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Multiuser, Distributed
Language-Based
Environments

How do you keep teams
of programmers
informed of system
changes without
burying them in mail
messages? Make the
environment
responsible for
propagating changes.
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arge ioftware projects involve

teams ot programmers who coop-

erate :n development and main-
tenance. Each programmer typically is
responsible for part of the system. one or
more modules. Each module exports cer-
tain facilities to other modules and imports
certain facilities from other modules.
Communication problems arise when
module interfaces change or do not meet
what programmers imagine their specifi-
cations 1o be. Networks of workstations
ageravate this problem as personnel
become distributed.

On¢ common solunhion is to pass mes-
sages among the programmers. When a
programmer modifies a module interface,
he sends electronic mail describing the
<hange to all other programmers who use
the module. However, in real-world soft-
ware projects, the list of programmers
using a particular module changes fre-
quently because of concurrent modifica-
tions by other programmers to their mod-
ules. So the programmer sends a message
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to the entire team to0 be sure of reaching
everyone who may be affected by the
change.

The result 1s a mail deluge. Some
programmers spend hours reading mail
and consequently get little work done,
while othersignore their mail and get lots
of work done. Unfortunately, sometimes
this work must later be undone or redone
because of incorrect assumptions about
module interfaces.

We propose a better solution: message
passing among the programming environ-
ments used by the programmers. This can
easily be accomplished using language-
based environments that automatically
identify interdependencies among pro-
gram parts and immediately intorm
programmers of static SeMantic errors in
one part of a program caused by changes
to another part. Such environments are
language-based because the determinanon
of interdependencies and errors s spedit:.
to the particular programming language
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Overcoming limitations

Use of language-based environments
has been limited primarily to novice
programmers working alone on relatively
small programs. Thisis due in part to dis-
satisfaction with the structure-oriented
user interface and in part because these
environments could not support multipie
programmers working simultaneously on
a large software system.

There are several promising approaches
10 solving the first problem, most of themn
involving a text-oriented rather than a
structure-oriented interface. [ncremental
parsing technology' makes it possible for
changes to the text to be reftected immedi-
ately in the program’s underlying struc-
tural representation.

We solve the second problem with Mer-
cury, our prototype of a multiuser, dis-
tributed language-based programming
environment, where the environment is
responsible for propagating changes.
Whenever animported module changesin
4 way that is incompatible with its use in
an importing module, Mercury automat-
wally notifies each programmer of errors
in his own module introduced by the
change in the imported module. The pro-
srammer can 2o about his business know-
ing that he will be informed of evactly
those chanees that atfect him.

\W ¢ wenerate cavch language-based envi-
ronment from a formal specitication — an
dttribute grammar — of the desired pro-
sramming Llanguage. Attribute grammars
attach attnibutes 1o cach program part to
summarize the interdependencies and
mtertaces between it and other parts of the
program. and they permit rapid recaleula-
non of these ~ummaries as the program

<hanges. The boy on pp. 64-65 e\plains
attribute grammars.

Attributes artached to each module
Jdescribe its interface. Each interface has
twoparts: (1) the facilities exported by the
module and (2) the names of other mod-
ules 1n the system and the taglities
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exported by these modules that are avail-
able for import. These attributes provide
enough information to check if any inter-
module inconsistencies are introduced by
a particular change to an exported facility.
If a change does not involve an exported
facility, no intermodule propagation is
required and none takes place.

The advantage of attribute grammars
over other mechanisms is that there are

aiready incremenial attribute-evaluation :
algorithms that support automatic propa- °
gation to exactly those attributes that are

affected by a particular change. The

propagation occurs as soon as the change !

oc¢curs.

We have extended the best-known of

these algorithms® to a parallet form,

which makes it possible (o propagate

We generate each
environment from a
formal specification —
an attribute grammar —
of the desired language.

among multiple users, in either a single-
machine or a distributed programming
environment. We have added an attribute-
propagation layer that supports many pro-
grammung environment facilities and relia-
bility of the distributed environment
during network und machine ratlures.

Mercury supports change simulation’
in addition to change propagation.
Change simulation lets a programmer ask
what-if questions about whether a paruc-
ular change to his module’s interface
would cause errors in his own or other
modules. without making the change visi-
ble to other programmers. Thisis done by
performing the attribute propagation on
a copy ol each relevant module.

\We are not advocauing that program-
mers cease toinform each other when they

change module interfaces. They must do
so to explain the motivation for their
changes, since the environment cannot
determine this automatically. However,
the environment could prompt the pro-
grammer for this information after gach
change to amodule interface or, lessintru-
sively, at the end of every session. The
environment could treat these explana-
tions as special attributes of the modified
program parts, to be propagated with the
attribute-evaluation algorithm, or it could
simply mail them to the appropriate
programmers.

We are also not advocating that the pro-
grammer be notified of every error in his
module immediately after every change.
We describe the mechanisms to do this,
but it is not necessary to take full advan-
tage of these capabilities. Instead, each
programmer could inform the environ-
ment whether he wants to be notified of
inconsistencies immediately, only at the
end of a session, only on check-in to the
version-control system, only on user com-
mand, and so on. Mercury can separale
intramodule and intermodule propaga-
tion, so static semantic errors due to the
programmer’s own changes can be
detected at one granularity and those due
to other programmers’ changes at another.

Incremental interface
checking

Incremental interface checking among
modules can be achieved in traditional
single-user, language-based environments,
like the Cornell Synthesizer Generator.*
Consider the program in Figure {. Mod-
ule M exports facility x (which could be a
procedure or a type, for example) for use
in other modules and imports facility v
from module N. Module N exports v and
imports x. The bodies of the two modules
are omitted.

Now suppose the programmer, using a
language-based environment, remoscs
facility x from the export list of module \/




MODULE M ;
EXPORT x;
FROM N IMPORT y;
END: /+ M «f

MODULE N ;
EXPORT Yy
FROM M IMPORT x ;

E\D. [+ Ns/

Figure 1. Skeleton of a program
with two modules.

Because the omitted portion of the pro-
gram may cover many screens, the pro-
grammer may not remember that module
N imports facility x and so may not real-
ize that his edit causes an error in.Vdue to
the use of a now undefined facility.
However, the environment does remem-
ber and immediately warns the user that
this small change caused an error else-
where in the program. The notice can be
done unobtrusively. such as by displaying
*‘error’’ in the corner of the screen. The
programmer is free to 1gnore this error
indicator and deal with it later, when he
2ives acommand to scroll to the error. The
environment would then display module
N, as Figure 2 shows. Because the error
was Jdetected and presented 1n context,
while he was remosing v from the export
list of module VM, the programmer is
immedtately aware of what caused the
problem and can restore vor fix the prob-
lem some other way.
One way the environment can detect
sttch errors s to recomptle the entire pro-

gram after each edit. However, the result
would be intolerably poor response time
for all except the tiniest programs. Instead,
alanguage-based environment, in effect,
recompiles only those parts of the program
affected by the edir.

The environment stores the information
it needs to check for errors in attributes
associated with certain program parts. In
particular, the facilities exported by, and
available for import into, a module are
represented as attributes of the module.
Attributes are defined in terms of other
attributes, thus capturing interdependen-
cies in the program.

After an edit, those attributes associated
with the program part that changed and
any other parts that depend on them must
be reevaluated. Using the dependency
information among the attributes, the
environment evaluates the minimum num-
ber of attributes necessary to detect and
report any errors caused by the change.
The environment uses an incremental
attrnibute-evaluation algorithm to perform
this minimal recalculation.

The algorithm works by propagating
information along dependency links in the
program’sinternal representation. Figure
3itlustrates the flow of information along
the dependency links of the program
shown in Figure }. One attribute
associated with the entire program con-
tains all the facilities exported by all the
modules; intermodule propagation to
check the consisiency between exported
and imported facilities passes through this
atinbute.

Two dependency links cut across a mod-

MODULE M
FROM N IMPORT y;

END: /+ M o/
MODULE N
EXPORT v :

END: /e N o/

FROM M IMPORT x; < -- cannot import this identifier

Figure 2. Error notification after program change.
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ule’'s boundary: The first connects the
attribute associated with the module’s
export statement to the attribute
associated with the entire program: the
second connects the program attribute
with the module’s import-statement attri-
bute. In a module, there are dependency
links from the import-statement attribute
to the attribute for the statements in the
module’s body (to check that the imported
variable is used correctly), and from :he
attribute for the module’s local declara-
tions to the export-statement attribute (10
check that the exported variaple s
declared). If a program edit changes any
attribute value, all attributes that depend
on this value are recalculated.

To perform this recalculation, the algo-
rithm first constructs a model, a special
dependency graph of the attributes
associated with the part of the program
that was changed. The model contains a
directed arc from each attribute to every
other attribute that depends (directly or
indirectly) on its value.

Reevaluation starts with attributes that
have no incoming arcs. For those attri-
butes that change in value, the model is
expanded to include all attributes that
depend on these attributes directly,
together with arcs between these attributes
and those already in the model to represent
all direct and indirect dependencies. Then
the original attribute and all its arcs are
removed, leaving a new set of attributes
with no incoming arcs. The process repeats
until the model is empty. This approach
works whenever the attribute grammar 1s
noncircular, which is normally the case.

in our example, there is a chain of
dependency links from the export-
statement attribute of M to the import-
statement attribute of N. If M's export
statement is changed, the model will even-
tually expand to include A"s import attrib-
ute. When x is removed from the export
list in module M, the export attribute tfor
M changes accordingly. This triggers recal-
culation of all dependent attributes,
including the import attribute for V. This
calculation detects an inconsistency
between N's import attribute and Vs
actual import list, which contains a facil-
ity not included in the import attribute.
The resultistheerror message in Figure 2.
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Parallel interface
checking

We have developed a parallel version®
of this algorithm. Our version spawns a
new process for every aitribute in the
model that has no incoming arcs, so they
can be evaluated in parallel. When an
attribute’s value changes, its process
expands the model, removes the attribute
and all its arcs from the model, finds all the
attributes previously at the ends of these
arcs that now have no incoming arcs, and
spawns new processes to evaluate these
attributes. This manipulation of the model
must be atomic, so svnchronization
among the concurrent processes is done by
locking the model. It is not necessary to
lock attributes, because either there is one
writer and no readers (during reevalua-
tion) or no writers and perhaps multiple
readers (after reevaluation).

Multiuser interface
checking

We expand the traditional
programming-in-the-small, language-
based environment paradigm (a single user
cditing monolithic programs) to
programming-in-the-many (mMany users
editing the ~ame program asyn-
chronouslyy. We assume that (wo
programmers cannot edit the same part of
the program; thatis, there is some division
ol the provram among programmers. The

obvious division is for each programmer
1o be responsible for one or more modules.
Therefore, we propose a model of editing
where many programmers access a com-
mon, internal representation of the pro-
gram, but are each given an area of this
representation that only they can modify.

Suppose Dick and Jane are editing our
sample program. Dick can edit module M
only and Jane can edit .V only. Suppose
that Dick deletes x from the export list of
M. An error message appears immediately
on Jane's screen, and she can scroll to the
actual location of the error in module N.

ft might seem that this could be accom-
plished with the paralle!l version of the
algorithm. However, consider what hap-
pens when the attributes affected by Dick’s
change are being propagated and at the
same time Jane deletes v from the export
list of V, setting olf a new set of propaga-
tions. The internal representation of the
program is now being asynchronously
modified by two processes.

Previous algorithms for incremental
evaluation either assume a single change to
the program (where exactly one point in
the program has inconsistent attributes) or
require that multiple changes be
synchronized® {a model consisting of the
union of the dependency graphs ol those
program parts with inconsistent attributes
is formed before evaluation begins). The
latter algorithm is useful for efficiently
recalculating attribute values when a sin-

gle editing operation causes multiple nodes
of the program to have inconsistent attrib-
utes but is not applicable to multiple, asyn-
chronous editing operations.

Our algorithm® performs incremental
attribute evaluation for muluple, asyn-
chronous edits. Our algorithm assoctates
asingle model with each program segment
(in our example, with each module). When
there is more than one user, an asyn-
chronous change by one programmerina
module can propagate into another mod-
ule through a dependency link that crosses
module boundaries. This adds a new com-
ponent to the model of the second module.

These two components can be vertex-
disjoint if the intermodule propagation
and the original propagation affected
different areas of the module. Two dis-
joint components of the model may
become joined if an expansion of one com-
ponent adds an attribute that is already”
part of the other component. At this point,
it is necessary to add arcs from this attni-

bute to all direct and indirect dependencies
in the combined piece.

A difficulty arises if module M is modi-
tied and the change is propagated to mod-
ule .V at just the moment that .V is itself
being edited (while the internal data struc-
ture is being modified). Qur algorithm
cannot permit an attribute propagation to
arrive in .V when the syntactic structure of
the module is changing.

To solve this problem, we introduce fire

Mogule M

Module ¥

ceclarations

geclarations

Figure 3. Logical representation of a program.
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walls. A fire wall is a barrier that shelters
a program segment while it is being modi-
fied. A firewallcan be **up.’” in which case
any attribute propagation attempting to
cross the boundary is delayed, or "*down,"’
in which case the fire wall is entirely invisi-
ble. The fire wall need be up only when the
internal representation of the program seg-
ment is actually being changed. This is a
minimal amount of time compared to the
time spent by the environment performing
attribute evaluations and the time the
programmers spend browsing the
program.

Distributed interface
checking

Once we allow multiple edits on a pro-
gram using fire walls, the next step is to
split the programs across machines, since
the advent of inexpensive workstations is
rapidly making distributed program devel-
opment with cooperation among the
programmers the preferred mode of soft-
ware development.

We split a program so each fire wall-
protected segment (in most cases thisis a
module) is assigned to a workstation. One
workstation may be the home of many
modules, typically those under develop-
ment by the same programmer. In Figure
3. modules M and N would be assigned to
different workstations. To avoid the need
for centralized storage, the part of the pro-
gram representing the root of the
information-tlow tree 1s replicated on
every workstation. However, certain root
information is impossible to replicateina
distributed environment and must be han-
Jdled ditferently, as explained below.

Each machine handles attribute propa-
eation as if it were the only machinein the
network — as long as the propagation
remains within the bounds of the fire wall,
and thus within its model. When an attni-
bute reaches the fire wall, it must deal with
remote machines. This is handled by an
auribute-propagauion layer. The APL
constructs a packet containing the attrib-
ute’s value and sends it across the network
10 the other modules. The APL waits until
the target module's fire wall is down and
then propagates the attribute into the mod-
ule by simulating an edit at its fire wall.
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Attribute propagation then proceeds in the
target module.

Thus, the export attribute from M is
bundled and passed across the network to
.V, where it is unpacked and inspected. If
different from its previous value, the
export attributz is propagated into NV as
soon as the fire wall is down.

The APL performs the packing,
unpacking, and dissemination of attribute
packets to the target modules. [t also main-
:ains a cache of the attribute values that
have arrived from each remote module.
The cache is assumed to be up to date on
the grounds that if more recent informa-
tion was available it would have arrived.
When a new attribute arrives, the APL
compares the aitribute to its cached value.
If the two values are different, the new
value is copied into the cache.

In the real world,
messages can arrive late
and out of order;
networks and machines
can fail.

The APL also supports dormant mod-
ules, those not currently being edited.
Atribute propagations are stored in the
cache until that module is next edited. This
strategy allows a simple optimization that
is impiemented in our prototype: When a
module reawakens, it is passed only the
most recent values of changed autributes.
Alternatively, attribute propagations to
dormant modules could be performed in
a background process, with the environ-
ment mailing any error messages Lo the
responsible programmer.

Certain kinds of static semantics check-
ing, such as duplicate moduie names,
depend on an ordering of the modules: If
2 program contains two modules with the
same name, the one that comes later in the
program is flagged. This works finein a
single-user, nondistributed environment,
where only one programmer can add
(delete) modules to (from) the program. in
that case, the environment can maintain an
internal representation of the program

that reflects the corract ordering of the
modules.

However, if multiple programmers can
create modules independently, the envi-
ronment cannot guarantee that all
programmers see the same ordering. For
example, suppose the program has a sin-
gle module, M, and Dick and Jane at the
same moment create modules .V and O,
respectively. Dick may think the program
is made up of modules M, &V, and Oin that
order while Jane may think it is ordered .M.
O, and N. Moreover, if Dick and Jane
happen to create modules with the same
name simultaneously, say .V, it is unclear
which module should be considered the
original and which the erroneous
duplicate.

We solve this problem by restricting
programs to consist of an unordered set of
modules. Programmers create modules
independently. If a module with the same
name as an existing module is created,
both are flagged with the error ‘‘module
name declared twice.”” Duplicate modules
are not considered part of the program,
and no propagations are sent to or received
from such modules.

The APL keeps track of all the modules
in the program and stores two pieces of
information for each: (1) if the module
resides on that machine and (2)if the mod-
ule is uniquely identified. If a new module
is created with the same name as an exist-
ing module, the APL adds the name
(again) to the list of modulesin the system,
marks both as erroneous, and propagates
an error message to both.

The real world

Our discussion has assumed that all
interface changes are propagated to all
modules instantaneously. This is unrealis-
‘tic: In the real world, messages can arrive
late and out of order; networks and
machines can fail.

Message passing. Fortunately, late and
out-of-order messages are not a problem
because of the nature of incremental
attribute evaluation. In particular, the
time a message arrives does not matter —
once it does arrive and propagation ter-
minates, the result is the same. If two mes-
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sages arrive from distinct modules, the
order of arrival also does not matter — the
final result is again the same.

Multiple messages from the same mod-
ule that arrive out of order are handied by
comparing time stamps. Every message
contains an attribute’s name, its new
value, and a time stamp indicating when
the new value was calculated. The time
stamp could be taken from the clock of the
machine where the value was calculated,
orit could be an integer incremented each
time the reevaluation aigorithm assigns the
attribute a new value (making it possible
to move the module among machines).
When a message arrives from an APL, its
time stamp is compared to the time stamp
of the corresponding attribute in the
cache. If the time stamp of the message is
earlier, the message is discarded; if later,
the cached time stamp is updated and the
two values compared. If the values differ,
the new value overwrites the cached value
and is propagated to the target module,
triggering attribute reevaluation. A global

clock is not necessary — only time stamps
of attributes originating from the sams
module are compared.

Failures. We have developed a special
algorithm to deal with failures. Our algo-
rithm repropagates changes to those mod-
ules that did not receiv; the original
propagation because they were inaccessi-
ble due to machine or network failure.
Programmers can ¢ontinue working on
mavchines that are separated from part or
all of the network, hnowing that local
changes will be propagated and remote
changes will be received as soon as the net-
work is restored. Because late and out-of-
order messages either do not matterorare
handled by time stamps, this approach
sutticiently guarantees availability and
reliabtlity.

The easiest way (0 explain this algorithm
1s through an example. Suppose Dick,
Jane, and Sally are working togetherona
system, editing modules M, NV, and O,
respectively. Figure d shows the interfaces
among the modules. Dick’s machine is

currently unreachable from the rest of the
network. Sally changes module O to
remove the export of :. This change is
broadcast throughout the network, and is
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received by the APL for Jane's worksta-
tion, where the cache for module O is
updated. However, since Jane’s module N
does not import O, Sally’s change does not
introduce any errors into module NV,

Now Sally's workstation crashes and
Dick’s is restored to the network. Dick’s
APL broadcasts a special update signal,
indicating that network-wide consistency
must be reestablished. This prompts
Jane's APL tosend all the information in
its caches for M, NV, and Oto Dick’s APL.
The new cache for NVis quickly discarded,
since the time stamps are the same. The
new information for O replaces the old,
and Sally's change is propagated into
module M, causing the appropriate error
message (0 be displayed. This happens
even though Sally’'s machine is not cur-
rently accessible.

What if Dick had made several changes
while in isolation? These would be
reflected by updated time stamps in the
local cache for module M. When the older
cache Marrives from Jane's APL, acom-
parison of the time stamps causes Dick's
APL to send Jane's APL the new cache.
Saily's APL will be updated similarly when
iteventually broadcasts an update signal.

Mercury

Mercury is implemented in C and runs
under 4.3 BSD Unix. [t provides a dis-
tributed editing environment for an arbi-
trary number of Digital Equipment Corp.
VAX computers connected by an Ethernet
network. We have generated environ-
ments for subsets of Modula-2 and Ada.

Mercury has two parts, an editor gener-
ator and an APL. The editor generator
takes as input an attribute grammar for the
desired language and produces a language-
based editor tailored to that language.
Copies of this editor are installed on each
machine. Each invocation is known as a
local editor; the entire system of all local
editors and the APL is called the dis-
tributed editor.

The APL is responsible for propagating
changes in attribute information among
the local editors. [t is language-
independent: Distributed editors for
several languages can be simultaneously
supported by the same APL. The current
implementation, however, does not han-

MODULE M ;

EXPORT x;

FROM N IMPORT y : FROM
O IMPORT z:

END; /+ M +/

MODULE N ;
EXPORTy:
FROM M IMPORT « ;

END /o N o/
MODULEO;

EXPORT z;

FROM M IMPORT x ;

END; /s O o/

Figure 4. Skeleton of a program with
three modules. .

dle the transmission of changes between
modules written in different languages.
The APL isimplemented as a special pro-
cess on each machine, and each is called a
local APL.

Figure § shows the structure of a local
editor. A local editor is generated in two
phases: (1) translation of the attribute
grammar and (2) linking the language
tables produced in the first phase with a
language-independent editor kernel to
produce an editor for a specific language.

Our editor generator is built on top of
the Cornell Synthesizer Generator, which
generates language-based editors for
single-user environments. We reused all
the code common to both multiuser and
single-user cases, including pretty-printing
the program on the screen and interpret-
ing user commands. Our major modifica-
tions were to extend the attribute-grammar
notation with new classes of attributes that
specify interface information and to add
our new incremental attribute-evaluation
algorithm to handle asynchronous edits.

We designate certain atiributes — those
that capture the flow of information
among modules — as interface attributes.
These attributes are defined by semantic
equations in the language specification, as
described in the box on pp. 64-65.

We provide a union operator for defin-
ing attributes at the root of the program
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An attribute grammaris a set of rules giving the context-free
syntax of the ianguage. iike YACC specifications. Eachrule is
associated with a set of semantic equations that specify
context-sensitive information, such as symbol resolution and
type checking, which cannot be expressed directly in the syn-
tax part of the rules. These equations are similar to simultane-
ous equations in algebra, and their variables are called
attributes, thus the name attribute grammars. Attribute gram-
mars were first proposed by Knuth' and the technotogy for
generating language-based environments from attribute gram-
mars was developed by Reps et al.’

Figure A contains a smail attribute grammar for a simple
module-interface language. The example language is meant to
illustrate attribute grammars and is not intended to be realistic.
Real attribute grammars can be very large; our attribute gram-
mar for only a small subset of Modula-2 is 1083 lines.

In our example language, a program consists of several mod-
ules, each of which can import and export exactly one variable.
A module canimport any variable that has been exported by any
other module. To check that imported variables are used cor-
rectly, the attributes exportsin and exporntsout are used tobuild
alist of all exported variabies. This global exported variables list
is passed to the import statement in each moduie using the
attribute allimports.

The attribute grammar in Figure A consists of five rules:

Rule 1. The first ruie states that a program consists of mod-
ules. It is followed by three semantic equations for program: The
first defines the values of the allexports attribute of program to
be equal to the exportsout attribute of modules (exportsout is
itself defined later on in the figure); the second initializes the
exportsin attribute of moduies to empty, and the third defines
the allimports attribute of modules to be the same value as
allexports.

Rule 2. This rule specifies that modules is an ordered list of
2e10 or more components, each of which s amodule. Exportsin

Background on attribute grammars

contains the exported variables of ail moaules preceding 1S
one, and exportsout contains the exported variaples of all mod-
utes up to and including this one. The allimgorts attripute 's
passed to both components of modules.

Rule 3. This rule states that a module has an identifier and
export, import, declarations, and statements components. {in
the figure, MODULE, (s, END, and ; are reserved words or symbols Iin
the programming language and must be placed as indicated by
the rule.) This rule is followed by five semantic equations.

The first defines an error attribute associated with each mod-
ule. The error attribute specifies what text string to display. In
this case, the possible erroris that the identitier used to name
the modute is the name of some other module. It the module
namae isin fact unique, the error string is nuil. The namesof func-
tion extracts the set of module names from the list of facilities
available for import so this check can be made.

The second equation defines the exportsout attribute of the
module as the union of the exportsin attribute of that module
and an entry composed of the idname attribute of the moduie
name and the exportid attribute of the export list. if the name
of the module is not unique, however, the exportsout attribute
is assigned the exportsin value.

The third equation passes declarations.locals, the list of van-
ables declared in this module, to the possibleexports attribute
of the export statement. One of these variables may be exported
by this module. .

The fourth equation equates the allimports attribute of the
module's import iist to the value of the module’s own allimports
attribute.

The tifth aquation assigns to statements.variables the union
of the imported variable and the local declarations, specified by
the attributes importid and locals respectively. This attribute
indicates the variables that can be used in the statements part
of a module.

program ::=modules

modules.exportsin = Null;

modules, :: = /*Empty production®/
{modules,.exportsout =
modules,.exportsin, }
| module modules,

{program.allexports = modules.exporisout;

modules.allimports = program.allexports; }

then
union (module.exportsin,
entryfid.idname, export.exportid))
else module.exportsin;
export. possibleexports = declarations.locals;
import.allimports = module.allimports;
statements.variables= union{import.importid,
declarations.locals),'}

{module.exportsin = modules,.exportsin; export ::=EXPORTid o
modules,.exportsin = module.exportsoul; {export.exportid = u_i. idname;
modules,.exportsout = modules,.exportsout; export.error =il ididname in
module.allimports = modules,.allimporis; exx'agrlt.posszbleapom
modules,.allimports = modules..allimports; } t:;n < cannor s

module ::=MODULE id IS export; import; declarations; dentifier’’;}
statements; END; )

{module.error = import :=FROM id.'lMPO.RTA 1d,

if id.idname wot in {{mporumpondad,.dnanx;
namesof (module.exporisin} importerror=

if (id,idname @ namesoffimportallimports))
and (id,.idname =
exportsfrom(import.allimports,
id,.idname))
thea' "
else '’ <--cannot import this identifier’";}

thea''*’
else’’ < --module name
declared twice’’;
module.exportsout =
if id.idname not in
namesof (module.exportsin)}

Figure A. An example attribute grammar. The rules stating the program syntax are in plain text, reservgd words are in smalldc'ao:j-
lais, the attnbute-grammar syntax s «n boidface, and semantic equations are initalics. The grammar’s form has been modihe

slightly to aid readability.
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Rule 4. The export rule indicatas the variabte thatis exported
by the module and is followed by two semantic equations. The
first equation assigns the exported variable name to the export-
id attribute: this is used to build the export list of the module,
as mentioned above. !f the exported variable has not been
deciared (and therefore it is notin possibleexports), the second
equation assigns the error attribute an appropriate message.

Rule 5. The import rule indicates a module (id,) from which a
variable is imported (id,) and is also followed by two semantic
equations. The first copies the variable’s name to the :mportid
attribute, from whare it can be propagated for use in the mod-
ule's statements. The second equation defines the error attrib-
ute; it states that the module id, must exist and must actually
export the variable id,, or the indicated error message is dis-
played. The function exportsfrom takes the list of available
imports and the name of a module as arguments and returns the
identifier, if any, exported by that module. The rules for decla-.
rations and statements are omitted for the sake of bravity.

Decorated trees. Besides being a formal way of describing
program constraints, attribute grammars can be seen as deco-
rated trees: The rules make up the structure of a tree, and the
attributes are the decorations at the nodes of the tree. Each
attribute in an attribute grammaris attached to a symbol inthe
rules; when a grammar is used to construct a tree, the symbois
in the rules become the nodes, the componants of the symbols
(the bodies of the rules) become children nodes, and the attri-
butes are decorations of the nodes corresponding to the sym-
bols to which they are attached in the grammar. This tree
structure is the internal representation for programs in
fanguage-based editors.

Figure B shows the tree reprasentation of the example pro-
gramin Figure 1inthe main article. This program has two mod-
ules, M and N. M exports a variable x, and N exports a variable
y. Each module imports the other's exported variable. The tree

in Figure B represents the complete structure for module 4. and
represents the module node for module N. The syntactic struc-
tures are shown as ellipses; the attribute instances associated
with them are shown as rectangles. Toconserve space we omit
the terminals of the grammar in the diagram of the tree {such
as the keywords voouLe and i1s) and the diagram for module N.
which is similar 1o that for moduie M.

Now suppose the user removes facility x from the export list
of module M. thus modifying the internal tree representation of
the program. The semantic equations must now be reapplied so
that the decorations remain consistent with the tree.

The edit is at a point specified by the fourth syntax rulein Fig-
ure A — export — so we first consider the semantic equations
associated with this rule. The value of id.idname becomes null
and this new value is copied to export.exportid. This causes the
second equation under module {Rule 3) to propagate this change
by recalculating the attribute module.exportsout for M to con-
tain only a null identifier in the exported variable field. In turn,
this causes a recalculation of the exportsout attribute in mod-
ules (Rule 2) and the allexports attribute in program (Rule 1), so
the entry for module M contains no exported variable.

The new list of variables that can be imported is passed to
each of the modules, including N, by the attribute allimports. In
N, the fourth equation for module (Rule 3) reassigns
import.allimports, and then import's (Rule 5) second equation
finds that the imported variable is no longer available and the
error attribute is changed from the nuil string to the error mes-
sage "= cannot import this identitier.”

A similar series of recalculations is also done in moduie M,
but because there are no errors there the effect will be invisibie
to the user. This attribute reevaluation in response to program
changes is the basis for incremental interface checking in
language-based environments.

Figure C illustrates how an attribute grammar is translated
into an editor. An editor generator (a program similar in concept
to the YACC parser generating system) takes as input an attri-
bute grammar specitication of a language. This specification
is translated into intermediate language tables that, when com-

piled together with an editor kernel, produce an editor
tailored to the specitic language. In this figure, the rec-
tangles represent data and the ellipses the processing
functions. The editor kernel consists of several parts,
including a yser interface, the incremental attribute-
evaluation engine, a tree-manipulation engine, and
systems-support utilitias,
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from interface attributes of each module.
(The current implementation does not sup-
port defining attributes at the root of the
program that are arbitrary functions of the
interface attributes of the modules, but
this has not been a problem in practice
since union is sufficient for interface
attributes used for change propagation,
notably the external symbol table.)
When an edit of a module changes the
value of an interface attribute, the new
value is propagated by the APL to all the
workstations. The attribute at the root of
the program (which is replicated on all
workstations) is recomputed, and
propagated to the attributes of the mod-
ules that are dependent on it.
In a multiuser environment, a local edi-
tor can receive input from two sources.
The programmer using the local editor can
perform arbitrary editing operations on
the module being developed. The local edi-
tor might also receive a new value for an
attribute as a result of a change in some
other module. The second input (which
does not change the program itself) should
never happen while the program is being
modified by the user. The fire-wall effect
is obtained by using the Select system cail
to check for pending requests. The local
editor performs these operations, oneat a
time, as they occur. However, we do not
senalize the attribute evaluations because
that might result in repeated recalculation
of the same atiribute.
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Our implementation uses a single pro-
cess for the local editor and uses Unix soft-
ware signals to handle the attribute
evaluation of multiple, asynchronous
edits. The editor process is responsible for
performing the incremental attribute-
evaluation algorithm. Input from the user
or the APL causes the Sigio signal (which
indicates 1 /O is possible on a file descrip-
tor) to be generated. This signal is trapped
and the Sigio signal handler we provide is

invoked. The handler processes the input,
creates the model for this change, and
merges it with the current model — which
could be emptyif no attnbute propagation
is in progress. After returning from the
handler, the editor process continues with
the attribute-evaluation algorithm at the
point it was interrupted, but the model
now also reflects the attributes that need
to be reevaluated as a result of the new
edit.

Mercury does not maximize paratlelism

by concurrently evaluating independent
attributes in a local editor. Thereis no nice
mechanism for sharing data among Ber-
keley Unix's heavyweight processes, and
the advantages of such paralilelism cannot
be realized on the VAX uniprocessor.
However, the fully parallel algorithm
described above would be suitable for a
multiprocessor with lightweight processes.

The distribution component of the
incremental auribute-evaluation algo-
rithm works as follows. When a module’s
interface attribute gets a new value, the
local editor sends a message containing
this new value to the local APL. The local
APL broadcasts this message to all other
machines on the network. The local APL
on each of these remote machines updates
the corresponding attribute at the root and
sends it to all the local editors whose mod-
ules belong to the same program, thus
informing them of the change. Whenever
a new value is computed for an interface
attribute, a time stamp derived from the
local clock is attached to the value. The
time stamp is used in reestablishing con-
sistency among the local APLs in the case
of machine or network failure.

The APL has two parts: (1) a transport
layer that handles the actual transmission
of messages, both among the local editor
and its APL and among local APLs, and
(2) an attribute cache that contains the
latest value of all attributes that passed
through the APL. The attribute cache is
identical on all machines, except when
some part of the network is down; then the
local APLs might temporarily have old
attribute information, but consistency will
eventually be reestablished.

The transport layer uses sockets for all
interprocess communication. We chose
datagram communication over stream
communication because the restriction on
the number of open streams would have
limited the number of local editors an APL
could support. Datagram communication
does not guarantee reliable transmission of
messages — messages can be transmitted
out of order or may be lost. But old or out-
of-order messages are not a problem for
this application. We prevent messages
from being lost by defining a reliable dis-
tributed environment on top of the data-
gram that provides acknowledgments and
retransmission, among other things.'
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ercury supports teams of

programmers collaborating on

the development and main-
tenance of large software systems. The
environment supports incremental check-
ing of interdependencies among modules,
whether the modules reside on the same
machine or are distributed among multi-
ple machines connected by a network.
Each module is edited in a language-based
programming environment, previously
suited only to programming-in-the-small.
By supporting cooperation among many
such environments, we achieve
programming-in-the-many.

Mercury has a serious limitation, how-
ever, with respect to programming-in-the-
large — it assumes there is only a single
version of each module and a single way of
composing the modules into a system. For
example, when a programmer changes an
interface of module M, this change is
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Version and Configuration Control in
Distributed Language-Based Environments
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Abstract

We discuss a set of algorithms for supporting change propagation in distributed prog;amrping
environments. Our previous papers presented algorithms suitable only for the over-simplified
scenario of a single program made up of a collection of modules, each with only a current
version where every change to the interface of any module was propagated to all the other
modules. This paper describes new algorithms that handle realistic software development and

maintenance by large teams of programmers, using real programming languages that permit
nested modules, where each system evolves over time through muldple configurations
specifying a particular version of cach module. Furthermore, the new algorithms are
dramatically more efficient in that they propagate exactly those changes that affect each
module version.

No scene from prehistory is quite as vivid as that of

the mortal struggles of great beasts in the twar pits . . .
Large-system programming has over the past decade

been such a tar pit . . . [as] the accumulation of simultaneous
and interacting factors brings slower and slower motion.

— Frederick P. Brooks, Jr., The Mythical Man Month, 1982.

1. Introduction

Building large software systems is hard. Several factors contribute to this, most of which are
directly related to the size and complexity of the system. The task of building a large system
is usually divided among several people, each working on a different part of the system. Since
the pieces are interrelated, ensuring consistency of the software system requires interaction
among the programmers. This leads to a communication and coordination problem [29].
Another characteristic of large systems is that they evolve over ime. At any point in time,
there are released versions of the system, experimental versions of the system, versions of the
system targeted for different hardware, and so on. This results in a proliferation of versions of
the components of the system. An additional burden is placed on the programmer — he must
select versions for each component in the configuradon he is working in, and maintain
consistency within that configuration. We call this the version/configuration control problem.

In this paper, we describe a class of programming environments that assist programmers with
both problems. The environment is centered around a language-based editor, which allows




programmers to enter only syntactically correct constructs. More importantly, the
environment is able to analyze the components of the system incrementally after each change
to check for static semantic errors, both within each component and among the components.
If a change results in errors in some of the components of the system, these components are
flagged with error messages. Code is generated for error-free components. The environments
described in this paper work with a version control system that stores, retrieves, protects and
merges different versions of each component, such as RCS [30] or SCCS [27].

The environments we describe are generated from an attribute grammar (AG) description of
the programming language for which the environment is tailored. Using attribute grammars as
the basis of programming environment generation offers many advantages, the most obvious
of which is the reduction in cost and time for developing a new environment than if the
environment was handcoded. In addition, optimal algorithms for incremental analysis are well
known, an undo mechanism is automatically supplied by the attribute evaluation algorithm,
and there is a large body of theory on the AG formalism.

Software development environments are adapting to a change in the hardware base from large
timesharing systems supporting the entire project team to computing environments consisting
of workstations connected by local area networks. This wend stems from the advantages
offered by personal workstations, including more predictable response time, increased
reliability of the system as a whole, and incremental expandability. The programming
environments we describe accommodate distibuted computing environments: The
programming environment is distributed among the workstations. Each programmer interacts
with a local programming environment running on his machine. The programming
environment handles all communication and coordination with the rest of the system.

We start by introducing language-based environments in section 2. We present two new
ideas, both of which extend our previous results in distributed attribute evaluation algorithms
[14). First, we describe algorithms that propagate changes only to modules that are affected
by the change; this is the topic of section 3. Second, in section 4, we describe modifications to
the algorithms to handle multiple versions of the system components. We conclude by
summarizing the contributions of this paper.

2. Background

2.1. Language-Based Environments

A programming environment is called language-based if the support it offers to a programmer
is specific to a particular programming language. The most ubiquitous example of language-
based environments are the structure-oriented editors, which allow programmers to enter only
syntactically correct program fragments. Several of these editors also check for static
semantic errors or anomalies in the programs being edited (28], such as declaration of
variables before use, tvpe-checking, and use of uninitialized variables. Syntactic and semantic



analysis are dependent on the particular programming language; the part of the environment
that deals with these aspects must therefore be written anew for each programming language.
However, large parts of the environment are language-independent; this includes, for instance,
the user interface routines, the command interpreter, and interfaces to operatng systems
utilities. One important contribution of the initial work in language-based environments was
the capability to generate such environments from a language specification and a language-
independent editor kernel. These environments are interactive, that is, the user is notified of
(syntactic or static semantic) errors in his program as soon as he enters an incorrect piece of
code. This places an additional requirement on these environments: The algorithms used to
analyze the program must be fast enough to be executed at every editing change.

An approach that has been used very successfully relies on an attribute grammar specification
of the programming language. An atribute grammar extends a context-free grammar (which
describes the syntax of the programming language) with attributes that give a “meaning” to
strings of that language (17]. Auribute grammars have been used in compilercompilers to
describe the translation of programming languages (8, 6]. Reps et al. pioneered the use of

attribute grammars for programming environments [23].

Atribute grammars are declarative specifications of the semantics of a programming
language. Attributes are associated with symbols of the underlying context-free grammar.
The value of an attribute associated with a symbol X is defined by a semantic equation on
other attributes associated with symbols in the two productions in which X appears, on the left
and right hand sides of the productions, respectively. Attributes are divided into two disjoint
classes: synthesized attributes and inherited attributes. A semantic equation defines a value
for a synthesized atmribute of the left-hand side symbol of a production or an inherited attribute
of a right-hand side symbol.

The auributes associated with a symbol decorate the symbol’s node in the parse tree
representing the program. If an attribute b appears in the semantic equation defining attribute
a, then a is dependent on b. An edit operation corresponds to a subtree replacement, which
replaces one subtree in the parse tree with another. After the replacement, the values of the
attributes associated with the symbol at the root of the new subtree may be inconsistent. These
aurnbutes are reevaluated, and the chain of dependencies induced by the semantic equations is
used to reevaluate all those attributes whose value might be changed.

Reps [24] describes an optimal incremental atwribute evaluaton algorithm whose complexity
is proportional to |[AFFECTED|, where the set AFFECTED contains all attributes whose values
change as a result of the edit. The algorithm performs a topological sort on a dependency
graph emanating from the point of the change, to ensure that an attribute is reevaluated only
after the attributes that it depends on have received their final value. This optimality result is
one of the main advantages of using attribute grammars as the formalism on which to base
incremental language-based environments.




2.2. Distributed Environments

The attribute evaluation algorithm described above was extended by Kaplan and Kaiser to
handle asynchronous edits [16]. The basic idea is that if the program is changed while attribute
evaluations from the previous change are still proceeding, the dependency chains resulting
from the previous change are merged with those due to the new change, and the evaluation
algorithm continues with the merged dependency graph. If the two changes inidally affect
different parts of the program, the dependencies arising from the two changes start out as
disjoint pieces and might or might not eventually overlap. While the two pieces are disjoint,
no transitive dependencies between the pieces are considered; this means an attribute might be
evaluated again if the pieces are merged after it has been evaluated in the context of its
previously separate piece. An improved algorithm by Gietz that maintains transitive
dependencies between the disjoint dependency graphs, thus avoiding this reevaluation, was
described to the authors by Reps [25].

This ability to handle asynchronous edits on a program provides the mechanism that allows
language-based environments to assist not simply an individual programmer but an entire
project team. [Each programmer is responsible for a segment of the system under
development. When a programmer makes a change to his segment, the environment
propagates the changed attribute values resulting from the edit both to dependent attributes
within the same segment and also to other segments whose attributes depend on the changed
attributes.

The languages supported by our distributed environments are modular languages. A modular
language provides a construct for structuring a program, typically called a module. Each
module explicitly specifies which facilities it imports from other modules and which facilities
it exports to make available for use by other modules. Examples of such languages include
Ada™ (1], Modula-2 [31] and Mesa [20]. These modules can be developed independently by
different programmers, and correspond to the segments supported in our distributed
environments,

Extending the asynchronous attribute evaluation algorithm to work in a distributed computing
environment requires that the algorithms be robust enough to withstand machine and network
failure without bringing the entire environment to a standstill. The part of the distributed
environment that handles the actual transmission of information between the different
machines in the distributed environment is called the arntribute propagation layer (APL). This
layer is a continuously-running process on each machine. When an edit in one program
segment affects other segments (determined by the dependencies in the attribute grammar
specifications), the attribute evaluaton algorithm passes control to the local APL, which
multicasts the informaton to the APLs running on the machines where the affected segments
reside. These APLs, in tum, propagate the information to the segments in queston, where the
atribute evaluation algorithm takes over to perform the consistency analysis as usual.

Atmibutes that pass information between program segments are cached in each APL. The




reason for replicating this global information on each machine in the environment is to ensure
high availability and reliability. When a program scgment needs an attribute value from a
remote machine, the value stored in the cache can be used. This must be the latest value
available for this attribute; if there was any newer value, it would have been propagated to this
machine and therefore replaced the cached value. This allows quick access of remote
information, even if the other machine happens to be down or partitioned from the rest of the
network at the time the information is needed. Algorithms for regaining consistency in the
caches after machine or network failure are described in Kaiser and Kaplan [15).

One common theme that recurs in our distributed algorithms (both the previously published
ones and the new ones presented here) is that we avoid any synchronization among the
programming environments running on each machine. The main reason for this bias is that
synchronization necessarily means waiting, antithetical to the interactive environments we are
addressing. Even without synchronization, we attain a level of consistency of the shared
attribute information sufficient for our application. This is an example of the principle
described by Cheriton as “problem-oriented shared memory” [4].

Our previously published algorithms for distributed language-based environments have two
serious limitations that make them impractical for supporting implementation of real software
systems. The first arises from how information is communicated between program segments.
Each segment exports facilities that can be used by others, such as types, variables, constants,
procedures and so on. The entire collection of exported facilities from all the segments in the
system is replicated on each workstation. This information is applied to checking the use of
imported facilities within a scgmcxit — cach imported facility must have been exported by
some other segment, and its use must be consistent with the definition in the segment that
exported it. This global information is stored as an aggregate attribute. An aggregate
attribute consists of many components; for instance, a symbol table is usually defined by an
aggregate attribute where each component corresponds to an entry for one symbol.

A well-known problem with aggregate attributes is that a change to one component of the
aggregate results in the reevaluation of all attributes that depend on any component of the
aggregate. For instance, a new variable declaration results in reevaluation of all variable
references in the scope of the changed declaration. In the distributed environments, a change
to an exported facility in one segment is propagated to all segments, including those that do
not import the facility.

The second restriction imposed by our previous algorithms for distributed environments is that
they assume only one version of each program segment. This is clearly inappropriate for large
software systems. We present solutions to these two problems in the following two sections.
The end result is a class of distributed language-based environments which are practical
candidates for real software development and maintenance.




3. Selective Propagation of Attributes

In this section we describe a refinement of the algorithms presented in section 2.2 where a
change in one program segment is propagated to a second segment only if the latter actually
uses the changed information. Our work is based on finite functions, a new type for aggregate
attributes proposed by Hoover which, together with a modified attribute evaluation algorithm,
reduces the overhead caused by aggregate attributes in a single-user environment [9]. This is
one of several mechanisms proposed in the literature to solve the aggregate problem
[12, 13, 5]. We base our approach on Hoover’s work because, unlike the others, it solves the
problem in the single-user environment within the framework of the atribute grammar
formalism.

The asynchronous nature of changes in a distributed environment is the root of a fundamental
difference between our work and that of Hoover. We use finite relations! to represent inter-
segment aggregate attributes, rather than funcdons. The reason is that without
synchronization (which as we said before requires too high a price), it cannot be guaranteed
that the same component of the aggregate will not be defined simultaneously by more than one
programmer. This is true in any multiple-user environment, whether running in a distributed
or time-sharing system. To simplify the exposition of the new ideas in this section, we discuss
only the changes to the attribute evaluation algorithm to handle attributes whose types are
finite reladons. Hoover’s work can be applied directly to atributes whose propagation is fully
contained within a segment, and the combination of his work with ours to reduce the
aggregate overhead both within and among the segments is straightforward.

3.1. Definition of Interface Aggregates

An interface aggregate attribute is a collection of components from various program segments.
These attributes capture the flow of information among the segments, and therefore among
machines in the network. We introduce a new attribute type for interface aggregates: the
finite binary relation. A binary reladon on two sets D and R is a subset of D xR, read the
cross-product of D and R. Every finite relation type declaration must specify one element of R
as the bottom element. A binary reladon is finite if and only if the set
C ={(dr)!de D, re R, and r is not bottom} is finite.

We refer to finite binary reladons simply as finite reladons, since all aggregate values of
interest in a programming environment are keyed lists that are binary mappings from a domain
(the type of the key) to a range (the information stored for this key). Typically, each module
that is part of a (sub)system contributes one component to the aggregate attribute of its parent.
The domain D of the relation is the set of module names. The range R is the set of symbol
tables for the modules’ exported facilities, needed to check consistency between the definiton

IThroughout this paper, the term “relation™ denotes the mathematical concept, and not the relations of the
database world. This point is noted o distinguish ouwr work from previous research in programming
environments where the atribute grammar formalism is augmented with relational database constructs (10].



and uses of these facilities.

The following operations are defined on a finite relation R:

e MAKENULL(R): Makes a null aggregate value. A declaration of an attribute of
finite relation type implicitly calls this operation to initialize the atwribute to the
null value. Typically used to initialize an empty symbol table for a new scope.

e ASSIGN(R, d, r, <attribute name>, <error string>): Assigns R U {(d,r)} o R. If
the number of components in the aggregate R whose key is equal to d becomes
greater than one, then the attribute instance denoted by <anribute name> for each
program segment defining these duplicate components is set to <error string>. A
change in a segment’s error attribute is propagated to the segment by the usual
propagation algorithm. The error string is displayed within the segment’s text as
indicated in the language specii’ncau:ion.2 Typically adds a new module to the
symbol table.

e COMPUTE(R, d): If (d,r) € R and there is only one component in R whose key is d,
returns 7. If there is more than one component with the same key d, returns special
value multiple. If (d,r)e R, returns bottom. Typically looks up a module name
in the symbol table.

These are the only operations by which attributes of finite relation type may be manipulated.
The reason for this restriction is that the set of segments that use a particular component in an
interface aggregate, which is exactly the set of segments that should be informed of a change
in this component, is derived automatically from these operations. This is explained in the
next section.

Some new notation is needed for specifying distributed language-based environments. We
extend the attribute grammar notation as follows:

e Non-terminal symbols in the grammar that can derive segments of the program
for separate editing, on the same or different machines, are marked with the
keyword distributable.

 The “set of <non-terminal symbol>" construct is provided to allow a symbol (the
left-hand side of such a production) to derive an unordered set of elements. The
non-terminal symbol on the right-hand side of the producton must be
distributable. This rule is more appropriate for describing lists whose elements
are distributed than the usual tail-recursive method.

Aggregate attributes whose types are finite relations can only be associated with symbols of
the grammar that derive productions by the set of constuct. If the attribute grammar contains
the production “X ::= set of Y”, then an aggregate attribute associated with grammar symbol X
1s constructed by means of the ASSIGN operation with two synthesized attributes (one attribute
for d and one for r) and one inherited attribute (for the error atmribute) from each member of
the set derived from the grammar symbol Y.

Figure 3-1 gives an example of the specification of a simple modular language. A program in

“Note that even though these segments have the same name, the APL can distinguish between them by means
of the channel through which the editor and APL communicale, which is unique for each executing editor.




this language consists of a set of modules. The exported facilities of a module are stored in
the attribute exports associated with each module. The facilites exported by all the modules
are collected in the interface aggregate attribute, allexports, associated with the entire
program. This is accomplished by means of the ASSIGN operation. A module references
faciliies exported by other modules through the import statement. An import statement
names the module from which the facility is imported, and the facility itself. The import
statement creates a use of the component of the allexports aggregate identified by the
imported module in the analysis to check the legality of the import statement (the imported
module must exist and must be unique, and the imported facility must be exported). The
COMPUTE operation finds the appropriate component.

Interface aggregate attributes are cached in the APL layer on each machine. The structure of
the auribute cache follows the hierarchical relationships among segments. Aggregate
attributes are represented by AVL trees, ordered by the key of the components of the
aggregate. This is typically the module name. An AVL tree is a height-balanced binary tree
representation of a linear list that has O (logn) worst-case time complexity for list operations
(such as insert, delete, member) on a list of n items.

3.2. Construction of Use Lists

Other attribute instances refer to components of aggregates defined by finite relations by
means of the COMPUTE operation. The first argument of this operation indicates the aggregate
from which the component is to be selected; this aggregate is accessed via an upward remote
reference. An upward remote reference allows a non-local reference to an atribute of a
different production p that necessarily occurs above the production where the reference is
made in any parse tree derived from the grammar. The concept of “upward remote references”
originated in the Comnell Synthesizer Generator (26). We use the same notation for upward
remote references: {id.arnr), where id is the name of a grammar symbol of the production p,
and anr is an attribute name associated with this symbol. For example, the operation
COMPUTE({X.a}, d) returns the value r of the component (d,r) in the aggregate a associated
with the non-terminal symbol X. This is typically used to access the symbol table associated
with the enclosing scope.

In each program segment, the set of references to interface aggregate components can be built
from the COMPUTE operations within that segment by the attribute evaluation algorithm, as
follows. If an attribute evaluation contains a COMPUTE operation, a demand is placed on the
component of the aggregate identified by the second argument. As mentioned previously, the
entire aggregate is stored in the APL in each machine. It is not desirable to copy the entire
aggregate to each segment that has access to this aggregate (that is, the enclosed scopes)
because a change to a component in the aggregate would trigger an awribute evaluation for
each segment, independent of whether the segment references the changed component or not.
This is one of the shortcomings of our previous distibuted evaluation algorithm described in
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root program;
distributable module:
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Program { synthesized EXPORTAGG allexports’ }

Module {( synthesized EXPORTTBL exports;
synthesized ID name;
lnherlted STRING error: |}

/x*x*xxxx%x*x ahstract syntax and semantic equations ARRRRRANNKS L/

Program ::= setof Module:;
{ for each Module$i, where 1 <= i <= |set of Module|
assign ($5.allexports, Module$i.name,
Module$i.exports, Module$i.error,
"<-- duplicate module"):;

}

Module ::= Name Export Import Decl Body:
{ $$.name = Name.id:
$S.exports = ... :
}

Import ::= Moduleld Varld
{ local STRING errorl, error2 = "";
local EXPORTENTRY single_module_exports:

single_module_exports =
compute ( (program.allexports}, ModulelId.name):
if single_module_exports = bottom then
errorl = "<-- imported module unknown"
elseif single_module_exports = multiple then
errorl = "<-- imported module duplicate”
elseif varid.name motin single_module_exports then
error2 := "<-- variable not exported":;

}
/:ttttt:ttt*t*ttt attribute type definitions tttt***t**ttttttt/

EXPORTTBL : NULLEXPORTS ()
| EXPORTPAIR( EXPORTENTRY EXPORTTBL )

EXPORTENTRY : (ID TYPE ... )

EXPCRTAGG: ID cross EXPORTTBL bottom NULLEXPORTS:

Figure 3-1: Specification of a simple modular language

section 2.2. Instead, we keep copies of only those components actually referenced by
COMPUTE operations within a particular segment in an attribute associated with that segment.
This is called the uses set of the segment.

Thus, the uses set of a segment is a subset of the aggregate. It is also organized as an AVL
wee. However, for each element in wses, there is a list of references to atribute instances
within the segment that use that particular component. There is also a pointer from each
atmribute instance back to the uses set. This is needed by the propagate algorithm described in




the next subsection.

The uses set of each segment residing on a workstation is communicated to the local APL.
This information is used by the APL to determine which changes in component values to
propagate to each local segment. The information from each local segment’s uses set is used
to build for each unique component in the aggregate the set of segments that should receive
propagations if the value of that component changes. This is called the used-by set of the

interface component. Thus, the APL indirectly links symbol definitions to their references and
vice versa.

For the example of figure 3-1, the components of the interface aggregate attribute allexports
are the exported symbol tables of each module in the system. The wsed-by set of the
component for a module M is the set of modules that import facilities from M. Whenever one
of the exported facilities of M changes, the change is propagated to all modules in the used-by
set of the component of M. We can refine our notion of use-lists so that a used-by set is kept
for each facility exported by M. This improves the efficiency of the attribute propagation
algorithm even further since a change to an exported facility results in propagations only to
those segments that reference the particular facility. This is accomplished in the general case
by extending the finite binary relations to n-ary relations, and the key used by ASSIGN and
COMPUTE to n— 1 prespecified fields.

We give a simple calculation to compare the efficiency of the distributed attribute propagation
algorithm with and without selective propagation.
Let

m = the number of modules in the system,

e = the average number of exported facilities per module,

i = the average number of imported facilities per module,

p the average number of imported modules per module, and
¢

the average number of changes to an exported facility throughout the lifedme of the
system.

In our previously published algorithms, where the interface aggregate problem had not yet
been solved, each module would receive mxexc propagatdons. Using finite relations for the
type of interface aggregate attributes, which associate used-by sets with each module’s
exported symbol table, results in p x e x ¢ propagations per module. Note that p is usually much
smaller then m. With used-by sets associated with each exported facility individually, this is
improved even further to i x ¢ propagations to each module.

We now describe incremental algorithms to maintain the uses and used-by sets after each edit
operation.




3.3. Algorithms to Maintain Use Lists
Figure 3-2 shows the physical representation of a software system, Y, whose modules are

distributed among several workstations. The distributable segments are X, X5, X 3. X4 and X,
where X, and X, are edited on Machine 1 and X3, X, and X5 on Machine 2. The interface
atributes of system Y and subsystem X, are replicated in the APL at each workstation to
support the multiple-level uses sets of the interface attributes that are finite relations. The
APL associates each distributable segment with its own uses set, which is the appropriate
subset of the uses set for its parent segment, and so on.

O,

Y .= set of X;
distributable X; o Q 0
X = <module spec>

| ...setof X ... c e
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(c) Physical representation
Figure 3-2: Distribution of interface attributes

An attribute that is defined by a COMPUTE operation depends on two other atmibutes: (1) the
aggregate (this is the first argument) and (2) the key of the desired component of the aggregate
(the second argument). Figure 3-3 illustrates the dependency graph of an atmribute defined by
a COMPUTE operation and associated with the parse tree node T in segment X ;.

3.3.1. Change to a Segment’s Uses Set

A segment’s uses set changes if (1) a new use site is added, (2) a use site is removed, or (3) the
key of a use site is changed. Removing a use site occurs if either (a) the parse tree node
containing the key attribute identifying the component of that reference is deleted, or (b) the
subtree decorated with the attribute instance that created the use is deleted. In our example
language. these correspond to the module name and the enclosing import statement,
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Figure 3-3: Dependency graph for atribute defihed by COMPUTE operation

respectively. In the first case, deledon of the node containing the key leaves a null value for
the key, so this becomes the same as changing the key of a use site (case 3). We present two
algorithms for maintaining a segment’s uses set, illustrated in figures 3-4 and 3-5 below.

The algorithm shown in figure 3-4 is a modified attribute evaluation algorithm that recognizes
a new use of an interface aggregate, either by additon (case 1) or by change in value of the
key of an already existing use (case 3).

A new algorithm for deleting a subtree, shown in figure 3-5, updates the set of interface
components used in a segment, the segment’s wses set. If the subtree being deleted contains a
reference to an interface component, that reference is removed from the component. If the
component has no more references, it is removed from the segment’s uses set; the APL is

notified so that the segment’s name is removed from the used-by set of the component in the
APL.

3.3.2. Change to Component’s Used-by Set

The used-by set for each aggregate component in the APL, indicating which local segments
use a panticular component of the aggregate, is affected by the two functions
get value from_apl (aggregate, key) and
remove use_from_apl (aggregate, key) invoked in the algorithms of figures 3-4
and 3-5 above. The former adds the segment name of the segment that issued the call to the
used-by set of the component whose key is specified. The latter removes the segment name
from the used-by set. (Note that the name does not have to be an argument to the call since
each segment communicates with its local APL over a unique channel, which uniquely
identifies the segment.)

There are two problemadc situations: (1) the key specifies a multiply defined component, or
(2) the key specifies an undefined component. If the call to get_value_from_apl
specifies a multiply defined component, then the segment name is added to the used-by set of
any component with the specified key. Multiply defined components, as well as the program




/* Attribute instances defined by COMPUTE (aggregate, key) have an :/
/* additional field, backptr, pointing back to the uses set of */
/* the aggregate component specified by key argument to COMPUTE. /

function eval (ai: attribute instance): attribute value:;
begin .
(1g): if ai is defined by compute(aggregate, key) then begin
/* Case (1): a new use site not yet */
/* added to multiple-level uses set */
(2) if backptr of ai = nil then
/* first reference to key within segment */
/* add entry for key to local aggregate */

(3) if key notin local aggregate at root of segment then begin
(4) entry = get_value_from_apl(aggregate,key):

(5) add entry to local aggregate;

(6) add ai to uses set of entry:

(7) set backptr of ai to entry:

/* already references to same key within segment */
/* reuse entry for key in local aggregate */

(8) end else begin

(9) entry = get_yalue_from_segment(aggregate,key)
(10) add ai to uses set of entry:

(11) set backptr of ai to entry:

(12) end

/* Cases (2a) and (3): an old use site */
/* whose key may have changed */
(13) else begin
/* get previous entry from local aggregate */
entry = follow backptr of ai;
/* same key */
(14) if key = key of entry then
(15) do nothing:
/* different key */
/* remove from uses set of previous entry */
/* add to uses set of new entry */

{16) else begin
(17) remove ai from uses set of entry:
(18) set backptr of ai = nil:
(19) Do lines (3) - (12);
(20) end;
(21) end;
/* evaluate attributes not defined by COMPUTE */
(22) else begin
end:

end: /* of eval */

Figure 3-4: Attribute evaluation algorithm

segments that define them, are treated as erroneous; the semantics of the ASSIGN operation
require the APL to effectively remove erroneous segments from the program until the conflict
is resolved. We describe below how to handle the deledon of a component such that the
correct acton is taken when a key that was multiply defined becomes unique. If
remove_use_ from_apl specified a multiply defined key, then the used-by set of each
component with that key must be searched to delete the segment that invoked the function.

If get_value from_apl specifies a key that is not defined in the aggregate in the APL,
bottom is returned. A component is added to the APL aggregate with the specified key and
the value bottom (if such a component does not already exist), and a used-by set for it is




procedure delete_subtree(r: treenode):

begin

for each attribute instance, ai, associated with every

treenode

in subtree rooted at r, excluding r, dobegin

if ai is defined by compute (aggregate, key) then begin

end:

/* get entry for key and */
/* remove attribute from uses set */
entry = follow backptr of ai;
remove ai from uses set of entry:
/* last reference to key within segment =*/
if uses set of entry = nil then begin
remove entry from local aggregate:
remove_use_from apl(aggregate, key):
end: /* of IF */
/* of IF */

end; /* of FOR */

/* free storage taken up by r */

end; /* of delete-subtree */

Figure 3-§: Subtree deledon algorithm

created (if the component was aiready in the aggregate, the segment name is added to
used-by). This is necessary to handle the correct propagations if a component with that key is
defined later on. We mark such components as “demanded-but-undefined”, and distinguish
them from regularly defined components. Typically, defined components correspond to
defined symbols, and the demanded-but-undefined ones are references to as yet undefined

symbols.

3.3.3. Change to Component’s Value
A component is changed by an ASSIGN operation, according to the dependency graph

illustrated in figure 3-6.

m 8 -- aggregate attribute

d -- key of componant

r -- value of component

Figure 3-6: Dependency graph for atmibute defined by ASSIGN operation

Since in the physical representadon, d and r are attributes in the segment (the key and value of
the component. respectively) and the aggregate a is stored in the local APL, a change to either




d or r results in a change to a component of the attribute instance g in the APL, which in turn
causes propagations to affected segments. The other way the component can change is if the
segment containing the attribute instances d and r is deleted. The following algorithms handle
changes in the definitions of aggregate components.

1. Change from r to r’ in segment — The component (d, r’) is transmitted from the
segment where the change occurred to its local APL, which then broadcasts it to
all other APLs. Each APL propagates the component with the changed value to
segments that use that key, indicated by the component’s used-by set. This
arises, for example, when the exports list of a module is modified.

2. Definition of new component — This happens when a new key is defined, i.e., a
new segment is created. The new component is broadcast to each APL.

o If the key is already in a defined component of that aggregate, then the
error attribute is set, and the component (key, bottom) is propagated to all
uses of that key.

o If there is a demanded-but-undefined component with the same key as the
newly defined component, then mark the component as defined.
Propagate the value of the newly defined component to all reference sites
as indicated by the components used-by set.

¢ If no component with the specified key exists, then add the component to
the aggregate, initializing its used-by set to empty.

3. Deletion of component from aggregate —
¢ If the component is removed because the key d became undefined, then

* If this was a duplicate component, concatenate used-by set for this
component with the used-by set of another component with the
same key. Then remove the component. If only one component is
left with the key of the deleted component, then propagate the
remaining component to the segments on the used-by set. This is

appropriate, for example, when one instance of a multiply defined
module is removed.

» If the component was not a duplicate, then mark the component as
demanded-but-undefined, changing the r value to bottom, and
propagate to the wsed-by set.

o If the program part containing the attribute instances d and r is removed,
then the delete subtree algorithm operates similarly to how it handled
deleting a subtree containing a reference site. However, if d and r are
associated with the root of the distributable segment, they cannot be
deleted unless the entire segment is removed. In practice, this would
mean deleting the file containing the module from the file system, so it is
more complicated than the other case.

4. Dealing with Multiple Versions and Configurations

This section describes how the algorithms given in the previous section are augmented to cope
with more than one version of each program segment, and consequenty, more than one
system configuration. In this context, program segments are almost invariably modules, so we
refer to them as such in this section. Controls are needed to reduce the chaos that can result if




programmers were to work on versions and build systems without any communicaton and
coordination between them. Managerial controls, such as controls imposed by a chief
programmer on what the other team members can change, and when and how the system is
built, are insufficient [3]. The environments described here provide an automated approach
that can support and enforce managerial directives.

The attribute grammar specifications determine the exact functionality that a generated
environment supports, but the following is the kind of support we have in mind:
1. Static semantic analysis of the modules that comprise the software system, and

2. Code generation for error-free modules or fragments thereof.

The environment is capable of performing these functions after every edit operation. This is
the default mode of operation, and the hardest to support. However, the programmer can
select other modes of operation where the analysis and code generation are performed less
frequenty. For example, the programmer can set environment options to request notification
of changes at the end of each editing session, or only when he issues a special “get changes”
command.

Code generation by a compiler generated from an attribute grammar is usually accomplished
by having a code attribute associated with the root of the parse tree, where this atmibute
contains the generated code for the entire program. This is grossly inefficient in an
incremental environment, since an edit to the program necessarily requires recomputation of
code atuibutes all along the path from the point of modification to the root. Incremental
generation of code can be performed efficiently if the code attributes containing fragments of
the generated code are dispersed throughout the tree and coalesced only when they are needed
for system build. This makes it feasible to update the code attributes after each (or a number
of) edit operation(s). The environment can evaluate the code attributes opportunistically, that
is, when it is not running the normal attribute evaluation algorithm. This delay in attribute
evaluation is acceptable because the results of these computations are not visible to the
programmer in the way that error messages resulting from semantic analysis are.

Since the modules of the system are distributed among different machines in the network, our
environments do not automatically link the code objects into one executable image. This
would require the remote copying of the code from other nodes in the network, a very
expensive operation, and therefore not suitable to be automatcally invoked by the
environment. Pfreundschuh also makes use of attribute grammars for specifying system
builds (22]; her work differs from ours because the system build is not applied incrementally,
but only at user command after the modules of the system have been analyzed. Pfreundshuh’s
work relies on our previous algorithms for distribution capabilities.




4.1. Version and Configuration Control
Our environments utilize an external mechanism for storing the different versions of modules.

We use RCS, but there are other candidates such as SCCS, the History Manager of Apollo’s
Domain™ Software Engineering Environment (DSEE™) [19], etc. RCS keeps tack of
revisions of the modules by storing the differences (called deltas) between successive
revisions. Parallel lines of development require the revision relationship to form a tree, where
parallel versions are represented as paths in a subtree rooted at the common ancestor revision.

RCS and other source version control faciliies provide additional services, notably a
reservefreplace mechanism that allows a programmer to work on a revision without
interference from other members of the team. Revisions are immutable; to make a change, the
programmer reserves the module. If this branch is not already reserved by another
programmer, he retrieves a copy of the latest revision of the module, makes any changes on
that copy, and when finished puts the module back under control of RCS. Once checked in,
the revision can no longer be modified. While being edited using our environment, the copy is
called a working copy.

Another service is the naming of revisions. RCS provides a default naming of revisions:
1.2.3.1 means the first revision on the third branch of the second revision of this module.
Alternatively, the user can give symbolic names to the revisions, and then use the symbolic
names to identify what he wants to reserve/replace.

Our distributed environments provide a configuration manager to control the activities needed
to “build” a software system from its modules. The facilities provided by the configuration
manager, similar to those provided by DSEE, require the following information to be
maintained by the environment:

s A system model [18) describing the structure of the software system, that is, (1)
which modules make up the system, and (2) the interdependencies among these
modules.

® A configuration thread for selecting particular versions of each module in the
system model. Options for version selection allow the selecdon of the latest
revision, a named revision, or a revision that satisfies certain properties (e.g., the
latest revision targeted for a VAX).

The configuration manager guarantees that a consistent system is (incrementally) built: (1) the
modules are internally consistent, and (2) the interfaces between the modules are consistent.
We now describe how these version and configuration control facilides are integrated with our
distributed arttribute grammar evaluation algorithm.

4.2, System Model

For our environments, a systemn model specifies the modules that comprise the software
system. The dependencies among the modules, which determine which modules must be
reanalyzed after a change to one of them, are captured by the used-by sets. Recall that each
component in an interface aggregate atmibute has an associated used-by set that contains all




the modules that use that component, and therefore should receive propagations of changes to
that component. Note that the system model does not contain information about the
manufacturing process, that is, the commands that must be executed to go from a primitive
component (a source module written by a programmer) to a derived component (its object
code) [2]. In our environments, translation rules for going from primitive modules to derived
objects are given by the AG specificaton. These rules are effectively the same as
manufacturing steps, but incremental.

We provide the programmers with a system structure editor (SSE) for describing a system
model, separate from the editor for constructing modules (that is, program segments). The
SSE is a language-based editor derived from the same language description, but all the pieces
in the grammar not dealing with distributable modules have been filtered out. What remains is
an editor for describing the modular structure of the system. For example, figure 4-1
illustrates the system structure for a typical compiler as it is displayed by the SSE.

program Compiler iscomposedof |
module Lexical iscomposed of |
module GetToken is composed of
<module set>;
module <name> is composed of
<module set>;
<module set>
}
module Analyzer iscomposedof |
<module set>
}
module CodeGenerator iscomposedof {
<module set>
)

Figure 4-1: Example of system model

Editing a system model results in the creation of a new working copy of the system model.
This change is propagated to other programmers in exactly the same way as changes in a
module — the programmer might want to be notified whenever the current system model
changes, or he might want to continue using the original one. If he chooses the former, and
the change was an addition of a new module to the system, then he must select which version
of the new module he wants. We describe the mechanism for accomplishing this in the
following subsection.

We do not synchronize changes to the system model between the programmers. In practice,
each programmer may have his own distinct system model. However, conflicts among
separate system models are flagged with error messages using the same incremental attribute
evaluation algorithm as for consistency checking among modules (i.e., program segments).
Here, a conflict is defined to mean any differences, rather than the direct contradictions
required for modules. A programmer can choose to continue using his own, or browse
through the competing models to select a new one. Access controls could be implemented on



top of this system restricting the changing of the system structure to a few “trusted” persons in

the team.

4.3. Configuration Thread
When there are multiple revisions of each module, each programmer must specify which
particular ones should be used in his configuration of the system. A programmer specifies a
configuration thread by a fill-in-the-blanks form provided by the environment, with the
collection of modules determined by the programmer’s current system model. The following
possibilities for version selection are available:

o Latest working copy of a module; if there are multiple branches of development

of the module, the branch must be specified.
e Latest checked-in revision of a module; same as above for multiple branches.

e Specification of a particular revision of the module. The details about how a
particular revision is specified, for instance, by name or by revision number,
depends on the source version control system. For RCS, where revision names
are assigned only at check-in, this implies a checked-in revision.

The notification of changes in a module range from full notification after every change for the
first possibility, changes done between last check-in and previous check-in all at once for the
second possibility, and no change notification for the third possibility, since checked-in
revisions are immutable. For the first two, notification of changes can also be set by the
programmer to happen on command or at the end of each editing session, as described earlier.

The configuration thread is dynamic if it contains modules selected according to the first two
possibilities; the system configuration changes as the modules evolve. The environment can
support various levels of interaction between the programmers. During the initial
development effort, when too much interaction would be detrimental because everyone is
changing everything, each programmer can select null revisions for the other modules in the
system, effectively preventing notificaton of changes. Later on, when baseline revisions are
defined, he can select these to check consistency of his module only against “correct”
modules. During system integration, on the other hand, close interaction is required, and at
this time programmers might select latest working copies of the modules, or latest checked-in
revisions for the more cautious approach.

4.4. Attribute Propagation Algorithm

The atribute propagaton algorithms described in secdon 3 are modified to take the
programmer’s configuration thread into account. The change is in how the used-by sets are
computed. Now we have multiple revisions, and possible branches among the revisions, of
each module. This requires that the APL's attribute cache contain corresponding revisions of
the interface aggregate attributes. Figure 4-2 shows the APL cache organization for a system
with multiple versions of two modules, A and B. Module B has branched into two parallel
lines of development.
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Figure 4-2: APL cache organization

A used-by set is associated with each revision of an interface component. The revisions of the
interface attributes in the APL are also immutable. Working versions exist for each
component in the aggregate; changes to the interface attribute resulting from an edit operation
are made to these working versions. The operation of checking in a module to RCS also saves
the version of the interface component defined by that module. When there is no working
copy derived from a particular revision, the working version of its interface attributes is a copy
of the last checked-in revision.

Since code is generated for modules that have been (incrementally) analyzed and found error-
free, the environment must guarantee that the revisions of the modules that they have been
checked against exist. This is not as strange as it sounds; remember that one of the
possibilities for version selection is to receive notfications of changes after every change.
Consider the case where a module M is checked against the latest working copy of module N,
analyzed to be error-free, and checked in. Now ¥ is changed in a way that causes an error in
module M, and then N is itself checked in. Thus, there is no checked-in version of module N
corresponding to the version that M was checked against. So the code generated for M is
useless, since it cannot be used to build the system without also having the code for the
wansient version of N.

To solve this problem, the environment checks in the module after each edit that causes a
change in the module’s interface component. This is done only for working versions that have
non-empty wsed-by sets. We call these revisions system-induced, and distinguish them from
the revisions checked in by the programmers.

System-induced revisions can be garbage collected as follows. For each module, say module
X, the environment keeps track of the check-in tmes of all modules that use X's exported
facilities and that use the latest version of X. These modules are the ones in the used-by set of




some interface component for the latest version of X. We only need to keep a system-induced
revision if it corresponds to the state of X when one of these modules that use X was checked
in, or if one of these modules is a working copy (since this working copy may later be checked
in while it still uses this version of X). All such revisions are marked, and all unmarked
systcin-induccd revisions of X discarded. This can be optimized by considering at each
garbage collection only the system-induced revisions of X created since the last garbage
collection, plus the system-induced revisions of X at that time with working copies of other
modules in their used-by sets.

The garbage collection algorithm assumes a reliable network; if a new module is created,
starts using the latest version of X, and becomes partitioned from the machine where X resides
before it is added to X’s used-by set, then a system-induced revision corresponding to the state
of X that this new module is using may be incorrectly discarded. The fossil collection
algorithm used by the Time Warp System [11] (a distributed simulation mechanism) for
recovering storage associated with simulation times so far in the past that they are no longer
relevant may be applicable to the unreliable case.

4.5. Space Optimization

The APL must keep a different revision of each interface attribute corresponding to every
checked-in version of each module, as well as the latest attribute value for each working
module. For a practical environment, it is crucial to store these revisions efficiently. We
represent interface attributes as applicative AVL trees [21]. An AVL tree is applicative if the
operations for manipulating the tree do not change the tree, but produce a new “copy” of the
tree that is changed. The algorithm does not copy the entire tree, only the part of the tree that
changed (delta from previous revision). Therefore, list operations on applicative AVL trees
have O(logn) space complexity, making them an attractive representation for storing multiple
revisions of interface attributes [7].

5. Conclusion
We have presented algorithms that extend our previous work in distributed language-based
environments by making them appropriate for the real world, where efficiency matters and
there are multiple versions of modules and system configurations. The primary contributions
of this paper are:
e Significant improvement in the efficiency of the distributed attribute propagation
algorithm.

¢ Supporting multiple versions of the modules of the software system being
developed or maintained.

¢ Handling muldple versions of the system model, where each programmer can
select which system model should be in effect with respect to his efforts.

The environments described in this paper support software systems composed of modules in a
hierarchical structure, where groups of modules form subsystems, which in turn form other




subsystems, and eventually the system itself. However, they do not solve the general case of
nesting, We are currently working on algorithms to fully support arbitrarily nested program
segments within block-structured constructs, such as internal packages in Ada.
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