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Abstract. Hg / SO2, Hg / CO, NOx / SO2 (NOx being the

sum of NO and NO2) emission ratios (ERs) in the plume of

the coal-fired power plant (CFPP), Lippendorf, near Leipzig,

Germany, were determined within the European Tropo-

spheric Mercury Experiment (ETMEP) aircraft campaign in

August 2013. The gaseous oxidized mercury (GOM) fraction

of mercury emissions was also assessed. Measured Hg / SO2

and Hg / CO ERs were within the measurement uncertainties

consistent with the ratios calculated from annual emissions

in 2013 reported by the CFPP operator, while the NOx / SO2

ER was somewhat lower. The GOM fraction of total mercury

emissions, estimated using three independent methods, was

below ∼ 25 %. This result is consistent with other findings

and suggests that GOM fractions of ∼ 40 % of CFPP mercury

emissions in current emission inventories are overestimated.

1 Introduction

Mercury and especially methyl mercury, which bioaccumu-

lates in the aquatic nutritional chain, are harmful to humans

and animals (e.g., Mergler et al., 2007; Scheuhammer et

al., 2007; Selin, 2009; and references therein). Therefore,

Hg emissions are on the priority list of several international

agreements and conventions dealing with environmental pro-

tection and human health, including the United Nations En-

vironment Program (UNEP) Minamata convention on mer-

cury (www.mercuryconvention.org). Mercury is emitted to

the atmosphere from a variety of natural (e.g., volcanic ac-

tivity, evaporation from ocean and lakes) and anthropogenic

sources (e.g., coal and oil combustion; Mason, 2009; Pirrone

et al., 2010). Coal-fired power plants (CFPPs) are believed to

account for most (≥ 56 %) of mercury emitted by stationary

combustion sources, which constitute 35–77 % of all anthro-

pogenic Hg emissions (Pirrone et al., 2010; Chen et al., 2014;

Ambrose et al., 2015).

Mercury from CFPPs is emitted as gaseous elemental mer-

cury (GEM), gaseous oxidized mercury (GOM) and particu-

late bound mercury (PBM). Elemental mercury has a high

vapor pressure and is virtually insoluble in water, resulting

in a long residence time in the atmosphere of about 6–12

months (Slemr et al., 1985; Lindberg et al., 2007; Selin,

2009; Holmes et al., 2010). GOM, with its high solubility

and low vapor pressure, is readily washed and rained out, as

are the particles carrying mercury (particle bond mercury).

In addition, GOM is also rapidly removed by dry deposi-

tion. GOM and PBM are believed to be in equilibrium (Rutter

and Schauer, 2007; Amos et al., 2012). GOM is thus a major

driver for the global mercury deposition and is estimated to

make up more than 50 % of the total Hg deposition (Zhang

et al., 2012a; Bieser et al., 2014).

There are only two sources of GOM in the atmosphere:

primary GOM emissions from anthropogenic sources and the

oxidation of elemental mercury. The major anthropogenic

mercury sources on a global scale are small-scale artisanal

gold mining (SSAG) and coal combustion (Pirrone et al.,

2010). While SSAG emits solely elemental mercury, the

CFPP emissions in emission inventories are estimated to
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have a GOM fraction between 35 and 40 % (Pacyna et al.,

2006; Wilson et al., 2010; EPA, 2011). However, global and

regional model studies have repeatedly indicated that models

are overestimating atmospheric GOM concentrations (Zhang

et al., 2012b; Kos et al., 2013; Bieser et al., 2014). Possible

explanations for this are an overestimation of the in-plume

GEM oxidation rates or the overestimation of the amount of

GOM emitted by CFPPs. The latter has been hypothesized to

be due to a fast reduction of GOM inside the plume (Zhang

et al., 2012b; Kos et al., 2013).

The speciation of CFPP emissions is not well known.

That is because of varying composition of coal burned, com-

plex chemistry in the stack gases (e.g., Lohman et al., 2006;

Schofield, 2008; Tatum Ernest et al., 2014), and the large

number of different methods used to clean CFPP flue gases,

with very different percentages of GOM to total mercury,

ranging from less than 10 up to 90 % (Wang et al., 2010;

Schütze et al., 2012, 2015, and references therein). Ana-

lytical problems also contribute to the uncertainty: the cur-

rent emission monitoring systems are not sensitive enough

to measure and speciate low mercury concentrations in flue

gases of modern CFPPs (Mayer et al., 2014). Moreover, there

has been evidence that the current ambient air measurement

systems might not capture all oxidized mercury species with

similar efficiency (Jaffe et al., 2014; Gustin et al., 2013,

2015; Weiss-Penzias et al., 2015).

The European Tropospheric Mercury Experiment (ET-

MEP) was carried out in July/August 2012 (ETMEP-1) and

August 2013 (ETMEP-2) to measure local emissions, ver-

tical profiles from inside the boundary layer to the lower

free troposphere, and horizontal distribution of mercury over

Europe. Altogether, 10 measurement flights were performed

over Italy, Slovenia, and Germany with two propeller aircraft.

The ETMEP-1 campaign focused on volcanic emissions of

Mount Etna. The objectives of the ETMEP-2 campaign were

(a) to obtain vertical mercury profiles above several sites in

central and southern Europe (Weigelt et al., 2016), (b) to as-

sess horizontal distribution of mercury concentrations during

the flights between Italy and Germany, and (c) to determine

mercury emission ratios for a CFPP near Leipzig. Here, we

present the measurements of CFPP emissions and their spe-

ciation.

2 Experimental

The power plant under investigation is located in Lippen-

dorf, a small village ca. 15 km south of Leipzig in Germany.

The Lippendorf CFPP consists of two units with 934 MW

gross power each. It has been in operation since 2000 and

belongs, with a net efficiency of 42.6 %, to one of the most

modern and efficient lignite-fueled power plants in Europe.

About 750 metric tons per hour (t h−1) of lignite from a

nearby open pit mine ”Vereinigtes Schleenhain” are burnt

together with ∼ 22 t h−1 of sewage sludge (Schütze et al.,

2015). Mercury content of lignite from two seams of “Vere-

inigtes Schleenhain” was 0.40 and 0.49 ppm (Rösler et al.,

1977), within the range between 0.16 and 1.5 ppm for east-

ern German lignites (Yudovich and Ketris, 2005). No data

about mercury content of the sewage sludge are available.

The flue gas is directed through an electrostatic filter and a

flue gas desulfurization (FGD) system to reduce particle and

SO2 emissions. The FGD uses wet washing with CaO sus-

pension with added sulfidic precipitant and removes ∼ 80 %

of mercury (Schütze et al., 2015). Despite the efficient FGD

cleaning, the Lippendorf CFPP ranks fourth most health-

harmful emitter in Germany (rating based on combined emis-

sions of SO2, NOx , and particulate matter; Preiss et al., 2013)

and 14th most harmful emitter in Europe according to the

European Environment Agency (rating based on combined

emissions of SO2, NOx , NH3, CO2, particulate matter, non-

methane hydrocarbons, heavy metals, and organic micro-

pollutants; EEA, 2011) with respect to health. Annual emis-

sions reported by the operator of the Lippendorf CFPP for

2013, the year of our measurements, were 1.18 × 1013 g CO2,

1.21 × 1010 g SO2, 7.91 × 109 g NOx , 7.55 × 108 g CO, and

4.1 × 105 g Hg, among other pollutants. Mercury limit emis-

sion values (LEVs) of large combustion plants in Germany

are stipulated by ordinance (Federal Law) from 2004 and

its revision in 2013 to 50 µg m−3 as a half-hour average,

30 µg m−3 as a daily average, and 10 µg m−3 as an annual av-

erage concentration (Mayer et al., 2014). Continuous moni-

toring of mercury emissions is mandatory but only annual to-

tal (unspeciated) mercury emissions have to be reported. Eu-

ropean Union (EU)-wide LEVs of < 5 µg m−3 for hard coal

and < 7 µg m−3 for lignite-fired CFPPs are under discussion

(VGB, 2016).

The measurement campaign described above was per-

formed with a CASA 212 two-engine turboprop aircraft

(Fig. 1a) operated by Compagnia Generale Ripreseaeree

(http://www.terraitaly.it/). The CASA 212, with a maximum

payload of 2.7 t, can carry the measurement instruments,

different service instruments, the power supply, two pi-

lots, and five operators. With a normal cruising speed of

∼ 260 km h−1, its range is ∼ 1600 km. Although the maxi-

mum flight level of the unpressurized aircraft is 8500 m, the

maximum altitude of ETMEP-2 flights without oxygen sup-

ply was limited to ∼ 3000 m above sea level (a.s.l.),

The aircraft was equipped with a gas inlet system

(Fig. 1b), which had been developed and manufactured at

the Helmholtz-Zentrum Geesthacht. The gas inlet was de-

signed for the cruising speed of the CASA 212 of ∼ 72 m s−1.

A diffuser tube reduced the air speed to ∼ 5 m s−1. About

120 L min−1 (ambient conditions) enters the inlet. The air

sample is taken in the center of the diffuser tube with a flow

rate of ∼ 25 L min−1. The remaining flow of 95 L min−1 is

directed to the back of the inlet, where the airspeed is in-

creased by a nozzle and the air exits. By replacing the inlet

and outlet nozzle with smaller or larger ones, this inlet system

can be fitted to other aircraft with a different cruising speed.

Atmos. Chem. Phys., 16, 13653–13668, 2016 www.atmos-chem-phys.net/16/13653/2016/
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Figure 1. For the ETMEP-2 campaign in August 2013 the CASA 212 (a) from the Italian company, Compagnia Generale Ripreseaeree

(http://www.terraitaly.it/), was equipped with specially designed and manufactured trace gas inlet (b).

In the expanded area (behind the main sample line) the air

temperature (T ), static pressure (p), and relative humidity

(rH) are measured. To avoid adsorption losses of sticky trace

gases, the internal surface of the inlet system was coated with

Teflon and only PFA tubing was used for the sampling lines.

The outside of the inlet was coated with copper to avoid elec-

trostatic charging. The inlet was fastened onto a 90 cm long

telescope tube (6 cm diameter), which was mounted in a hole

on the floor fuselage via a sliding guide. After takeoff, the

tube was pushed down by ∼ 40 cm from inside the aircraft, to

ensure that the inlet nozzle was outside the aircraft boundary

layer. Before landing the tube was pulled back into the air-

craft to protect it from damage by objects whirled up by the

front wheel. The inlet and the telescope tube were equipped

with heaters to prevent icing, but during the ETMEP mea-

surements the heating was always switched off because the

measurement flights were carried out in summer at altitudes

below 3000 m a.s.l. The tubing from the inlet to instruments

(∼ 2.5 m long 3/8” O.D. main sample tube with PFA mani-

folds to instruments) was not heated. The temperature inside

the cabin was 18 to 30 ◦C.

The aircraft was equipped with three mercury measure-

ment instruments: a Lumex RA915AM, a Tekran 2537B, and

a Tekran 2537X (cf. Table 1). The Lumex RA-915 AM is

based on atomic absorption spectroscopy (AAS) with Zee-

man background correction (Sholupov et al., 2004), and as

such, measures specifically only gaseous elemental mercury

(GEM) with a temporal resolution of 1 s. Its raw signal is

noisy (about ±4 ng m−3 with a temporal resolution of 1 s)

and is dependent on pressure and temperature. Nevertheless,

the fast response of the instrument is very useful to detect

GEM in rather narrow, highly concentrated plumes at a cruis-

ing speed of about 72 m s−1. Because of thermal drifts, its

zero was measured every 4 min for 1 min using an internal

active-carbon zero-air cartridge.

The Tekran 2537B and 2537X analyzers are based on pre-

concentration of mercury and its compounds on gold traps

(Slemr et al., 1979), thermal desorption, and detection by

cold vapor atomic fluorescence spectroscopy (CVAFS). Al-

though CVAFS can detect only GEM, mercury compounds

are converted to GEM during adsorption or thermal desorp-

tion (Slemr et al., 1978) and, consequently, Tekran instru-

ments can measure total gaseous mercury (TGM). The in-

struments use two gold traps to ensure a continuous mea-

surement; while one is adsorbing mercury during sampling,

the other one is being analyzed and vice versa. The high-

est temporal resolution of the Tekran instruments of 150 s

is given by the time necessary for the thermal desorption of

mercury from the gold traps and their cooling. The Tekran

2527X analyzer (Tekran 1) was run with a quartz wool trap

upstream of the instrument, which removed gaseous oxi-

dized mercury (GOM) and aerosol particles with particle

bound mercury (PBM) but no GEM from the air stream (Ly-

man and Jaffe, 2012; Ambrose et al., 2013). The Tekran

2537B (Tekran 2) analyzer was operated as a backup in-

strument without a quartz wool trap. The Teflon-made (PFA

and PTFE) aircraft gas inlet and tubing system are simi-

lar to the CARIBIC trace gas inlet for which high GOM

transmission was qualitatively demonstrated. Based on the

short residence time (0.3 s) in the tubing to the instrument,

the conditions during an international field inter-comparison

(Ebinghaus et al., 1999), and higher GOM concentrations in

the plume than in ambient air, we presume Tekran measure-

ments without a quartz wool trap represent total gaseous mer-

cury (TGM = GEM + GOM). Therefore, the Tekran 2537B

measurements are believed to represent TGM concentrations

whereas those by Tekran are believed to represent 2537X

GEM concentrations, both with an uncertainty of 12.5 %.

The uncertainty has been calculated by Weigelt et al. (2013)

using two different approaches according to ISO 20988 type

A6 and ISO 20988 Type A2. This uncertainty complies

with the quality objective of the EU air quality directive

2004/107/EC. The instrumental setup in the aircraft was al-

most identical and, therefore, we expect the uncertainty to be

similar.

Direct estimation of the GOM concentrations was made

using three manual KCl denuder samples taken during the

vertical profiles: one downwind of the Lippendorf CFPP,

one upwind over the city of Leipzig (both on 21 August

2013), and one over the GMOS (Global Mercury Observa-

www.atmos-chem-phys.net/16/13653/2016/ Atmos. Chem. Phys., 16, 13653–13668, 2016
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Table 1. List of instruments in the CASA 212 research aircraft. GEM is gaseous elemental mercury and GOM is gaseous oxidized mercury.

Parameter Instrument name Temporal resolution Uncertainty Lower detection limit

GEM Lumex RA-915AM 1 sec (raw ±4 ng m−3 0.5 ng m−3

(modified, signal) (1 s raw signal) (120 s average)

T-stabilized by ±1 ng m−3

Lumex company) (10 s average)

GEM Tekran: 2537X 150 s ±12.5 % of reading 0.1 ng m−3

(with upstream

quartz wool trap)

GEM + unknown Tekran 2537B 150 s ±12.5 % of reading 0.1 ng m−3

amount of GOM1

GOM manual denuder 2600 to ±5 pg m−32
1 pg m−3

samples 3600 s

CO Aero Laser AL5002 1 s ±3 % of reading 1.5 ppb

O3 Teledyne API 400E 10 s ±2 % of reading 0.6 ppb

SO2 Thermo: 43C Trace Level 10 s ±4 % of reading 0.2 ppb

NO Teledyne API M200AU 10 s ±10 % of reading 0.05 ppb

NO2 10 s

Pressure Sensor Technics 1 s ±1 % of reading 0 mbar

CTE7001

Temperature LKM Electronic 1 s ±0.13 ◦C −50 ◦C

DTM5080

Relative Humidity (rH) Vaisala HMT333 8 s ±1.0 % rH 0 %

(0–90 % rH)

1.7 % rH

(90–100 % rH)

GPS data (3-D position, POS AV 1 s ±5 m (horizontal)3 –

speed, heading) ±15 (vertical)3

1 The aircraft inlet system transmission efficiency for GOM was not tested because no GOM sources were available for measurements during the flight. 2 Difference

of the two blank tests. 3 The GPS accuracy is dependent on the number of satellites. The given numbers are estimated values.

tion System) master site “Waldhof” in northern Germany

on 22 August (Fig. 2). For sampling, the KCl denuders

were connected to a bypass of the main sampling line about

1.2 m downstream from the above-described Teflon-coated

gas inlet. The sampling flow rate was controlled with a

mass flow controller downstream from the KCl denuder and

was set to 6.4 L min−1 at standard temperature and pres-

sure (STP; T = 273.15 K, p = 1013.25 hPa), corresponding

to ∼ 10 L min−1 at ambient temperature and pressure in

3000 m a.s.l. The sampling time was 1 h or longer, corre-

sponding to a total sample volume of 600 L or more. The

KCl denuder was kept at a constant temperature of 50 ◦C us-

ing a heater band. Two blank samples were also taken using

KCl denuders and handled exactly in the same way as the

samples (denuder preparation, installation to sampling setup,

storage, analysis) but without sucking sample air through

them. Five days before the ETMEP-2 campaign started all

denuders were prepared for sampling by being coated with

KCl and purged at 500 ◦C for 60 min in a Tekran 1130 speci-

ation unit with mercury-free air from a Tekran active carbon

zero air cartridge. During the heating, mercury in the flush-

ing air downstream from the KCl denuders was measured

with a Tekran 2537B mercury analyzer to ensure that mer-

cury was quantitatively removed from the KCl denuders. Af-

ter the campaign the KCl denuders were analyzed in the lab-

oratory for their total GOM loads using the same setup as for

the denuder preparation. The lower detection limit was esti-

mated to be 1 pg m−3 and is dominated by the Tekran 2537

lower detection limit (0.1 ng m−3). The overall method un-

certainty, defined as a difference of the two blanks, is rela-

tively high with about ±5 pg m−3. Nevertheless, the method

provides semi-quantitative information about GOM concen-

tration in the plume.
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Figure 2. Flight tracks of the ETMEP-2 measurement flights, num-

bers 3 and 4, over central and northern Germany. The flights were

made from the Leipzig airport.

We note that both methods used here to estimate GOM

concentrations are subject to interferences. GOM captured by

quartz wool can be released by higher air humidity (Ambrose

et al., 2015) and KCl traps and denuders can release GOM in

the presence of high ozone and water concentrations (Lyman

et al., 2010; Huang and Gustin, 2015). These interferences

may result in overestimation of GEM and underestimation of

GOM emissions. GEM measured by Lumex is not subject to

any known interference.

For the identification and characterization of different air

masses carbon monoxide (CO), ozone (O3), sulphur diox-

ide (SO2), nitrogen oxide (NO), nitrogen dioxide (NO2), and

the basic meteorological parameters temperature (T ), pres-

sure (p), and relative humidity (rH) were measured simul-

taneously with high temporal resolution. Instrument details,

including the estimated measurement uncertainty, are sum-

marized in Table 1. Uncertainties were calculated according

to the individual instrument uncertainty given by the manu-

facturer and the calibration gas accuracy (CO, O3, SO2, NO).

All instruments were protected from aerosols using PTFE

filters (0.2 µm pore size). Model meteorological data, such

as potential vorticity, equivalent potential temperature, rela-

tive and specific humidity, cloud cover, cloud water content,

three-dimensional wind vector, as well as 5 day backward

trajectories, were calculated every 150 s along the aircraft

flight tracks for additional information. These calculations

are based on meteorological analysis data from the European

Centre for Medium-Range Weather Forecasts (ECMWF) and

the TRAJKS trajectory model (Scheele et al., 1996).

Before takeoff all instruments were warmed up for at

least 45 min using an external ground power supply. Dur-

ing the starting of the engines the power was interrupted for

less than 3 min. Since 45 min were too short to stabilize the

Tekran 2537 internal permeation source, the Tekran instru-

ments were calibrated only after each measurement flight

before the engine shut down using the internal permeation

source. All data were recalculated, using the post-flight cal-

ibrations. Before and after the ETMEP-2 campaign the per-

meation rate of the internal permeation source was checked

by manual injection of a known amount of mercury from an

external mercury source (Tekran 2505 unit). During the in-

strument warmup, takeoff, and landing a Tekran active car-

bon zero air cartridge was inserted upstream of the Tekran

instruments to prevent their contamination by the usually

dirty air around airports and to enable their zeroing. All mer-

cury instruments reported zero mercury concentration while

the cartridge was inserted. The pressure in the fluorescent

cells of both Tekran instruments was kept constant using

upstream pressure controllers at the exits of the cells. This

eliminated the known pressure dependence of the response

signal (Ebinghaus and Slemr, 2000; Radke et al., 2007). The

Lumex analyzer has a much shorter warmup time of less than

10 min and was, therefore, calibrated before takeoff with the

internal calibration cell consisting of a sealed quartz cylin-

der filled with air and saturated with mercury vapor. Unfor-

tunately, the Lumex analyzer does not provide the option

to verify the internal calibration by injection of mercury-

saturated air from an external source. However, a compari-

son of the used Tekran- and Lumex mercury analyzers be-

fore and after the ETMEP-2 campaign showed a good agree-

ment with a difference of less than 5 %. The CO instrument

calibration takes 60 s and was, therefore, performed every

20 min with external calibration gas during the flights. The

O3, SO2, and NO/NO2 instruments have a fairly constant

signal response and were thus calibrated before and after

the ETMEP-2 measurement campaign. Multipoint SO2 and

NO calibrations were made using dilution (Environics 300E

calibrator) of certified standard gases. NO2 conversion ef-

ficiency was determined using gas phase titration. The fac-

tory calibration was used for the pressure, temperature, and

relative humidity sensors. The measurements were synchro-

nized using their individual delay and response times. Please

note that all mercury (TGM, GEM, and GOM) concentra-

tions are reported at standard temperature and pressure (STP;

T = 273.15 K, p = 1013.25 hPa). At these standard condi-

tions 1 ng m−3 corresponds to a mixing ratio of 112 ppqv

(parts per quadrillion by volume).

3 Vertical distribution and Hg / SO2, Hg / CO,

NOx / SO2 emission ratios

The measurements were carried out on 21 and 22 August

2013. On 21 August between 09:30 and 11:20 UTC the air-

www.atmos-chem-phys.net/16/13653/2016/ Atmos. Chem. Phys., 16, 13653–13668, 2016
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Figure 3. Flight tracks of the ETMEP-2 flights on 21 (a) and 22 (b)

August 2013, downwind of the lignite-fired power plant, Lippen-

dorf, south of Leipzig, Germany. On both flights the power plant

plume was crossed several times.

craft flew many circles at different altitudes downwind of

the Lippendorf CFPP (51◦11′ N, 12◦22′ E) followed between

11:25 and 12:20 UTC by a vertical profile upwind of the Lip-

pendorf CFPP, over the city center of Leipzig (51.353◦ N,

12.434◦ E). Between 08:30 and 10:00 UTC on 22 August an-

other vertical profile above the GMOS master site “Wald-

hof” (52◦48′ N, 10◦45′ E, about 200 km from Leipzig on the

line connecting Leipzig and Hamburg) was flown, followed

between 10:00 and 10:35 UTC by additional measurements

downwind of the CFPP Lippendorf. Each vertical profile

consists of at least seven horizontal flight legs, consisting

of circles, and altogether lasting 5–10 min each. The flight

legs started inside the boundary layer at about 400 m above

ground and ended at 3000 m a.s.l. The tracks of the flights

on 21 and 22 August are shown in Figs. 2 and 3a and b, re-

spectively. The CFPP plume was encountered at a distance of

∼ 7.5 km from the plant at an altitude of 1900 m a.s.l. on 21

August and in the distance of ∼ 5 km at 1500–1650 m a.s.l.

on 22 August. With a wind speed of 2.4 and 1.5 m s−1 on 21

and 22 August, respectively, the age of the plume was ∼ 0.9 h

on both days.

Figures 4 and 5 show data from the flight sections with

CFPP plume encounters on 21 and 22 August 2013, respec-

tively. The plume encounters lasted 1–2 min and are clearly

indicated by elevated SO2, NOx (NOx = NO,+,NO2), and

GEM concentrations measured by Lumex. CO and rH en-

hancements are hardly visible on 21 August but are clearly

recognizable on 22 August. Tekran instruments with a tem-

poral resolution of 150 s are too slow to resolve individual

plume encounters but they also show a broad peak of en-

hanced GEM (Tekran 1 with a quartz wool trap) or TGM

(Tekran 2) concentrations. The difference between TGM

measured by Tekran without a quartz wool trap and GEM

measured by Tekran with a quartz wool trap is small (on

average 0.087 ± 0.117 ng m−3 (n = 8) on 21 August and

0.063 ± 0.079 ng m−3 (n = 12) on 22 August) and varies

between −0.064 and +0.354 ng m3 on both days. The av-

erage differences are not significantly different from zero

and neither do the maximum and minimum differences ex-

ceed the combined uncertainty of the difference of 17.7 %.

On 21 August the plume was encountered several times at

an altitude between 1600 and 2500 m a.s.l. The most pro-

nounced encounters numbered 1–4 were found at an altitude

of 1800–2250 m a.s.l. On 22 August the plume was encoun-

tered three times at a flight level of 1550 m and three times at

1650 m a.s.l. The numbered plume encounters were selected

for quantitative evaluation.

Figure 6 shows the vertical distribution of the values

measured downwind of the Lippendorf CFPP. The verti-

cal profiles above Leipzig and Waldhof are discussed to-

gether with further profiles by Weigelt et al. (2016). In

Fig. 6 the squares represent the constant flight level mea-

surement points (2 measurements with 2.5 min each). The

stars represent the measurements when climbing between

two flight levels (2.5 min average). The data indicated as

squares are, therefore, more significant and the data illus-

trated as stars provide additional information on the vertical

structure. Please note that the rH, air temperature (T ), and

potential temperature (θ) are plotted with high temporal res-

olution (1 s) in the rightmost panel. The rH can be used to

distinguish between boundary layer- and free tropospheric

air. Inside the planetary boundary layer (PBL) the relative

humidity is usually much higher than in the free troposphere

(Spencer and Braswell, 1996).

The lower four horizontal flight legs (570 to 1340 m a.s.l.)

show typical northern hemispheric GEM and TGM back-

ground concentration of ∼ 1.6 ng m−3 without any vertical

gradient. CO, O3, SO2, as well as NO and NO2 also show

no vertical gradient, indicating a well-mixed PBL. This is

in agreement to the other vertical profiles measured dur-

ing the ETMEP-2 campaign (Weigelt et al., 2016). From

the fifth flight leg (1630 m a.s.l.) upward, the GEM and

TGM concentration increases towards the PBL top (GEM

(Tekran 1): 1.7 at 1630 and 2.6 at 1940; TGM (Tekran 2):

1.7 at 1630 and 2.8 at 1940; GEM (Lumex): 2.1 at 1630

and 2.4 ng m−3 at 1940 m a.s.l.). The increasing concentra-

tion is also captured by the measurements during the flight

level change (GEM (Tekran 1): 1.7 at 1540; 2.1 at 1800;

TGM (Tekran 2): 1.7 at 1540; 2.3 at 1800; GEM (Lumex):

1.8 at 1540; 2.2 ng m−3 at 1800 m a.s.l.; stars in Fig. 5). As

indicated by the abrupt decrease of rH, the PBL top was

found at 2150 to 2200 m a.s.l. Consequently, flight leg 7 at

2260 m a.s.l. and leg 8 at 3020 m a.s.l. were performed in free

tropospheric air. These two measurements show a typical

free-tropospheric background concentration (∼ 1.3 ng m−3;

Weigelt et al., 2016 and references therein). The measure-

ments during the flight level change from leg 6 to leg 7 and

represent a mixture of boundary layer- and free-tropospheric

air (averaged altitude 2150 m a.s.l.). Therefore GEM (Tekran

1), TGM (Tekran 2), and GEM (Lumex) concentrations of

2.3, 2.4, and 1.9 ng m−3 were strongly influenced by the high

concentration below the boundary layer top.
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Figure 4. ETMEP-2 lignite-fired power plant plume measurements on 21 August 2013 south of Leipzig, Germany. The gaps in the Lumex

signal (10 s resolution) are due to internal zero air checks for the correction of the baseline drift of the instruments. GEM was measured using

a Tekran instrument run with a quartz wool trap at the inlet of the instrument, which is presumed to remove GOM. TGM was measured by

another Tekran instrument with no quartz wool trap at the inlet. All parameters were synchronized using individual instrument delay and

response times. All Hg concentrations are given at standard temperature and pressure (STP; T = 273.15 K, p = 1013.25 hPa).

Figure 5. The same as in Fig. 4, but for measurements on 22 August 2013.
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Figure 6. Vertical profile, measured on 21 August 2013 from 13:17:30 to 14:07:30 (local time) downwind from the coal-fired power plant,

Lippendorf (central Germany; 45.561◦ N, 14.858◦ E; elevation: 150 m a.s.l.; flat terrain). Squares represent 300 s averages with horizontal

flight leg and stars indicate 150 s averages during climbing between two neighboring flight legs. The red dashed line indicates the planetary

boundary layer (PBL) top, which was determined to be at 2150 to 2250 m a.s.l. All Hg concentrations are given at standard temperature and

pressure (STP; T = 273.15 K, p = 1013.25 hPa).

In the altitude range 1600 to 2200 m a.s.l. not only mer-

cury, but also SO2 was significantly increased (from 1.6 to

21.4 ppb), which clearly indicates that the mercury was emit-

ted from the CFPP. Inside the plume (leg 6), the O3 concen-

tration was slightly decreased to 42.3 ppb. At the same time

NO and NO2 increased to 6.1 and 8.9 ppb, respectively. Out-

side the plume (e.g., leg 4) O3 was 48.5 ppb, NO was below

the detection limit, and NO2 was ∼ 1.5 ppb. This indicates O3

depletion due to NO oxidation inside the plume (cf. Figs. 4

and 5). The presence of a temperature inversion at the PBL

top is indicated by the changing T and θ vertical gradient in

Fig. 6. This inversion layer prevents a further ascent of the

power plant plume and, consequently, the highest concentra-

tion of pollutants was found below the PBL top. As already

shown in Figs. 4 and 5, during a flight leg in a certain altitude

(and during level change), the aircraft did not remain within

the plume all the time. Therefore, the concentrations given in

Fig. 6 do represent a mixture of plume and background air.

The ratio of concentration enhancements (ERs),

1Hg / 1SO2, 1Hg / 1CO, and 1NOx / 1SO2 repre-

sent the emission ratios at the stack if (a) chemical reactions

during the transport from the stack to the point of intercep-

tion can be neglected and (b) the background concentrations

have not changed during the measurement, including the

transport from the stack to the place of plume encounters.

As mentioned above, the transport time from the stack to

the location of plume interception was ∼ 0.9 h on both days.

Based on OH concentrations measured in a CFPP plume,

Ambrose et al. (2015) estimated SO2 and NOx lifetimes

of 16–43 and 1.8–5.8 h, respectively. The combination of

GEM, TGM, and GOM measurements by Lumex, Tekran

2537X (Tekran 1, with a quartz wool trap), 2537B (Tekran 2,

without a quartz wool trap), and KCl denuder, respectively,

suggests that there is no substantial conversion of GEM

into GOM within the transport time of ∼ 0.9 h. The vertical

profile over Leipzig, upwind of the CFPP, was measured on

21 August ca. 1 h after the measurements in the plume. The

CO, O3, SO2, NOx , and Hg concentrations in the PBL over

Leipzig with ∼ 120, 50, 0.5, 3 ppb, 1.4 ng m−3, respectively,

are similar to respective concentrations found outside of

the plume over the Lippendorf CFPP. Differences between

them for SO2, NOx , and Hg are small when compared

with their enhancements in the plumes of ∼ 40, 30 ppb, and

4 ng m−3, respectively. On 22 August no vertical profile

upwind was measured, but SO2, NOx , and Hg concentra-

tions over Waldhof, ∼ 90 km north of Leipzig, measured
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immediately before the downwind measurements of the

Lippendorf CFPP, were comparable. We thus conclude that

the background concentrations of SO2, NOx , and Hg had

not changed significantly during the 0.9 h long transport

from the stack to the location of aircraft interception or

during ∼ 20 min of the repeated plume interceptions. In

addition, the large SO2, NOx , and Hg enhancements in the

plume make the calculated 1Hg / 1SO2 and 1NOx / 1SO2

ERs insensitive to small changes in background SO2, NOx ,

and Hg concentrations. This is not always the case for

small 1CO and negative 1O3 (negative because O3 is

consumed by rapid oxidation of NO to NO2) relative to their

background mixing ratios. In addition, the CO background

mixing ratios changed substantially from ∼ 123 to 105 ppb

during plume crossings 4 and 5 on 21 August due to altitude

change. 1Hg / 1CO for these plume interceptions was thus

not calculated.

The ERs are usually calculated at a slope of Hg vs. X

correlations (e.g., Ambrose et al., 2015). The advantage of

this method is that the background concentrations of neither

Hg nor X have to be known as long as they remain constant

during the measurement. The method, however, is applica-

ble only if the plume crossings are much longer than the

response time of the instruments. With the plume transects

lasting in our case only 60–120 s and effective temporal res-

olution of 10 s for SO2 and NOx measurements, however,

the signals have to be carefully synchronized. In addition,

the correlation slopes for individual plume crossings will be-

come quite uncertain because of the small number of points.

For this reason we apply the correlation method for all (syn-

chronized) points with SO2 mixing ratios > 10 ppb. This se-

lection provides 35 and 45 points for Hg vs. SO2 correlations

on 21 and 22 August, respectively. Individual plume cross-

ings are not resolved by this calculation. Correlations made

by the bivariate Williamson–York method (Cantrell, 2008)

provide a slope and its statistical uncertainty representing ER

(Hg / SO2) and its uncertainty.

An alternative method calculates ERs as a ratio of 1Hg to

1X where 1Hg and 1X are signal enhancements against the

background integrated over the plume crossing. This method,

called here the “integral method”, is applicable for measure-

ments with instruments with different response times and

we will show that it can use even Tekran measurements

with a temporal resolution of 150 s, although not for indi-

vidual plume crossings. Opposite to the correlation method,

no exact synchronization is needed. The disadvantage, how-

ever, is that the results are sensitive to the selection of back-

ground concentrations. Figures 4 and 5 show that back-

ground Hg concentrations are especially difficult to define

from the Lumex measurements. We thus use the Hg back-

ground concentrations measured by the more precise Tekran

instrument. As the Lumex instrument measured only GEM,

we use the background measured by the Tekran instrument

with quartz wool (Tekran 1). The other disadvantage of the

integral method is that, opposite to the correlation method,

the uncertainty of ERs is difficult to quantify. We overcome

this difficulty here by averaging the ERs from individual

plume crossings and taking their standard deviation as a mea-

sure of ER uncertainty.

The Hg / SO2 ERs are listed in Table 2. The correlation

and integral methods provide similar results with 5.53 ± 1.10

and 5.56 ± 1.19 µmol mol−1, respectively, for 21 August,

and 7.38 ± 0.92 and 6.32 ± 1.52 µmol mol−1, respectively,

for 22 August. The integral method with TGM (Tekran

2) and SO2 integrals over all plume encounters provide

somewhat higher Hg / SO2 ERs but still within the uncer-

tainties of the correlation and integral methods. The mea-

sured Hg / SO2 ERs are smaller than the emission ratio of

10.8 µmol mol−1 calculated from Hg and SO2 annual emis-

sions reported by the CFPP operator for 2013. They are close

to 5.2–6.5 µmol mol−1 determined by Ambrose et al. (2015)

for Big Brown (BBS) and Dolet Hills Stations (DHS). BBS,

a 1187 MW CFPP in Texas, is fired with sub-bituminous coal

and is equipped with activated carbon injection flue cleaning.

DHS, a 721 MW CFPP in Louisiana, is fired with lignite and

is equipped with wet FGD, similar to the FGD of the Lippen-

dorf CFPP.

Hg / CO ERs are frequently used to classify the origin of

different plumes (Slemr et al., 2009, 2014; Lai et al., 2011,

and references therein) with ERs < 0.25 µmol mol−1 typical

for plumes from biomass burning and ERs > 0.6 µmol mol−1

characteristic for plumes of urban/industrial origin. The

Hg / CO ERs measured in the plume of the Lippendorf CFPP

are listed in Table 3. The correlation method tends to yield

somewhat higher Hg / CO ERs than the integral method. Be-

cause of changing background on 21 August and chang-

ing altitude on 22 August, no ERs were calculated by the

integral method using the Tekran measurements. As men-

tioned before, the high background CO mixing ratios and

relatively small CO enhancement in the plume make the in-

tegral method quite sensitive to the chosen background. For

this reason we believe 5.2 and 9.4 µmol mol−1 from correla-

tion method for 21 and 22 August, respectively, to be more

reliable. The Hg / CO emission ratio from the 2013 annual

emissions reported by the operator is 7.6 µmol mol−1, in rea-

sonable agreement with our measurements. Hg / CO ERs of

this magnitude have never been observed in the plumes de-

tected during the CARIBIC (Civil Aircraft for the Regular In-

vestigation of the Atmosphere Based on an Instrument Con-

tainer) flights (Slemr et al., 2014). This is probably because

only large plumes extending over several hundreds to thou-

sands of km can be detected by these flights. Their Hg / CO

ERs are then a mixture of Hg / CO ERs from point sources

embedded in plumes from larger industrial and/or urban ar-

eas.

Simultaneous NOx and SO2 measurements allow us to

calculate also the NOx / SO2 ERs, which are listed in Ta-

ble 4. The ERs from the correlation and integral meth-

ods are in good agreement with each other on both days.

The NOx / SO2 ER of 0.59 mol mol−1 on 21 August is al-
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Table 2. Hg / SO2 enhancement ratios (ERs). Correlation method: 10 s average Hg concentrations measured by Lumex correlated with 10 s

average SO2 mixing ratios. Only Hg values with SO2 concentrations > 10 ppb were taken with uncertainties set to 1 ng m−3 for Lumex

and 0.5 ppb for SO2. Integral method: 1 s Lumex and SO2 signals integrated over the duration of Lumex measurement, measurements of

Tekran with quartz wool taken as Lumex background concentrations (i.e., 1.27 and 1.25 ng m−3 for 21 and 22 August, respectively). SO2

background mixing ratio was 0.83 and 0.66 ppb on 21 and 22 August, respectively. Since Tekran with a temporal resolution of 150 s cannot

resolve individual plume crossing, the integral of the Tekran signal encompasses the plumes 1–4 on 21 August and the plumes 1–6 on 22

August.

Date Method Species ER n, R, signif Comment

10−6 mol mol−1

21 August 2013 correlation GEM 5.53 ± 1.10 35, 0.6564,

> 99.9 %

integral peak 1 GEM 6.67 Lumex

zeroing

integral peak 2 GEM 5.72

integral peak 3 GEM 5.98 Lumex

zeroing

integral peak 4 GEM 3.88

integral peak 5 GEM 0.89

integral average GEM 5.56 ± 1.19∗ 4∗

Tekran with GEM 6.56

quartz wool trap

Tekran without quartz wool trap TGM 7.55

quartz wool trap

22 August 2013 correlation GEM 7.38 ± 0.92 45, 0.7751,

> 99.9 %

integral peak 1 GEM 6.44

integral peak 2 GEM 4.83

integral peak 3 GEM 5.90 Lumex

zeroing

integral peak 4 GEM 6.67

integral peak 5 GEM 9.03 Lumex

zeroing

integral peak 6 GEM 5.02

integral average GEM 6.32 ± 1.52 6

Tekran with GEM 8.13

quartz wool trap

Tekran without TGM 8.97

quartz wool trap

2013 reported annual emissions TGM 10.8

emissions

∗ Average without integral of peak 5, which is identified as outlier by Nalimov test (at > 95 % significance level, Kaiser and Gottschalk, 1972).

most twice as large as 0.27 mol mol−1 on 22 August, and

both ERs are substantially lower than the emission ratio of

0.91 mol mol−1 calculated from the NOx and SO2 emissions

reported by the CFPP operator for 2013. All these NOx / SO2

ERs are substantially larger than ∼ 0.08 mol mol−1 reported

by Ambrose et al. (2015) for Big Brown CFPP in Texas and

corrected for the NOx loss during transport from the stack to

the point of the plume interception.

Ozone is not emitted but the ambient O3 is consumed

by a rapid reaction with NO (O3+ NO = NO2+ O2) in the

plume during the transport from the stack to the point of

plume interception. The O3 / NOx ERs thus do not repre-

sent emission ratios and they are negative because of O3

consumption. If only NO were emitted the O3 / NOx ER

would be −1 mol mol−1. O3 / NOx ERs were not calculated

for 21 August because of changing O3 background mix-

ing ratios. The calculated O3 / NOx ERs for 22 August are

listed in Table 5. The correlation method provides a slope of

−0.62 ± 0.13 mol mol−1 while the integral method provides

an ER of −1.0 ± 0.6 mol mol−1. We thus conclude that the

emitted NO constitute some 60–100 % of NOx emissions.
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Table 3. Hg / CO enhancement ratios (ERs). Correlation method: 10 s average Hg concentrations measured by Lumex correlated with 10 s

average CO mixing ratios for SO2 mixing ratios above 10 ppb with uncertainties set to 1 ng m−3 for Lumex and 1 ppb for CO. Integral

method: 1 s Lumex and CO signals integrated over the duration of Lumex measurement, readings of Tekran with quartz wool taken as Lumex

background concentrations (i.e., 1.27 and 1.25 ng m−3 for 21 and 22 August, respectively). CO background mixing ratio was 119.3 ppb on

21 August and 123.8 ppb on 22 August.

Date Method ER (Hg / CO) Comment

10−5 mol mol−1 n, R, signif

21 August 2013 Correlation 5.19 ± 0.94 31, 0.6596, values only until

> 99.9 % 10:40:20

integral peak 1 3.40 Lumex zeroing

integral peak 2 4.16

integral peak 3 3.33 Lumex zeroing

integral peak 4 background

change

integral peak 5 CO calibration

integral average 3.63 ± 0.46 3

22 August 2013 Correlation 9.43 ± 1.07 37, 0.7880,

> 99.9 %

integral peak 1 3.19

integral peak 2 CO calibration

integral peak 3 Lumex zeroing,

CO calibration

integral peak 4 7.87

integral peak 5 5.61 Lumex zeroing

integral peak 6 4.75

integral average 5.36 ± 1.95 4

2013 reported annual 7.58

emissions

4 GOM emissions

As mentioned earlier, the GOM measurements made here

using quartz wool traps and KCl coated denuders can both

be influenced by high humidity (Huang and Gustin, 2015)

and those made by KCl can additionally be influenced by

high O3 concentrations (Lyman et al., 2010). Because of NO

emissions, the O3 concentrations in the CFPP plumes will be

lower than in ambient air, making O3 interference unlikely.

Humidity interference would lead to an underestimation of

GOM concentrations measured by KCl denuders and overes-

timation of GEM concentrations measured by the Tekran in-

strument with the quartz wool trap. However, specific GEM

measurements are provided by Lumex, an atomic absorption

instrument with Zeeman background correction, albeit with

a worse precision when compared to Tekran measurements.

Table 6 lists the GOM concentrations measured by the

KCl denuders during the vertical profiles over Leipzig and

in the plume of the Lippendorf CFPP on 21 August 2013,

and over Waldhof on 22 August 2013. Taking into account

the uncertainty of ±5 pg m−3, there is hardly any difference

between GOM concentration of 5.8 pg m−3 measured dur-

ing the vertical profile over Leipzig and 11.4 pg m−3 in the

plume of the Lippendorf CFPP on 21 August. The differ-

ence of 5.6 pg m−3 is distributed over the vertical profile of

3000 m. Vertical profile in Fig. 6 shows that the CFPP plume

was about 450 m thick. Assuming nearly zero GOM con-

centrations outside of this layer, the GOM concentrations in

the layer would be ∼ 40 pg m−3. This is roughly consistent

with the differences between Tekran measurements without

the quartz wool trap and with it. The average difference in

the plume was 87 ± 117 pg m−3 (n = 8) on 21 August and

63 ± 79 pg m−3 (n = 12) on 22 August. Related to the aver-

age TGM enhancement (Tekran without a quartz wool trap)

in the plume of 0.90 on 21 August and of 1.03 ng m−3 on 22

August, the GOM concentration would represent ∼ 10 and

∼ 6 % of TGM emissions on 21 and 22 August, respectively.

An independent assessment of the GOM emissions can be

made using Hg / SO2 ERs listed in Table 2. On 21 August,

the Hg / SO2 ER of 5.5 ± 1.1 µmol mol−1 from correlation

methods and 5.6 ± 1.2 µmol mol−1 from integral methods,

both based on specific GEM measurements by Lumex, are

within their uncertainties consistent with 6.6 µmol mol−1 de-

rived from Tekran with the quartz wool trap. On 22 August,

the Hg / SO2 ER of 7.4 ± 0.9 µmol mol−1 from the correla-

tion method is consistent with 8.1 µmol mol−1 determined

from Tekran data, while the 6.3 ± 1.5 µmol mol−1 from the
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Table 4. NOx / SO2 enhancement ratios (ERs). Correlation method: 10 s average NOx mixing ratios correlated with 10 s average SO2 mixing

ratios above 10 ppb with uncertainties set to 1 ppb for NOx and 0.5 ppb for SO2. Integral method: 1 s NOx and 1 s SO2 signals integrated

over the duration of the individual plume intersection. Background mixing ratios for SO2 and NOx are 0.83 and 1.78 ppb, respectively, for

21 August and 0.66 and 0.45 ppb, respectively for 22 August.

Date Method ER (NOx /SO2) Comment

mol mol−1 n, R, signif

21 August 2013 Correlation 0.585 ± 0.038 34, 0.9379,

> 99.9 %

integral peak 1 0.598

integral peak 2 0.575

integral peak 3 0.725

integral peak 4 0.497

integral peak 5

integral average 0.598 ± 0.095 4

22 August 2013 Correlation 0.262 ± 0.051 40, 0.6344,

> 99.9 %

integral peak 1 0.297

integral peak 2 0.457

integral peak 3 0.167 Lumex zeroing

integral peak 4 0.330

integral peak 5 0.133 Lumex zeroing

integral peak 6 0.317

integral average 0.284 ± 0.118 6

2013 reported annual 0.910

emissions

Table 5. O3 / NOx enhancement ratios (ERs). Correlation method: 10 s average O3 mixing ratios correlated with 10 s average SO2 mixing

ratios above 10 ppb with uncertainties set to 1 ppb for O3 and 1 ppb for NOx . Integral method: 1 s O3 and 1 s NOx signals integrated over

the duration of the individual plume intersection. Background mixing ratios for O3 and NOx are 43.09 and 1.78 ppb, respectively, for 21

August. Individual O3 background mixing ratios (average of background before and after the peak) varying between 53.9 ppb for peak 1 and

56.2 ppb for peak 4 were taken for 22 August. The NOx background mixing ratio on 22 August was 0.45 ppb.

Date Method ER (O3 / NOx ) Comment

mol mol−1 n, R, signif

22 August 2013 Correlation −0.620 ± 0.134 40, −0.3776, > 95 %

> 95 %

integral peak 1 −0.979

integral peak 2 −0.424

integral peak 3 −1.527

integral peak 4 −0.686

integral peak 5 −2.059

integral peak 6 −0.568

integral average −1.040 ± 0.633 6

integral method is somewhat lower. Consequently, Hg / SO2

ERs from less specific measurements with the quartz wool

trap tend to be somewhat higher but within their combined

uncertainties comparable with those derived from GEM spe-

cific Lumex measurements. A comparison of Hg / SO2 ERs

measured by Tekran without and with the quartz wool trap

implies GOM emissions representing 13 and 9 % of TGM

emissions on 21 August and 22, respectively. Taking GEM

specific Lumex measurements instead of those made by

Tekran with the quartz wool trap would imply GOM emis-

sions representing 27 and 24 % on 21 August and 22, respec-

tively, which we consider an upper limit.

In summary, we conclude that GOM represented less than

25 % of the TGM emitted from the Lippendorf CFPP on 21

and 22 August 2013. Schütze et al. (2015) provide no nu-

merical value but their Figure 6 shows that GOM represented
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Table 6. Results of the manual KCl denuder samples during all ETMEP-2 measurement flights in 2013 over central Europe. GOM data were

corrected for denuder blanks determined over Iskraba, Slovenia, and Waldhof, Germany. GOM concentrations are given as a center of an

estimated uncertainty range (in brackets) and are given at standard temperature and pressure (STP; T = 273.15 K, p = 1013.25 hPa).

Date Location Profile character analyzed GOM

(relative sampling time concentration)

in PBL1 and FT2 air [pg m−3]

2013-08-21 Lippendorf, Germany vertical (76 % PBL: 24 % FT) 11.4 (7.0–15.7)

2013-08-21 Leipzig, Germany vertical (61 % PBL; 39 % FT) 5.8 (1.03–10.6)

2013-08-22 Waldhof, Germany vertical (54 % PBL; 46 % FT) 31.0 (24.6–37.3)

1 Planetary boundary layer (PBL). 2 Free troposphere (FT). 3 If a concentration was found to be below the method

lower detection limit of 1.0 pg m−3, the lower detection limit is given.

∼ 20 % of total mercury emissions of the Lippendorf CFPP

at operating conditions in 2013, which is consistent with our

measurements. Edgerton et al. (2006) reported GOM frac-

tions of 13, 19, and 21 % of total mercury in the plumes from

CFPPs Hammond, Crist, and Bowen in the US. Stergašek

et al. (2008) reported 4 % GOM fraction for Hg emissions

from a CFPP with FGD in Slovenia that was fired by lignite.

Wang et al. (2010) found GOM fractions of 6–25 % of all Hg

emissions from five Chinese power plants with FGD. Deeds

et al. (2013) found 13 % of total mercury being GOM in the

plume of the Nanticoke CFPP in Canada. They think that

discrepancy between this and the 43 % GOM fraction found

in stack gases is due to sampling biases. Tatum Ernest et

al. (2014) support their findings using a speciation technique

still in development. In comparison, Landis et al. (2014) re-

port high GOM fractions of > 86 % in stack gases of the

Crist CFPP and 4–40 % conversion of GOM into GEM in the

plume at a 0.6–1.3 km distance from the stack. They attribute

the difference to a reduction of GOM to GEM during the

plume transport. But the reduction during the plume transport

cannot resolve the difference between 86 and 20 % measured

by Landis et al. (2014) and Schütze et al. (2015) directly in

the stack of the Crist and Lippendorf CFPPs, respectively.

We note that Fig. 7 of Schütze et al. (2015) shows a large day-

to-day variation in mercury removal efficiency of the Lippen-

dorf CFPP, which probably also applies to the GOM removal

efficiency. Thus, part of the difference between GOM in stack

gases of the Lippendorf CFPP and the Crist CFPP can re-

sult from day-to-day variations in GOM removal efficiency.

Putting this unresolved issue aside, low fractions of GOM

emissions reported here and by others (Edgerton et al., 2006;

Stergašek et al., 2008; Wang et al., 2010; Deeds et al., 2013)

are in contrast to the AMAP/UNEP geospatially distributed

mercury emissions data set “2010v1” (Wilson et al., 2013),

which splits the speciated mercury emissions from combus-

tion in power plants to 50 GEM, 40 GOM, and 10 % PBM.

As mentioned before, the FGD in the Lippendorf CFPP is

made by washing the flue gas with CaO suspension with

added sulfidic precipitant. This type of FGD is known to cap-

ture most of GOM (Schütze, 2013). Although no PBM was

measured in this study, 10 % of mercury being emitted as

PBM, according to the inventory, is probably also an overes-

timation for CFPPs with FGD (Stergašek et al., 2008; Wang

et al., 2010).

5 Conclusions

The plume of the Lippendorf coal-fired power plant (CFPP),

near Leipzig in Germany, was encountered several times on

21 and 22 August 2013. On 21 August the plume was cap-

tured at below planetary boundary layer top due to a tem-

perature inversion layer. Hg / SO2, Hg / CO, and NOx / SO2

ERs in the plume were determined as a slope of bivariate

correlations of the species concentrations and as ratios of in-

tegrals over the individual plume crossings. The measured

Hg / SO2 and Hg / CO ERs were, within the measurement

uncertainties, consistent with the ERs calculated from annual

emissions reported by the CFPP operator for 2013, while the

NOx / SO2 ER was somewhat lower.

GOM fraction of total mercury emissions was estimated

(a) using GOM measurements by KCl denuders, (b) from a

difference between Hg measurements taken by Tekran instru-

ments without and with a quartz wool trap, and (c) from a dif-

ference between Hg measurements take by a Tekran instru-

ment without a quartz wool trap and GEM specific measure-

ments taken by a Lumex instrument. Despite large uncertain-

ties in all these estimates, we conclude that GOM emissions

represent less than 25 % of the total mercury emissions. This

result is consistent with 20 % found by Schütze et al. (2015)

in stack gases of the Lippendorf CFPP in 2013 and findings

by others (Edgerton et al., 2006; Stergašek et al., 2008; Wang

et al., 2010; Deeds et al., 2013). It suggests that GOM frac-

tions of ∼ 40 % of CFPP mercury emissions in current emis-

sion inventories are overestimated. Although PBM was not

measured by us, its inventoried fraction of 10 % is, accord-

ing to the references above, too high for CFPPs with FGD.
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6 Data availability

The data sets are available from the GMOS data portal (http:

//sdi.iia.cnr.it/geoint/publicpage/GMOS/gmos_aircraft.zul;

jsessionid=3B2706156E3CB087D2B3FD9A150B58E1).
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