
Although both word matching and two-hit generation allow for substantial parallelism, the
need to parallelize both computations at once requires careful bookkeeping to produce output
similar to that of a purely serial implementation.

4.1.1 Word matching substage—The word matching module (Figure 6) is divided into
two logical components: the w-mer feeder and the hit generator. The w-mer feeder converts a
database residue stream into a stream of words to be scanned against the query neighborhood.
Up to 12 database residues are accepted in each clock cycle by the w-mer control FSM. The
w-mer creator block extracts the w-mer starting at each database position, producing up to 12
w-mers per clock cycle.

The hit generator produces word matches from an input w-mer by probing a direct memory
lookup table to which every possible w-mer maps. As described in Section 5, implementation
constraints dictate a word size w = 4; for this value of w, the lookup table is too large to be
stored in on-chip block RAM and so is kept in off-chip SRAM. Because five bits are needed
to represent each residue, using a w-mer directly to address a table would require a prohibitively
large 32w entries, of which only 20w would be valid. We instead compute the address of a w-
mer r as a polynomial expression with exactly the required range: H(r) = 20w−1r[w − 1] +
20w−2r[w − 2] + … + r[0]. For fixed w, this computation, which is carried out by the w-

mer2key module, is easily realized using small lookup tables and an adder tree.

The table lookup module finds all word matches between each database w-mer and the query.
Our current realization of this module uses a 32-bit addressable SRAM storing positions in a
2048-residue query sequence, though our design generalizes to other query lengths and
memory word sizes. We divide SRAM into a primary table, with 20w 32-bit entries, and a
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duplicate table. Each entry in the primary table stores at most three query positions to which
a w-mer maps. w-mers mapping to more than three positions are instead stored in the duplicate
table. To indicate whether a w-mer maps to more than three positions, the primary table entry
includes a duplicate bit. If this bit is set, the remaining bits of the entry hold a pointer into the
duplicate table and a count of matching words, which are stored consecutively. Figure 7
illustrates the data path for a w-mer lookup, including primary table entries with and without
duplicate table pointers.

Every lookup into the duplicate table increases a w-mer's service time and so reduces the
throughput of word matching. It is therefore desirable that w-mer lookups be satisfied with as
few duplicate table accesses as possible, ideally none. To reduce the average number of
duplicate table lookups per w-mer, we implement a delta encoding scheme to efficiently pack
n query positions qp plus a duplicate bit into D bits, where D is the width of a primary table
entry.

We describe the delta encoding scheme for D = 32 and w = 11, though it works whenever n|
qp| > D−1 but |qp|+(|qp|−1)(n−1) ≤ D−1. To pack three 11-bit query positions into 31 bits, we
store one query position using a full 11 bits, then store the differences between the first and
second and the second and third positions, modulo 211 = 2048, as 10-bit offset values. If an
entry contains (qp0, qo1, qo2), the three query positions are decoded in hardware as follows:
qp0, (qp0 + qo1) mod 2048, and (qp0 + qo1 + qo2) mod 2048. In contrast, a naive approach
using 11 bits per position would be able to store just two positions plus a duplicate bit in a 32-
bit entry.

To ensure correctness of delta encoding, we must handle two special cases. Firstly, for three
or more sorted query positions, 10 bits are sufficient to represent the differences between all
but (possibly) one pair (qpi, qpj). The solution is to start the encoding by storing qpj in the first
11 bits. For example, query positions 10, 90, and 2000 are encoded as (2000, 58, 80). Secondly,
if there are only two query positions with a difference of exactly 1024, we introduce a dummy
position 2047, then proceed as usual. For example, query positions 70 and 1094 (and the
dummy 2047) are encoded as (1094, 953, 71). The dummy position is easily ignored, since
valid word starts in the query range from 0 to 2047 − w.

In empirical BLASTP experiments comparing bacterial proteomes, we found that by using
delta encoding, we could satisfy 82% of w-mer lookups with a single SRAM probe; with a
naive encoding using 11 bits per query position, only 67% of lookups were so satisfied. No
w-mer resulted in more than six SRAM accesses with the delta-encoded representation; with
a naive implementation, up to nine accesses were sometimes needed.

4.1.2 Two-hit substage—Recall that the two-hit substage is responsible for recognizing
pairs of word matches that fall within A database positions of each other. The two matches
(q, d) and (q′, d′) must also have d − q = d′ − q′; this shared difference is called the diagonal

of the matches.

Two-hit recognition is implemented using an array that stores the database position of the most
recently encountered word match on each diagonal. The diagonal array is of total size 2M,
where M is the query length. At any position in the database, word matches to that position can
occur only in a window of M diagonals. Hence, as the database is scanned left to right, the
array stores only this active window, reusing array cells that correspond to no-longer-possible
diagonals. For a query size M = 2048 and 32-bit database positions, the diagonal array can be
implemented in eight block RAMs.
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A straightforward two-hit implementation works only if matches on a given diagonal arrive in
increasing order of their database positions. However, as detailed in Section 4.1.4, word
matches may not always arrive at the two-hit substage in this order. We implement the
following heuristic to deal with out-of-order word matches: if a match falls at most A positions
prior to the most recently seen match, discard it; else, declare it a seed match by itself and
forward it to ungapped extension. This heuristic discards out-of-order word matches that are
likely part of the same HSP as a word match in the array, while passing on those matches that
are likely part of a distinct HSP.

Figure 8(a) illustrates the choices that the two-hit computation must make. The most recently
recorded word match on the diagonal is shown in gray. Matches c and b are within A positions
before and after this match, respectively. According to our heuristic, match c would be
discarded, while matches b and d would cause a seed match to be generated. Match a would
not by itself cause a seed match but would overwrite the position recorded in the array.

As shown in Figure 8(b), our treatment of out-of-order word matches is not perfect and may
miss cases that should generate seed matches. Suppose word matches arrive as shown in the
order 1, 2, 3. Match 2 overwrites match 1 but does not cause a seed match, while match 3 is
discarded. Hence, no seed match is generated. However, as shown below, our implementation
exhibits high sensitivity even though it sometimes loses seed matches.

4.1.3 Two-hit replication to handle high word match rate—With our implementation's
word size w = 4, the word matching stage generates roughly two word matches per database
residue. Although our implementation uses dual-ported block RAMs, the two-hit logic, which
is pipelined for speed, uses one read and one write port in each clock cycle. Hence, a two-hit
unit can consume only a single word match per clock. Processing more word matches at once
requires replication of the two-hit logic.

Replication of the entire diagonal array in each copy of the two-hit unit would require that all
copies be kept coherent, leading to a multi-cycle update phase and a corresponding loss in
throughput. Instead, we partition the diagonals, which can be processed independently of each
other, across b two-hit units as follows. A word match (q, d) is processed by the jth two-hit unit
if d − q ≡ j − 1 (mod b). Note that we use the low-order rather than the high-order bits of the
diagonal to select the two-hit unit. In practice, word matches tend to occur in clusters within a
band of nearby diagonals; hence, as Figure 9 illustrates, our modulo scheme for distributing
matches tends to partition work among the two-hit units more evenly than allocating a
contiguous band of diagonals to each unit.

4.1.4 Increasing throughput with lookup table replication—With the downstream
stages capable of handling word matches at greater than one match per clock, throughput of
seed generation becomes limited by the word matching substage. The rate at which this
substage generates word matches is constrained by the bandwidth of the off-chip SRAM. To
speed up the pipeline, we use multiple word matching modules in parallel, each accessing an
independent off-chip SRAM resource. Adjacent database w-mers are distributed by the feeder
stage to each of h lookup tables as they are requested.

The use of h independent lookups has an unintended consequence on the generated stream of
word matches. Since the time to look up a w-mer varies with the number of matches it generates,
the word matchers lose synchronization and generate word matches that are out of order with
respect to their database positions. While a limited degree of “out-of-orderness” can be handled
by our two-hit logic, it is desirable to upper-bound how unordered word matches can be to
guarantee that sensitivity will not suffer arbitrarily. In our design, two successively generated
word matches may be out of order by at most (l + ⌈L/3⌉) × (h−1) residues, where L = 15 is the
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maximum number of query positions per w-mer stored in our lookup table, and l = 4 cycles is
the latency of access to the duplicate table.

4.1.5 Routing between multiple parallel substages—Because our architecture permits
both multiple hit generators and multiple two-hit modules, it must support routing the output
of each hit generator to any of several two-hit modules. To address this problem with h hit
generators and b two-hit modules, Mercury BLASTP implements a two-phase switching
network between these substages. Switch 1 routes word matches from a single lookup table to
one of b queues, while switch 2 routes matches from h queues to a single two-hit unit.

Switch 1 (Figure 10) independently routes up to three word matches from a lookup module in
a single clock cycle. Routing is simplified due to the modulo division of diagonals in the two-
hit substage: if b is a power of two, i.e. 2t, the lower t bits of a word match's diagonal identify
its target two-hit unit. In case of a collision, priority is given to the word match with the lowest
database position.

With the addition of multiple lookup tables, additional switching circuitry is required to route
all word matches to their corresponding two-hit modules. First, we replicate switch 1 for each
word matcher, routing its word matches to one of b queues. Second, switch 2, which is
replicated for each two-hit unit, selects one word match per cycle from among the appropriate
queues for all modules. This design can route any of the 3h word matches generated by the
lookup tables to any of the b two-hit modules.

Figure 11 illustrates the complete architecture of the seed generation hardware. In addition to
switches 1 and 2, the design includes a seed reduction tree, which collects seed matches from
all b two-hit units into a single stream to be forwarded to the ungapped extension stage.

4.2 Ungapped extension

The BLASTP software's ungapped extension algorithm, with its X-drop heuristic, allows it to
recover HSPs of arbitrary length while limiting the average search space for a given seed match.
However, the algorithm's flexibility makes its implementation in an FPGA difficult because
the regions of extension around a seed match can, in theory, be arbitrarily long. Hence, the
software's algorithm is not suitable for fast implementation in an FPGA. Mercury BLASTP
therefore takes the more FPGA-friendly approach by finding the best extension within a small,
fixed-size window around the seed match.

A closely related ungapped extension design for BLAST on DNA sequences was reported in
our earlier work [Lancaster et al. 2005; 2008]. This section combines a brief review of that
design with more detailed discussion of BLASTP-specific adaptations to accommodate the
score matrix, δ, which is not used in DNA comparisons.

4.2.1 Algorithm—Extension for a given seed match is performed in a single forward pass
over a fixed-size window. These features of our approach simplify hardware implementation
and expose opportunities to exploit fine-grain parallelism and pipelining that are not easily
accessed in NCBI BLASTP's algorithm. Our extension algorithm is given as pseudocode in
Algorithm 1.

Algorithm 1 Mercury BLASTP extension algorithm pseudocode.

1: procedure EXTENSION(seed match)

2:  Calculate window boundaries

3:  Γ ← γ ← 0 • Initialize max and
running score to 0
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4:  B ← Bmax ← Emax ← 0 • Initialize beginning
and end values to 0

5:  for i ← 1, Lw do • Iterate across window

6:    γ ← γ + δ(qi, si)

7:    if γ > 0 then

8:      if γ > Γ and i > SeedMatchEnd then • Update best HSP

9:        Γ ← γ

10:        Bmax ← B

11:        Emax ← i

12:      end if

13:    else if i < SeedMatchStart then

14:      B ← i + 1

15:      γ ← 0

16:    end if

17:  end for

18:  if Γ > T or Bmax = 0 or Emax = Lw then

19:    return True

20:  else

21:    return False

22:  end if

23: end procedure

Extension begins by calculating the limits of a fixed window of length Lw, centered on the first
word match of a seed match, in both query and database stream. The appropriate substrings of
the query and the stream are fetched into buffers. Once these substrings are buffered, the
extension algorithm begins.

Extension implements a dynamic programming recurrence that simultaneously computes the
start and end of the best HSP in the window. First, the score contribution of each residue pair
in the window is computed, using the same score matrix, δ, as the software implementation.
These contributions can be calculated independently in parallel for each pair. Then, for each
position i of the window, the recurrence computes the score γi of the best (highest-scoring)
HSP that terminates at i, along with the position Bi at which this HSP begins. These values can
be updated for each i in constant time. The algorithm also tracks Γi, the score of the best HSP
ending at or before i, along with its endpoints Bmax and Emax. Note that ΓLw is the score of the
best HSP in the entire window. If ΓLw is greater than a user-defined score threshold, the seed
passes the filter and is forwarded to software ungapped extension.

Two subtleties of Mercury BLASTP's algorithm should be explained. First, our recurrence
requires that the HSP found by the algorithm pass through its original seed match; a higher-
scoring HSP in the window that does not contain this seed match is ignored. This constraint
ensures that if two distinct biological features appear in a single window, the seed matches
generated from each have a chance to generate two independent HSPs. Otherwise, both seed
matches might identify only the feature with the higher-scoring HSP, causing the other feature
to be ignored. Second, if the best HSP intersects the bounds of the window, it is passed on to
software regardless of its score. This heuristic ensures that HSPs that might extend well beyond
the window boundaries are properly found by software, which has no fixed-size window limits,
rather than being prematurely eliminated.
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4.2.2 Architecture—Figure 12 shows an overview of the architecture of the ungapped
extension stage. The controller is responsible for managing the stage. The query is stored in
on-chip block RAM, while the database flows through an on-chip circular buffer. As each seed
match arrives at the stage's input, a window of residues centered on the seed is extracted from
this buffer by the window lookup module and passed on to the dynamic programming hardware.

Figure 13 shows a detailed view of the window lookup module. The query is stored on-chip
in block RAMs and is loaded at the beginning of a database search. The database is too large
to buffer in its entirety, so a specialized circular buffer, also in block RAMs, was built to hold
the needed portion of the database to form the windows which are also stored in block RAMs.

The compute window bounds module takes in a seed match and is responsible for calculating
the boundaries of the window, requesting the window from the buffer modules, and finally
constructing the final window from the raw output of the buffer. The darkened boxes are
pipeline registers to keep the input data in lock-step with the lookup process.

After the window is retrieved from the buffers, it needs further processing to appropriately
align the two sequences since it is possible that a seed does not fall on a word boundary. A four
stage shifting tree was built to efficiently implement this functionality, since the synthesizer
did an extremely poor job implementing it from a behavioral specification in VHDL. Finally,
an aligned window flows to the scoring module.

A potential limit on the implementation of this stage is the number of simultaneous accesses
required to the buffered query and database sequences. Because on-chip block RAMs support
a limited number of accesses per cycle (at most two in our hardware), multiple copies of the
data must be kept to satisfy all consumers in the design. To reduce the amount of on-chip RAM
needed for buffering, the block RAMs in this stage are time-multiplexed to allow four accesses
in a single clock cycle. Figure 14 shows a block diagram illustrating the design of a quad-ported
block RAM. Quad-porting the block RAMs halves the number of physically dual-ported
memories required for this application. Note that quad-porting the block RAMs does not
increase the size of the RAM; it simply increases the ability to access this memory. A notable
limitation of this technique is the requirement of a frequency-doubled clock, which can lower
the maximum frequency at which a design can operate.

The ungapped extension scoring function is implemented as a pipelined systolic array.
Saturating arithmetic is used both to shorten the critical paths of the compute logic and to reduce
area usage. This improvement is possible since the reduction in the number of bits used to
represent the recurrence variables outweighs the increased complexity of using saturating
arithmetic.

The first stage of the array, the score table, determines the score, δ, for each residue pair. Since
these scores are all independent, they are computed in parallel. This is illustrated in Figure 15.

Next, the scores for the window are passed to the scoring stages shown in Figure 12. Each
scoring stage implements two steps of the recurrence, for a total of 32 scoring stages for the
selected window size. The final step compares the score to a threshold and makes a decision
whether to keep or discard the scores. Note that the number of arrows between scoring stages
decreases along the pipeline in Figure 12. This is due to the fact that each residue pair is only
inspected once and the new algorithm only moves in one direction, so that the unneeded data
can be discarded after it has been used. If an HSP scores above the threshold (or meets the
other two conditions mentioned in the previous discussion) it is sent to the next stage for gapped
extension.
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4.3 Gapped extension

Mercury BLASTP's gapped extension stage, like the foregoing ungapped stage, restricts
extension to a fixed-size window. Within this window, the stage implements a slimmed-down
Smith-Waterman recurrence centered on an HSP to decide whether the HSP should be
subjected to full-length gapped extension by the BLASTP software.

4.3.1 Algorithm—The gapped extension procedure of software BLASTP, while substantially
less expensive than full Smith-Waterman between protein, computes an irregular pattern of
cells, depending on the dynamic values of their computed scores. Figure 16(a) illustrates one
such pattern. While variability in the set of cells computed is easily supported in software, it
is more challenging for a hardware implementation. Mercury BLASTP therefore implements
banded Smith-Waterman [Altschul and Gish 1996], an extension procedure that always
computes a regular, fixed-size band of cells while still performing much less computation than
full Smith-Waterman.

Banded Smith-Waterman scores only those alignments that fall entirely within a fixed-size
band of diagonals centered on the input HSP, as shown in Figure 16(b). In what follows, we
will view this band as being composed of antidiagonal strips (or simply “antidiagonals”)
running perpendicular to the diagonals, i.e. sets of cells (i, j) with the same value of i + j. The
geometry of a band is defined by two parameters: the band length λ, which is the number of
antidiagonals in the band, and the band width ω, which is the number of cells on each

antidiagonal. It can be shown that this band covers exactly  residues in each of the two
sequences Given a band, the banded Smith-Waterman algorithm seeks the highest-scoring
alignment that is completely confined to the band. The basic recurrence is identical to full
Smith-Waterman except that an infinite penalty is assessed on alignment paths that leave the
band.

An efficient hardware implementation of banded Smith-Waterman exploits the following
parallelism inherent in the algorithm Call the set of three values Mi,j, Ii,j, and Di,j the i, jth
cell of the computation Cell i, j is dependent on only three other cells for its values, namely
cells i − 1, j; i, j − 1; and i − 1, j − 1. Hence, all ω cells in a band with the same sum of indices
i + j (i.e. those on the same antidiagonal) may be computed simultaneously, once the cells on
lower-numbered antidiagonals have been computed. The banded computation therefore
proceeds along successive antidiagonals in stair-step fashion, computing all cells of each
antidiagonal in parallel.

To ensure that the optimal alignment found in the band is associated with the HSP at its center,
Mercury BLASTP imposes the constraint that the alignment must cross the antidiagonal at the
center of the HSP. This constraint is implemented by not clamping the alignment score to zero
(as in the standard Smith-Waterman recurrence) once the center is crossed, thus forbidding the
alignment to start anew. Moreover, the algorithm returns only the best alignment score
observed on any antidiagonal after that of the HSP's center, rather than the best score overall.

4.3.2 Architecture—Banded Smith-Waterman, like the classical algorithm, can be
accelerated in hardware using a systolic array design that pipelines the computation of
successive antidiagonals. This section describes such a design, with emphasis on the work
required to make it compatible with the streaming computational model of BLASTP and the
strictures of the banded algorithm.

An overview of our design is shown in Figure 17. It is divided into three pieces: control,
buffering and storage, and the actual banded Smith-Waterman computation.
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4.3.3 Control—Control is implemented using three finite-state machines and several FIFOs.
Each state machine is responsible for a single task. The receive FSM accepts incoming
commands and data, processes the commands, and directs the data to the appropriate buffer.
All commands and data to leave the stage are queued, and the send FIFO pulls them out and
sends them downstream (to software). The compute FSM is responsible for controlling the
banded Smith-Waterman computation (see Figure 18). It serves the important functions of
calculating the band geometry, initializing the computational core, stopping an alignment when
it passes or fails, passing successful alignments to the send FSM, and resetting the computation
core to perform the next alignment.

4.3.4 Storage and buffering—Several parameters and tables need to be stored in addition
to the query and the database. The requisite parameters are the length of the band, λ, the extend
penalty, e, and the open-extend penalty, d.

The query is, at most, 2048 residues in length, or 1.25 KB, so it easily fits in a single block
RAM. Since residues are consumed sequentially starting from an initial offset, the query buffer
provides a FIFO-like interface. The initial address is loaded, after which each residue request
by the compute FSM increments a counter in the query buffer.

The database is too large to be stored on chip, so only the active portion is locally buffered.
The buffer size is determined mainly by the need to support HSPs arriving out of order with
respect to their database positions – a problem caused by out-of-order seed match generation
in stage 1. To accommodate out-of-order arrivals, the buffer keeps a window of 2048 residues
behind the database start of the current HSP. The typical distance between out-of-order HSPs
is only 40 residues, so almost all such cases of out-of-order arrival are resolved by the buffer.
In the exceptional case that an HSP falls too far behind its predecessor in the stream, the buffer
flags an error, causing the failing HSP to be passed on unconditionally for processing in
software.

To avoid the need to stall the systolic array once a Smith-Waterman computation begins, the
database buffer blocks a pending computation on an HSP until it has received the full window

of  database residues surrounding the HSP. The compute FSM is responsible for waiting
for the buffer to signal its readiness to proceed with the computation.

4.3.5 Banded Smith-Waterman core—Computation of the cells on each antidiagonal is
handled by the banded Smith-Waterman core. This core is implemented as a standard systolic
array that computes the ω cells of each antidiagonal in parallel. Figure 18 shows its main
components: the Smith-Waterman cell array, the MID register block (retaining the recurrence
values M, I, and D), the score block, the database-query shift register, and the pass-fail block.

Each cell in the systolic array implements logic to compute the recurrence for a single Smith-
Waterman cell. It consists of four adders, five maximizers, and a two-input mux to clamp scores
either to zero, for cells before the HSP's center, or to negative infinity, for cells after the center.
Clamping to zero is part of the basic Smith-Waterman recurrence, while clamping to negative
infinity helps to prevent the algorithm from returning alignments unrelated to the HSP.

The cell values computed by the array are stored in the MID register block. Because only the
score of the optimal alignment is computed and not the alignment itself, only the two most
recent antidiagonals need be stored. As shown in Figure 19, four registers in each cell store the
M, I, and D values computed in the previous clock cycle and the M value computed two cycles
prior. Some of the local dependencies of a cell vary according to whether it is on an odd or
even antidiagonal (the leftmost antidiagonal is odd). For odd cells, Mi−1,j and Ii,j−1 are retrieved
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from its left neighbor, while for even cells Mi,j−1 and Di−1,j are retrieved from its right neighbor.
Multiplexers are used in the MID register block to fetch the appropriate data dependencies for
each antidiagonal.

The score block generates a signed 8-bit δ score for each residue pair considered by a cell. As
in the ungapped design, δ is stored as a table in on-chip block RAM and addressed by a
concatenated residue pair. On our FPGA, each block RAM provides two independent read
ports; we therefore use ω/2 block RAMs to service the systolic cell array.

To perform gapped extension on a pair of sequences, the entire query is first loaded into on-
chip block RAMs, after which the database sequence is streamed in through the database buffer.
The active query and database residues are stored in a pair of parallel-tap shift registers, whose
values are read by the score block. Residues are shifted in, one per clock cycle, during the
computation of odd antidiagonals for the subject and even antidiagonals for the query.

The pass-fail block simultaneously compares the ω cell scores in an antidiagonal against a
threshold. If any cell value exceeds the threshold, the HSP is deemed significant and is
immediately passed through to software for further processing. We implement the following
optimization to terminate extension early in some cases. Once an alignment crosses the HSP,
its score is never clamped to zero but may become negative. If we observe only negative scores
in all cells on two consecutive antidiagonals, extension is terminated. Most HSPs that yield no
high-scoring gapped alignment are rapidly discarded by this optimization.

The worst-case running time of gapped extension per HSP is exactly 5 + ω + λ clock cycles
(5 to compute band geometry and initialize the database buffer, ω to load the shift registers
with initial residues, and λ for the score computation). Using the start table described below
as well as optimizations to support early alignment termination, gapped extension saves an
average of 56% of the naive algorithm's running time for ω = 65 and λ = 1601 on typical protein
datasets.

4.4 Supporting packed query sequences

Protein sequences are typically only about 300 residues long. However, the hardware on which
Mercury BLASTP is implemented possesses sufficient SRAM and block RAM to support
query sequences of over 2000 residues. For every query loaded into the hardware, the entire
database must be fed through the accelerator; hence, it is advantageous to concatenate several
small query sequences into one larger composite query that is compared to the database in a
single pass. Such query packing reduces the number of passes over the database and hence the
overall search time.

Query packing is supported by all three stages of Mercury BLASTP. Seed match generation
trivially supports hashing of concatenated queries in a single table. The two extension stages,
however, must treat the components of each packed query differently, because each query
protein comes with its own associated thresholds for retaining HSPs and gapped alignments.
Ungapped extension simply uses the lowest threshold of any query protein in each concatenated
block, relying on later stages to discard HSPs that should otherwise have been suppressed.
Gapped extension takes a more sophisticated approach, using threshold and start tables to
support packed query sequences. The threshold table maps each position in a packed query to
the threshold score corresponding to the component query sequence at that location. The start
table is used to identify the start of the current component at any point in the packed query.
Knowing this start permits extension to begin at the start of an HSP's component, rather than
considering the full composite query. Table II shows an example of these two tables.
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5. Hardware Parameter Selection

We now investigate the parameters of the algorithm and characterize their effect on the
BLASTP hardware pipeline. The parameter values used by software may not yield an efficient
hardware implementation; hence, it is crucial to study the performance impact of different
parameter choices. Furthermore, an accelerated implementation must produce results similar
to software, so the chosen parameters must not compromise sensitivity.

5.1 Performance model

We start by developing a mean-value performance model to estimate the throughput of the
BLASTP hardware pipeline at various points in the parameter space. When executing in a
pipelined fashion, overall throughput is limited to the minimum throughput achieved by any
one resource:

where Tput1a, Tput1b, Tput2, and Tput3 are the throughputs (in Mresidues/second) of the word
matching, two-hit, ungapped extension, and gapped extension stages. Throughput of each stage
is expressed as an equivalent number of input database residues processed per second.

The throughput of seed generation is computed as

Based on our synthesis results, we use a clock frequency f1 = 110 MHz for the seed generation
stage. The average input processing times c in stages 1a and 1b are 1.3684 clocks/database
residue and 1 clock/w-mer, respectively3. The number of w-mers into the two-hit unit is
determined by the word match generation rate r1a (expressed as w-mers/database residue) of
the word matching stage. All these parameter values were determined empirically using
simulations on large biological datasets. The throughput of seed generation is inversely
proportional to c1a and r1a, which in turn depend on the neighborhood parameters.

We model the normalized throughput of stage 2 as

where the ungapped extension stage runs at f2 = 85 MHz and is capable of accepting one seed
per clock cycle (i.e., c2 = 1). The product r1ar1b represents the number of seeds passed into
stage 2 per input residue.

Finally, the normalized throughput of stage 3 is modeled as

3Technically, c is the inter-arrival time, in clocks, for each stage, since the stages are internally pipelined.
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where the gapped extension stage runs at f3 = 90 MHz. The value c3 represents the average
number of clock cycles required to process an input HSP in the gapped extension stage, and
r1ar1br2 represents the number of HSPs passed into stage 3 per input residue.

5.2 Parameters for Seed Generation

The key parameters for the seed generation are word length w and neighborhood score threshold
T, which control both the sensitivity of the computation and the time spent in its bottleneck
table lookup operation. We first describe a range of these parameters that empirically achieve
high sensitivity, then indicate how our hardware resource constraints shaped the final parameter
selections. We also discuss the effect of query length on the performance of this stage.

5.2.1 Ensuring high sensitivity—To generate a baseline for measuring sensitivity, we ran
NCBI BLASTP (default word length w = 3 and threshold T = 11) to compare the E. coli K12
proteome (4,242 sequences) to a 2004 release of the GenBank Non-Redundant database (2.3
million sequences). The resulting alignments became our gold standard, against which we
measured the quality of results produced in our experiments with other parameter values. An
alignment in the standard was considered “found” in an experiment (i.e. a true positive TP) if
some experimentally produced alignment overlapped at least half its residues in both query
and database; otherwise, it was counted as a false negative (FN). We calculated sensitivity as
TP/(TP + FN). Alignments found in an experiment but not in the standard were for our purposes
considered false positives (FP). We measured specificity as TP/(TP + FP). We note that
sensitivity is the more important statistic, as high-scoring alignments not found by NCBI
BLASTP might still be biologically meaningful.

Figure 20 shows receiver operating characteristic (ROC) curves for our experiments. The X-
axis represents (1 - specificity); the Y-axis, sensitivity. Longer word lengths w increase the
probability of missing a word match in a biologically meaningful alignment. For example,
searching with a neighborhood N(5, 13) is less sensitive than searching with N(4, 13). The
sensitivity of a search at a fixed w is higher for a lower threshold value T. We consider
parameters with sensitivity greater than 99.5% as candidates for use in Mercury BLASTP.

5.2.2 Resource constraints—The most stringent hardware resource constraint in stage 1
is the capacity of off-chip SRAM required to store the lookup table accessed by the word
matching stage. The capacity of the SRAM limits the maximum table size in stage 1a and so
impacts the word length, threshold, and maximum query sequence length that the
implementation can support.

The effect of these three parameters on the table size (primary plus duplicate) is illustrated in
Table IV. For a fixed query sequence length, table size increases exponentially with word size.
For example, neighborhoods with w = 4 require under 2 MB, while those with w = 5 require
at least 16 MB. The occupancy rate measures the fraction of all w-mers (out of 20w) present
in the neighborhood of a typical protein query of given size. The high expected occupancy
rates justify our use of a direct lookup table rather than a sparse hashing scheme.

As described above, Mercury BLASTP can concatenate multiple short protein queries to form
one long query, thereby reducing the number of database passes and hence the running time
needed to process a large query set. However, a longer query increases the number of w-mers
in the query's neighborhood, which can increase the size of the duplicate table. For example,
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the neighborhood N(4, 13) of a 4096-residue query requires 1.7× more table space than a 2048-
residue query with the same neighborhood. Limits on the memory available for the lookup
table therefore imply limits on feasible query length, even if the query sequence itself is short
enough to fit on chip.

For economic reasons, our implementation uses 1 MB of SRAM per lookup table. This
constraint precludes use of w > 4 if sensitivity is to be maintained. Throughput considerations
lead us to maximize word length, which minimizes the rate of word matches; hence, we select
w = 4 and T = 13, the lowest threshold that fits our SRAM. With these parameters, query length
is restricted to 2048 residues. In addition, using a neighborhood N(4, 13) instead of N(3, 11)
reduces c1a from 2.18 to 1.37 clocks/w-mer, increasing throughput from 60 to 95 Mresidues/
second (for a single copy of the word matching module). The word match generation rate r1a

also drops by approximately half, from 3.873 to 2.007, reducing the load on the downstream
stages.

5.3 Parameters for ungapped extension

The parameters of importance in the ungapped extension stage are the window length Lw and
score threshold T. The window length must be long enough to accurately distinguish between
interesting HSPs and seed matches which occur by chance alone. Increasing the window length
allows ungapped extension to more accurately make this distinction by using a higher value
for T. However, the window must be made as small as is practical since the amount of FPGA
resources used scales linearly with Lw. Additionally, decreasing T by too much will cause a
large load increase to the downstream stages. To summarize, the goal is to use the smallest
Lw with the highest T while still making good decisions on whether to discard a seed match.

In order to quantitatively evaluate the minimum necessary window length, NCBI BLAST was
instrumented to count the number of comparisons performed per seed match in its ungapped
extension stage. Random samples from the E. coli proteome were searched against the
GenBank Non-Redundant database. For each query, histograms were collected representing
the number of comparisons performed for each seed match (and hence, the size of the search
space). Figure 21(a) shows the measurement for all seed matches, regardless of whether the
seed passed the threshold or not. The graph shows us that, after inspecting approximately 60
residues, more than 95% of the seeds can be decided. However, this does not tell us how much
of the work being performed by software extension is useful. To gage this, statistics were
gathered on only the seed matches which scored lower than T (and were then rejected by
ungapped extension). Figure 21(b) shows the number of bases inspected before a low-scoring
HSP was rejected. In this case, slightly fewer bases were inspected before rejecting a seed
match. Note that these distributions are very sensitive to T.

To strike a balance between resource utilization, sensitivity and performance, Mercury
BLASTP uses Lw = 64 and a slightly lowered (as compared to NCBI BLASTP default) score
threshold of 16. Empirical evaluation of sensitivity was carried out in [Lancaster et al. 2008],
which indicates these parameters are sufficient in terms of both sensitivity and throughput.

Note that neither of the above parameters has an impact on the throughput of the ungapped
extension stage, which can accept a single seed each clock (i.e., c2 = 1), independent of the
parameter values. The impact of the parameters is limited to FPGA area consumed (for Lw)
and sensitivity (for both Lw and T).

5.4 Parameters for gapped extension

Stage 3 throughput is dependent on the band geometry, specifically the band length λ and band
width ω. The goal of high sensitivity dictates that these parameters be made as large as possible,
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to most closely approximate full Smith-Waterman on the input HSP. However, band width
impacts the width of the stage's systolic array, and hence overall area, while band length impacts
time spent in the stage per HSP processed.

Figure 22 plots the average HSP processing time, c3, in clocks, as a function of band length
for several band widths, while Figure 23 plots the estimated stage 3 throughput as a function
of band length for the same band widths. Variation in band width within the limits dictated by
available logic area empirically had little effect on throughput. However, throughput is
inversely proportional to band length, which determines the number of update steps to the
systolic array per HSP.

Our final design uses parameters ω = 65 and λ = 1601 with a maximum estimated throughput
of 423 Mres/sec. The band length was chosen empirically to minimize the number of significant
gapped alignments lost relative to the NCBI BLASTP software. Larger bandwidths were
feasible to implement but were found not to significantly improve sensitivity.

6. Mercury Blastp Software Architecture

Mercury BLASTP requires tight co-ordination between the FPGA resources and software
running on the host CPU. In the current implementation, stages 1 and 2 of the pipeline are
deployed on one FPGA and stage 3 is deployed on a second FPGA. In the following section
we describe the software infrastructure supporting the Mercury BLASTP system. In particular,
we discuss the preprocessing stages of neighborhood generation and query packing and their
effect on the BLASTP pipeline.

6.1 Architectural overview

The software is organized as a multi-threaded application consisting of independently
executing components communicating via queues. A major goal in the design of the software
system was to integrate the Mercury code into the existing NCBI BLAST package. The NCBI
BLASTP pipeline was modified and FPGA resources substituted for the software equivalents.

There are two main advantages to using the NCBI codebase. Fundamental support routines
such as I/O processing, query filtering, and the generation of sequence statistics can be reused.
Further, support for additional BLAST programs such as BLASTX and TBLASTN can be
added with minimal work at a later time. Secondly, the user interface, including command-line
options, input sequence format, and output alignment format is preserved. This facilitates
transparent migration for end users and seamless integration with the large set of applications
designed to work with NCBI BLAST.

The BLASTP initialization code executes part of the traditional NCBI pipeline that creates the
state for the search process. The Mercury query data structures are then loaded and search
parameters initialized in hardware. The database is then streamed through the first FPGA
executing the first two stages of the BLASTP pipeline. HSPs generated by ungapped extension
are multiplexed with the database stream and sent back to the host CPU. Banded gapped
extension on the second FPGA consumes the stream and tags HSPs that will likely lead to
gapped alignments. Finally, the NCBI BLASTP software pipeline is resumed on the host to
filter the output of the second FPGA and produce the final gapped alignments. For ease of
integration, results from the second FPGA are inserted into the software BLASTP pipeline at
its ungapped extension stage and are validated using both the software's ungapped and gapped
filters.
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6.2 Neighborhood generation

Much of the query pre-processing time in the BLASTP pipeline is spent generating the
neighborhood of a query, which is then encoded into the tables used by the word matching
module. A naive algorithm for neighborhood generation would score all possible 20w w-mers
against every w-mer in the query sequence, adding those that score greater than or equal to T
into the neighborhood. Indeed, this implementation is essentially what is found in NCBI
BLASTP.

NCBI BLASTP's neighborhood generation is both memory-intensive and computationally
expensive, degrading exponentially at longer word lengths. We now describe a prune-and-
search algorithm that has the same worst-case bound but shows practical improvements in
speed. The algorithm divides the search space into a number of independent partitions, each
of which is inspected recursively. At each step, it is possible to determine if there exists at least
one w-mer in the partition that must be added to the neighborhood. This decision can be made
without the costly inspection of all w-mers in the partition. Such w-mer partitions are pruned
from the search process. Another advantage of this class of algorithms is that they can be easily
parallelized. We describe a vector implementation using SIMD technology available on the
host CPU that further speeds up neighborhood generation.

6.2.1 Prune-and-search neighborhood—Given a query w-mer r, an alphabet Σ, and a
scoring matrix δ, the neighborhood of the w-mer is computed using the following recurrence.
The neighborhood N(w, T) of the query Q is the union of the individual neighborhood of every
query w-mer r ε Q.

Gr(x, w, T) is the set of all w-mers in Nr(w, T) having the prefix x. We term x a partial w-mer.
The base is Gr(x, w, T) where |x| = w − 1 and the target is to compute Gr(ε, w, T). At each step
of the recurrence, the prefix x is extended by one character a ε Σ. The pruning process is invoked
at this stage. If it can be determined that no w-mers with a prefix xa exist in the neighborhood,
all such w-mers are pruned; otherwise the partition is recursively inspected (lines 2 and 3 of
the recurrence). The score of xa is also computed and stored in Sr(xa). The base case of the
recurrence occurs when |xa| = w − 1. At this point it is possible to determine conclusively if
the w-mer scores above the neighborhood threshold.
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We now describe the pruning step in more detail. During the extension of x by a, the highest
score of any w-mer in Nr(w, T) with the prefix xa is determined. This score is computed as the
sum of three parts: the score of x against r1..|x|, the pairwise score of a against the character
r|x|+1 and the highest score of some suffix string y and r|x|+2..w with |xay| = w. The three score
values are computed by constant-time table lookups into Sr, δ, and Cr respectively. Cr(i) holds
the score of the highest scoring suffix y of some w-mer in Nr(w, T), where |y| = w − i. This is
easily computed in linear time using the scoring matrix.

A stack implementation for the computation of Gr(ε, w, T) is shown in Algorithm 2. We define

 to be the alphabet sorted in descending order of the pairwise score against character b in
δ. The w-mer extension is done in this order, causing the contribution of the δ lookup in the
left-hand side of the expression on line 11 to progressively diminish with every iteration.

Algorithm 2 Stack implementation of the prune-and-search algorithm

1: procedure PS-NEIGH(w, T, r) w-mer r • Generate neighborhood N(w, T)
for query

2:  G ← φ • Initialize neighborhood set

3:  STACK.PUSH(ε) • Initialize target of recurrence

4:  repeat

5:    x ← STACK.POP( ) • Pop next partial w-mer

6:    for all a ε Σ′r|x|+1 do • Cycle through alphabet, sorted by
pairwise score

7:      if |x| = w − 1 then • Base case

8:        if Sr(x) + δ(rw, a) ≥ T then

9:           G ← G ∪ {x · a}

10:        end if

11:
     else if S

r
(x) + δ(r

|x|+1
, a) + C

|x|+2
r ≥ T  then

12: • Partition contains at least one w-
mer in neighborhood: store for

later search

13:        STACK.PUSH(x · a)

14:      else • All remaining partitions
guaranteed to score poorer: prune

15:        break for

16:      end if

17:    end for

18:  until STACK.EMPTY( )

19:  return G

20: end procedure

6.2.2 Vector implementation—In the Prune-and-search algorithm described, extension of
a partial w-mer by every character in the alphabet can be done independently. We exploit the
resultant data parallelism by vectorizing the computation in the for loop of Algorithm 2.

Algorithm 3 shows a vector implementation. In each iteration of the loop, the algorithm extends
a partial w-mer by VECTOR_SIZE characters. Lines 21-27 perform the comparison operation
with the returned mask value being inspected to determine the result.
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We use SSE2 extensions available on the ×86-family host CPU for our implementation. A
vector size of 16 and signed 8-bit integer data values are used. Saturated signed arithmetic is
used to detect overflow/underflow. The alphabet size is increased to the nearest multiple of 16
by introducing dummy characters, and the scoring matrix is extended accordingly.

Algorithm 3 Vector implementation of the prune-and-search algorithm

1: procedure PS-NEIGH-VECTOR(w, T, r)

2: • Generate neighborhood N(w,
T) for query w-mer r using

vector instructions

3:  T ⃗ ← {T− 1, …, T − 1} • Initialize threshold vector

4:  G ← φ

5:  STACK.PUSH(ε)

6:

7:  repeat

8:    x ← STACK.POP( )

9:    Σ″ ← Σ′r|x|+1 • Retrieve sorted alphabet list for
this w-mer residue

10:    δ″ ← δ′ (r|x|+1) • Retrieve corresponding
pairwise scores

11:    S ⃗ ← {Sr(x), …, Sr(x)}

12:
   C⃗ ← {C

|x|+2
r

, … , C
|x|+2
r

}

13:    P⃗ ← VECTOR-ADD(S⃗, C ⃗) • Precompute loop invariant
vector

14:

15:      • Cycle through
alphabet, VECTOR_SIZE

characters per iteration

16:    for i ← 1, |Σ|, VECTOR_SIZE do

17:      δ⃗ ← {δ″(Σ″i), …, δ″ (Σ″i+VECTOR_SIZE)} • Initialize score vector

18:

19:      if |x| = w − 1 then • Base case

20:        A⃗ ← VECTOR-ADD(S⃗, δ⃗)

21:        mask ← VECTOR-CMPGT-GET-MASK(A⃗, T ⃗) • vector set bit, if op1 > op2

22:        pos ← 0

23:        while mask do • Locate neighborhood w-mers
in vector

24:          G ← G ∪ {x · Σ″i+pos}

25:          mask ← mask ≫ 1

26:          pos ← pos + 1

27:        end while

28:      else

29:        A⃗ ← VECTOR-ADD(P⃗, δ⃗)

30:        mask ← VECTOR-CMPGT-GET-MASK(A⃗, T ⃗)

31:        pos ← 0

32:        while mask do • Locate partitions in vector not
pruned

33:          STACK.PUSH (x · Σ″i+pos)
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34:          mask ← mask ≫ 1

35:          pos ← pos + 1

36:        end while

37:      end if

38:    end for

39:  until STACK.EMPTY( )

40:  return G

41: end procedure

6.2.3 Results—Table V compares the neighborhood generation times of the three algorithms
for 2048-residue query sequence. The benchmark machine was a 2.0 GHz AMD Opteron
workstation with 6GB of memory.

The prune-and-search algorithm is 5× faster than the NCBI BLAST enumeration method for
w = 4. and over 60× faster at w = 6. The vector implementation shows a speedup of 3× over
the sequential version.

At the default Mercury BLASTP neighborhood of N(4, 13), the naive algorithm consumes
approximately 10% of the program execution time. This is especially critical because the rest
of the pipeline remains idle until the neighborhood is generated. In contrast, the vectorized
prune-and-search implementation is 19× faster, consuming just 0.5% of the execution pipeline.

6.3 Query bin packing

Query bin packing is an optimization intended to speed up the BLAST search process. The
Mercury BLASTP pipeline stages are designed to operate at full utilization on query sequences
of 2048 residues. However, the average protein sequence is only 300 residues in length, causing
the downstream stages to remain idle a large portion of the time. By concatenating multiple
short query sequences and processing them in a single pass over the database, the total
execution time can be reduced.

However, a number of caveats must first be addressed. To ensure alignments generated do not
cross sequence boundaries, an invalid sequence control character is used to separate them. The
word matching stage detects and rejects w-mers crossing these boundaries. Similar safeguards
are present in the downstream extension stages as described in Section 4.4. In software, the
HSP co-ordinates returned by the hardware stages must also be translated to the reference
system of the individual components.

The process of packing a set of sequences in an online configuration must be optimized to
reduce the overhead to a minimum. The query packing problem is identical to the one-
dimensional bin packing problem and is known to be NP-hard. We compare the performance
of the Next Fit (NF) and the First Fit (FF) algorithms. These algorithms can be improved by
first sorting the query list by decreasing sequence lengths before applying the packing rules.

6.3.1 Performance of bin packing—The approximation algorithms were run on 4,241
sequences (1,348,939 residues) of the Escherichia coli k12 proteome with the bin size set to
2048 residues. An optimal solution for this input set uses 661 bins.

As shown in Table VI First Fit performs best, with the sorted list using just one more bin than
the optimal solution. This good performance can be attributed to the large number of relatively
small query sequences in the data set. Figure 24 shows the histogram of input query sequence
lengths. The distribution is heavily biased toward smaller sequences, with 60% of the input set
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being less than 300 residues. We believe this data to be representative of protein sequences in
general and expect to achieve near-optimal bin packing in practice.

The Mercury BLASTP pipeline is stalled during the query bin packing preprocessing
computation. First Fit keeps every bin open until the entire query set is processed. In the case
of certain configurations, such as when Mercury BLASTP is used to service requests from a
web server this is not feasible. The Next Fit algorithm may be used instead. Since only the
most recent bin is inspected in this case, all previously closed query bins may be dispatched
for processing in the pipeline.

7. Results

We have implemented Mercury BLASTP on the Mercury prototyping system [Chamberlain
et al. 2003], which provides high-throughput data movement between direct-attached disk
storage and reconfigurable logic. The system's host processors include two dual-core 2.4 GHz
AMD Opteron CPUs with 16 GB of memory, running 64-bit Linux, and two prototyping FPGA
co-processor boards connected via the PCI-X bus to the host. Interfacing drivers to the boards
are provided by Exegy, Inc4. Both boards contain a Xilinx Virtex-II 6000-6 FPGA. The first
board runs BLASTP stages 1 & 2; the second runs stage 3. Three synchronous 1 MB SRAM
modules are available on the first board. Using this configuration, we have demonstrated
sustained data throughput from disk to FPGA well over the requirement for Mercury BLASTP
[Chamberlain and Shands 2005].

We now examine the entire Mercury BLASTP deployment shown in Figure 25. Seed
generation (with two word match generators, using 2 of the 3 SRAMs, and four two-hit
modules) and ungapped extension run at 110 MHz and 85 MHz, respectively, consuming 63%
of the slices and 77% of the block RAMs on the first FPGA. Gapped extension runs at 90 MHz,
consuming 33% of the slices and 48% of the block RAMs. Our implementation uses two
FPGAs due to the large number of block RAMs required by all stages combined; however, the
current generation Virtex FPGAs from Xilinx can easily fit the entire design on a single chip.

We have integrated Mercury BLASTP with the original NCBI BLAST code to preserve the
BLASTP user interface, including command-line options and input/output format. Individual
protein query sequences are packed into 2048-residue bins using the first-fit-decreasing bin
packing algorithm; this packing is done transparently to NCBI BLAST. Neighborhood table
generation is done online as part of query setup for the hardware. The database is streamed in
a single pass per query through the three hardware filtering stages. Seed matches that extend
into high-scoring gapped alignments are passed to the BLASTP software, which does final
gapped extension and prepares the alignments for reporting to the user.

To quantify the performance of the entire Mercury BLASTP accelerator, we compared it to
NCBI BLASTP running on a modern, general-purpose computing cluster with two 2.4 GHz
Opteron CPUs and 4 GB of RAM per machine running 64-bit Linux. The individual times of
the 8 machines were summed to get the total time to execute NCBI BLASTP for each
experiment. Rather than compare Mercury BLASTP's running time to that of the NCBI
BLASTP version (2.2.9) from which it was originally derived, we instead used the most recent
version of NCBI BLASTP (2.2.17) available at the time of writing. The newer BLASTP
software, which represents the end result of a several-year rewrite of BLAST's core
functionality, is more than twice as fast as 2.2.9 in our tests and so is a faster competitor to our
accelerated implementation.

4http://www.exegy.com/
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We built NCBI BLASTP with all available compiler optimizations of gcc 3.4. BLASTP runs
were performed single-threaded, one on each core of the machine. BLASTP was run with an
E-value threshold of 10−5 and default parameters otherwise. Reported runtimes include query
setup and the time spent in the three stages of the pipeline but do not include time spent
formatting the final alignments for printing.

To measure the output quality of our implementation, we computed its sensitivity to the
alignments returned by software BLASTP. Sensitivity was measured as the fraction of
alignments from the software baseline's output that were also found by Mercury BLASTP.
Alignments in the two outputs that overlap by more than 50% were considered to be the same.
We also report the number of alignments found by the baseline but not by Mercury BLASTP
(“Alignments Lost”) and vice versa (“New Alignments”).

For our sensitivity measurements, we compared our implementation to NCBI BLASTP 2.2.10,
which is substantially identical to 2.2.9. We did not use 2.2.17 for sensitivity testing because
it dynamically modifies the default scoring matrix δ used to score alignments, which yields
significantly different output. For example, we found that 2.2.17's output in the third of our
experiments below included only 89.2% of the alignments produced for the same experiment
by 2.2.10. Our implementation presently hard-codes the default scoring matrix used by 2.2.10,
so we preferred a baseline that isolates the sensitivity effects of our design choices from those
caused by unrelated changes in scoring.

We compared Mercury BLASTP and NCBI BLASTP on the following four large proteomic
comparisons:

1. E. coli K12 proteome (1.35 Mres) vs. GenBank Non-Redundant (NR) database (1.39
Gres);

2. B. thetaiotaomicron proteome (1.85 Mres) vs. GenBank NR;

3. Y. pestis KIM proteome (1.27 Mres) vs. all other bacterial proteomes in Gen-Bank
(282 Mres).

4. H. sapiens putative proteins (16.45 Mres) vs. GenBank NR. Due to the enormity of
the data generated from this experiment, sensitivity analysis was performed on a
random sample of 10% of the query. However, the timing numbers reflect the
execution of the entire query in both software and Mercury BLASTP.

These comparisons represent typical annotation tasks that would be performed on proteins
predicted from a newly sequenced genome. The new proteins are compared to databases of
known proteins, and any statistically significant similarities are recorded as evidence that a
known protein and new protein are evolutionarily related. GenBank NR is a database of all
known or predicted proteins in the NCBI GenBank archive. In all our tests, query sequences
were filtered to remove low-complexity regions.

Tables VII and VIII respectively show the speedup and the sensitivity of Mercury BLASTP
relative to the software baseline for our experiments. Mercury BLASTP averages more than
an order of magnitude faster than the software baseline for all four experiments, with larger
databases giving greater speedups, despite dated FPGA technology. Furthermore, close to 99%
of all alignments found by NCBI BLASTP were also detected by our FPGA solution – an
insignificant loss in quality compared to the differences between releases of NCBI BLASTP
itself. Mercury BLASTP also finds many new, statistically significant alignments not reported
by the NCBI software.
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8. Conclusion

In this work, we have presented our design of Mercury BLASTP, an FPGA-accelerated
implementation of the standard protein sequence comparison tool. Our design closely matches
the behavior of the standard BLASTP software while overcoming issues caused by high data
generation and filtering rates. The Mercury BLASTP system achieves software-like sensitivity
at more than an order of magnitude speedup over NCBI BLASTP on a modern workstation.
To the best of our knowledge, Mercury BLASTP is the first FPGA accelerator for the entire
BLASTP pipeline.

Overall, Mercury BLASTP is shown to execute at least 10 times faster than NCBI BLASTP
running on a modern processor, maintaining close to 99% sensitivity. These results are
measured using experimental runs that are indicative of BLASTP usage common in the
biological research community.

We expect further performance gains in our implementation from updating it to more recent
hardware platforms. In particular, the FPGA devices used in this work are from an older
generation. The latest PCI-X based accelerator cards in use by our partners at Exegy, Inc.
contain two FPGAs from the Xilinx Virtex-4 family. Each of the two FPGAs has two larger
attached SRAMs than in our current design. With the larger logic and block RAM resources,
we will be able to fit the entire Mercury BLASTP pipeline on a single FPGA clocked at higher
frequencies. The larger capacity SRAMs will be able to accommodate query neighborhoods
of 4096 residues, hence halving the number of passes of the database. We will also be able to
run two parallel copies of the Mercury BLASTP engine on the two FPGAs. Overall, we expect
a speedup of 4× over our current implementation simply by moving to the latest generation
FPGA technology.

Our successful FPGA design for BLASTP extends to bioinformatics applications beyond pure
pairwise sequence comparison. Modern biosequence databases are increasingly organized into
families of related sequences, such as the same gene in multiple organisms, or groups of
proteins from the same functional family. These families are represented as profiles – ordered
lists of positions, each of which describes the distribution of residues at one point in the
sequence. For example, a profile for a family of proteins may show that 70% have residue L
in their first position, 20% have residue I, and so forth. Just as BLASTP compares a query
sequence to a database of profiles, more recent comparison tools such as PhyloNet [Wang and
Stormo 2005] can compare profiles to each other to discover similarity between sequence
families. Other tools, such as PSI-BLAST [Altschul et al. 1997] and IMPALA [Schaffer et al.
1999], compare profiles to sequences to discover instances where a sequence is likely a member
of a known family.

The design of Mercury BLASTP naturally extends to implement comparisons involving
profiles. At a high level, the structure of efficient profile-based comparison tools is similar to
BLASTP, including seed matching and extension stages. Extension uses the same dynamic
programming approaches described for BLASTP, with the scoring matrix δ on residue pairs
replaced by a more complex function δ′ on pairs of profile positions. Hence, implementing
profile extension in Mercury BLASTP requires only that we replace the scoring blocks of our
designs with logic implementing the new scoring functions.

Seed matching between a query profile and a database of sequences is well-defined if δ′ is
defined for a residue and a profile position; this is the case for PSI-BLAST and related
applications. For such applications, one may define the (w, T)-neighborhood of a profile as the
set of all w-mers that score at least T when compared to some w contiguous positions in the
profile. With this definition, our neighborhood hash-based design can be used unchanged,
except for minor modifications to the software that generates neighborhoods. When the
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database consists of profiles, as in PhyloNet, the common approach is to apply vector
quantization to map all profile positions to one of a small number of representative residue
distributions. The resulting quantized sequence of positions can be scored against a query
analogously to a sequence of residues, again using a neighborhood hashing strategy.
Quantization of profile columns may be performed either offline or as part of the input
processing in the Stage 1 FPGA design.

In the end, our experience designing and building Mercury BLASTP yields two general lessons
for the designers of all types of accelerators. One important lesson is that it is possible to achieve
significant performance gains for real-world, interesting applications using FPGAs, even when
the computational workload in the original application is not concentrated in a single hot spot.
In particular, a streaming approach accelerates our application not only by exploiting the
parallelism of individual application stages but also by pipelining them. The second lesson is
the importance of setting, and then testing, goals for output quality as part of the design process.
For Mercury BLASTP, the need to closely match NCBI BLASTP's output steered us both to
a design that closely follows the structure of the BLASTP software and to parameter choices
that yield acceptable sensitivity versus the software baseline. Recognizing such constraints,
and then testing them rigorously as part of evaluating the implementation, is key for any design
that, like ours, must compromise between acceleration and fidelity to an ideal computation.
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Fig. 1.

Alignment of two protein sequences. Identical and biologically similar residue pairs are marked
by vertical lines and pluses, respectively.
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Fig. 2.

Growth of TrEMBL protein database.
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Fig. 3.

The BLASTP computational pipeline.
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Fig. 4.

Decomposition of BLASTP stage 1.

Jacob et al. Page 33

ACM Trans Reconfigurable Technol Syst. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5.

Neighborhood of query w-mer CLV in a protein sequence.
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Fig. 6.

Word matching hardware design.
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Fig. 7.

Lookup table data path.
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Fig. 8.

Examples of the two-hit computation.
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Fig. 9.

Modulo division of diagonals results in more equal distribution of hits.
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Fig. 10.

Switch 1 – routing 3 hits from a single word matcher to b two-hit units.

Jacob et al. Page 39

ACM Trans Reconfigurable Technol Syst. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 11.

Seed generation logic, showing routing.
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Fig. 12.

Overview of stage 2 architecture.
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Fig. 13.

Top-level diagram of the window lookup module.
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Fig. 14.

Diagram of a time-multiplexed block RAM to provide four independent ports. The wires shown
in bold represent multi-wire paths. clkx2 is a frequency-doubled clock which is phase-aligned
to clk.
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Fig. 15.

Illustration of the first stage of the scoring. The residue pairs are used to index a set of parallel
lookup tables that retain the pair score.
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Fig. 16.

Typical structure of gapped extension in (a) NCBI and (b) Mercury BLASTP. X- and Y-axes
indicate position within query and subject proteins. Cells computed by each method are shaded,
with seed match in white. NCBI BLAST figure is from [Altschul et al. 1997].
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Fig. 17.

Overview of stage 3 design.

Jacob et al. Page 46

ACM Trans Reconfigurable Technol Syst. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 18.

Design of banded Smith-Waterman core with ω = 5.
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Fig. 19.

Design of MID register block.
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Fig. 20.

Result quality of BLASTP algorithm for various neighborhoods.
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Fig. 21.

CDFs of the length of ungapped extensions measured in NCBI BLASTP. All measurements
use the default scoring threshold.
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Fig. 22.

Compute time (in clocks) for stage 3 (c3) as a function of band length λ for several band widths
ω.
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Fig. 23.

Stage 3 throughput as a function of band length λ for several band widths ω.
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Fig. 24.

Histogram of query sequence lengths in the E.coli proteome
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Fig. 25.

Mercury BLASTP hardware/software partition.
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Table I

Execution profile and match rates of the BLASTP pipeline.

Word Match. Two-hit Ungap. Ext. Gap. Ext.

% time 30.96% 19.29% 15.85% 33.60%

Match Rate 3.873× 0.043 0.003 0.031
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Table II

An illustration of a packed query and its threshold and start tables.

Position Query Threshold Start

0 S 10 0

1 W 10 0

2 M 10 0

3 * - -

4 G 8 4

5 H 8 4

6 M 8 4

7 * - -
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Table III

Performance model parameters.

Parameter Units Meaning

h Number of parallel word matching units

b Number of parallel two-hit units

f1 MHz clock frequency for stage 1

f2 MHz clock frequency for stage 2

f3 MHz clock frequency for stage 3

c1a clocks mean time in stage 1a for each input residue

c1b clocks mean time in stage 1b for each input w-mer

c2 clocks mean time in stage 2 for each input seed

c3 clocks mean time in stage 3 for each input HSP

r1a matching w-mers/input residue stage 1a input match rate

r1b seeds/input w-mer stage 1b filter rate

r2 HSPs/input seed stage 2 filter rate

r3 alignments/input HSP stage 3 filter rate

Tput1a Mres/sec stage 1a (word matching) throughput

Tput1b Mres/sec stage 1b (two-hit) throughput

Tput2 Mres/sec stage 2 (ungapped alignment) throughput

Tput3 Mres/sec stage 3 (gapped alignment) throughput

Tputpipe Mres/sec overall pipeline throughput
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Table IV

Effects of parameters on lookup table size.

2048 4096

N(w, T) Occ. rate Table size Occ. rate Table size

N(3, 11) 95% 77 KB 99% 134 KB

N(4, 13) 85% 928 KB 96% 1.6 MB

N(4, 14) 70% 743 KB 88% 1.1 MB

N(5, 14) 80% 16 MB 95% 25.7 MB
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Table V

Comparison of runtimes (in seconds) of various neighborhood generation algorithms

N(w, T) NCBI-BLAST Prune-Search Vector-Prune-Search

N(4, 13) 0.4470 0.0780 0.0235

N(4, 11) 0.9420 0.1700 0.0515

N(5, 13) 25.4815 1.3755 0.4430

N(5, 11) 36.2765 2.6390 0.7835

N(6, 13) 1, 097.2388 16.0855 5.2475

ACM Trans Reconfigurable Technol Syst. Author manuscript; available in PMC 2009 June 1.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Jacob et al. Page 60

Table VI

Performance of query bin packing approximation algorithms

Bins

Algorithm Unsorted Sorted

NF 740 755

FF 667 662
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Table VII

Execution time of Mercury BLASTP compared to the baseline system.

Experiment Baseline Time Mercury Time Speedup

1 28.7 h 1.9 h 15.11×

2 40.5 h 2.7 h 15.29×

3 5.7 h .41 h 13.82×

4 346.4 h 31.15 h 11.12×
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Table VIII

Sensitivity of Mercury BLASTP compared to the baseline system.

Experiment Sensitivity Alignments Lost New Alignments

1 99.40% 36,686 10,747

2 99.46% 20,945 10,952

3 99.18% 21,855 5,053

4 98.83% 118,166 14,813
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