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Abstract: Environmental contamination has exposed humans to various metal agents, including
mercury. It has been determined that mercury is not only harmful to the health of vulnerable
populations such as pregnant women and children, but is also toxic to ordinary adults in various ways.
For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure
to this metal from both natural and artificial sources is significantly increasing. Recent studies
suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular,
reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and
carcinogenicity. Possible biological effects of mercury, including the relationship between mercury
toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease,
and myocardial infarction, are being studied. As heart rhythm and function are under autonomic
nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also
impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac
parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate
variability, particularly early exposures in children. The mechanism by which mercury produces toxic
effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve
an increase in oxidative stress. The exposure to mercury increases the production of free radicals,
potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of
antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the
toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.
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1. Introduction

As far back as 20,000–30,000 years BC, Paleolithic artists used various pigments, including
cinnabar (mercuric sulfide, HgS) due to its red color, to draw hunting scenes with bison, bulls, stags,
horses, humans, and handprints in negative images on cave walls (Altamira-Spain and Lascaux-France
caves). Even the Chinese and the Romans (VII–VI century BC) employed cinnabar for pictorial
art. Subsequently, mercury has been used in thermometers, sphygmomanometers, barometers,
incandescent lights, and batteries; moreover, it was employed in dental amalgams (typically composed
of 50% mercury, 25% silver, and 25% tin, copper, and nickel) [1], germicidal soaps, and skin creams [2].
Mercury has also been used to purify gold and silver minerals by forming amalgams in mines in the
Brazil basin, in Laos, and in Venezuela. For a long time many medicines, cosmetics, and vaccines
contained small amounts of organic mercury compounds, like ethylmercury thiosalicylate (thimerosal),
as preservatives. Medicinal uses of mercury have included its use as a diuretic, antiseptic, skin

Int. J. Environ. Res. Public Health 2017, 14, 74; doi:10.3390/ijerph14010074 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2017, 14, 74 2 of 13

ointment, laxative, and as a treatment of syphilis. Mercury has also been used as a poison. The great
sculptor Benvenuto Cellini, when poisoned by a sublethal dose of mercury, was apparently cured of
a severe case of syphilis [3]. History has left us a lot of information on the effect of mercury toxicity.
The earliest recorded death by mercury is the Chinese Emperor Qin Shi Huang (260–210 BC). According
to legend, the cause of death most likely was mercury poisoning, due to his immortality treatments [4].
Certainly, the exposure to mercury brought harmful effects to health of humans and called the attention
of the scientific world after the epidemics occurred in Japan and in Iraq. In Japan, two methylmercury
poisoning events are worthy of mention. These accidents, resulting from the deposition of industrial
waste containing large quantities of methylmercury [5,6], occurred in the Japanese village of Minamata
Bay (1953) and along the Agano river in Niigata (1964). Mercury, bioaccumulated within the food chain
from plankton, microorganisms up to shellfish and fish, was then ingested, thus the inhabitants of
Minamata Bay began to exhibit symptoms of neurological illness, such as uncontrollable trembling, loss
of motor control, speech impairment, sensory disturbance, blindness, mental retardation, coma, and
death. Infants, whose mothers were infected, developed mental retardation, peripheral neuropathy,
and cerebral palsy. Additionally, in 1971 in rural Iraq, severe methylmercury intoxication occurred
when bread was prepared and eaten from wheat seeds that had been treated with fungicides containing
organic mercury compounds [6,7]. The incidents in Japan and Iraq produced not only deaths, but also
multiple and long-lasting intoxication symptoms, including blindness, deafness, mental retardation,
cerebral palsy, and dysarthria especially in children exposed in utero [8].

Methylmercury, the most toxic mercury compound, is an organic mercurial compound primarily
found as a pollutant in rivers, lakes, and oceans. Methylmercury is usually formed naturally through
biomethylation of mercury, carried out by aquatic anaerobic sulfate-reducing bacteria [9,10] (Figure 1).
It also derives from anthropogenic sources, and when formed will be released into rivers, lakes, and
oceans. Consequently, people whose diet consists mainly of shellfish and fish may be exposed to
high levels of methylmercury [11]. Approximately 85% of methylmercury ingested is absorbed in the
gastrointestinal tract, while about 5% is present in blood and 10% in the brain. In many developing
countries, mercury is still a major problem which requires actions for proper control. Many efforts
should be placed on the removal of anthropogenic sources of mercury and the prevention of exposure.
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Several studies regarding mercury-related health problems have been carried out in populations
mostly exposed through the consumption of mercury-contaminated fish and other seafood [12].
For decades, the toxic effects of mercury were associated mainly with the central nervous system.
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However, a growing body of evidence suggests that methylmercury exposure can also lead to
increased risks of adverse cardiovascular impacts in exposed populations. In January 2010, the US
eicosapentaenoic acid (EPA) assembled experts spanning epidemiology, toxicology, clinical medicine,
risk, and exposure assessment to participate in a workshop in Washington DC to review the current
science and literature concerning cardiovascular impacts of MeHg exposure. They studied MeHg
exposure via fish, shellfish, and sea mammal consumption to elicit recommendations about whether
these effects should be included in Hg regulatory impact analyses. The results of this workshop were
reviewed by Roman et al. [13]. The authors assessed the causal relationship between MeHg exposure
and an increased risk of cardiovascular health effects by evaluating the plausibility of biological
mechanisms for the cardiovascular toxicity of MeHg and weighing the strength of the human, animal,
and in vitro studies linking MeHg with cardiovascular health impacts. In this review, we attempt to
present an understanding of the role that exposure to mercury plays in cardiovascular diseases.

2. Materials and Methods

The review was performed following the principles of the PRISMA statement [14]. A literature
search of publications included in the electronic databases was conducted using MEDLINE (via
PubMed) and Google Scholar. The search criteria considered the occurrence of the combination of
the following keywords: mercury toxicity, heart disease, and cardiovascular disease either in the title,
abstracts, or in the text. All the publications found were screened based upon consideration of the title
and abstract in order to assess the relevance of the subject and eligibility. Each author independently
extracted data from each paper regarding the role that exposure to mercury plays in cardiovascular
diseases and discussed the data with the other authors. Then a draft of the manuscript was circulated
to the authors and subsequently revised several times. A final version of the manuscript was then
prepared and finally approved by all the authors.

3. Chemical Forms and Toxicity of Mercury

Mercury (Hg, hydrargyrium from the Latin “liquid silver”) is a heavy metal (atomic number 80;
atomic weight 200.59; density 13.59 g/cm3; melting point −39 ◦C; boiling point 359 ◦C) with a toxicity
as well-known (World Health Organization 2007) [15] as lead and cadmium [16,17]. Mercury is a
non-transition metal and is an extremely rare element in the Earth’s crust, usually in the form of the
mineral cinnabar (mercury sulfide, HgS), having an average mass abundance of only 0.09 mg/Kg [18].
Mercury has three valence states and exists in several forms: inorganic mercury, which includes liquid
metallic mercury and mercury vapor (Hg0), mercurous (Hg+) and mercuric (Hg++) salts, and organic
mercury, with methylmercury (CH3Hg, MeHg), ethylmercury (C2H5Hg, EtHg), and phenylmercury
(C6H5Hg, PhHg). The biological behavior and clinical significance of the various forms of mercury
vary according to its chemical structure [19]. Elemental mercury (Hg0), at room temperature, exists
in its liquid form which quickly turns to vapor when heated above room temperature. The high
volatility of Hg0 prolongs the effects of anthropogenic release and Hg0 can remain suspended in the
atmosphere for up to one year, where it can be transported and deposited globally. In the atmosphere,
Hg0 constitutes the majority of mercury (>90%) and is the predominant form in the gaseous phase,
which facilitates the long-range transport of mercury at a global scale [20]. Mercury is released into the
environment from both natural and anthropogenic sources. Annually, volcanic (for example Etna and
Stromboli, Sicily, Italy), geothermal outgassing activities (for example the Phlegrean Fields, Pozzuoli,
Italy), thermal springs, earthquakes, erosion, and the volatilization of mercury present in the marine
environment (Agency for Toxic Substances and Disease Registry, ATSDR 1999) [21–23] release an
estimated 1500 t of mercury to the environment [24]. Anthropogenic release occurs from manifold
industrial point sources, chlor-alkali plants [25] and coal-fired power plants [26] and is estimated to
constitute 2320 t of mercury emitted annually into the atmosphere [24]. Hg0 is oxidized in air to its
inorganic forms (Hg+ and Hg++) and is released during rain events to be deposited in soil and into
the waters of rivers, lakes, and oceans. In its vapor form, metallic mercury is commonly absorbed
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through the respiratory tract, where it is poorly absorbed in the gastrointestinal tract. Because of its
soluble characteristics, elemental mercury is highly diffusible through cell membranes as well as the
blood-brain and placental barriers to reach target organs. Once in the blood stream, Hg0 is easily
oxidized in red blood cells and tissues into inorganic Hg+ and Hg++ in the presence of catalase and
peroxidase. The inorganic forms, Hg+ and Hg++, have low lipophilicity and thus a limited ability
to cross cell membranes. The mercuric form (Hg++) in the bloodstream binds to cysteine sulfhydryl
groups (-SH) on erythrocytes, glutathione, and metallothioneines or is transported suspended in
plasma [27]. It is mainly absorbed through the respiratory tract, and in small extent through the skin
(5%–8%) and gastrointestinal tract (3%–5%) (Figure 1). The main excretory pathways include urine
and feces, with a half-life of about two months. In aquatic and soil environments, mercury is primarily
present in its mercuric form, including inorganic (e.g., mercuric hydroxide) and organic mercuric
compounds, and secondarily as Hg0 [28,29]. Mercuric compounds can be found in different states,
as mercuric chloride (HgCl2, highly toxic and corrosive), mercuric sulfide (HgS, used as a pigment in
paints), and mercury fulminate (Hg(CNO)2), used as an explosive detonator). Mercuric mercury in the
blood stream binds to –SH groups on erythrocytes, glutathione, and metallothioneines or is transported
suspended in plasma. There is experimental evidence that this compound is accumulated in the brain
through its binding to cysteines [30]. Inorganic mercury, which is derived from industrial release,
is biomethylated to methylmercury (MeHg), primarily by sulfate-reducing bacteria [9,10,31], Although
only a minor fraction of total mercury is present as MeHg (typically less than 10% and 3% in water and
soil/sediment, respectively), the formation of this compound is an important step in mercury cycling.
MeHg is easily absorbed overall into the gastrointestinal tract (Figure 1) and is excreted in feces, and
to a lesser extent in urine. Organic mercury crosses the blood-brain and placental barriers and can
be transmitted to fetus and, through breast milk, babies can assimilate these toxic compounds with
resulting bioaccumulation especially by the liver, brain, kidney, and muscles [9]. MeHg bioaccumulate
in the food chain from small creatures to larger predatory fish (i.e., swordfish, shark, king mackerel,
tilefish) and sea mammals and can reach high concentrations in organisms, in particular in aquatic
environments [28]. Large predatory fish and sea mammals can contain methylmercury amounts that
are as much as 100,000 times higher than the surrounding water medium. Consequently, populations
with high dietary intake of seafood are likely to be subjected to exposure to high levels of mercury
that has been reported to harm the brain, lungs, kidneys, the nervous and immune systems, and also
the heart and cardiovascular system [32]. Nevertheless, seafood and fish represent an important and
great source of proteins, especially for those populations living near seas, lakes, and rivers. Indeed,
fish and shellfish contain proteins, as well as long-chain omega-3 polyunsaturated fatty acids (PUFA),
including EPA and docosahexaenoic acid (DHA) (Figure 2), and trace elements as selenium, calcium,
and magnesium [33]. The presence of mercury was detected in a wide variety of foods including dairy
products as pasta, eggs, meats, poultry, and vegetables. However, the level of mercury in these foods
is very low compared to the level found in fish.
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Methylmercury may also result from methylation of inorganic mercury by microorganisms in the
mouth, when mercury vapor is released from amalgam dental fillings [34], and from non-enzymatic
methylation, when Vit B12 in the form of methylcobalamin donates a methyl group to mercury [35].
The different mercury forms are interconvertible in vivo; for example, inhaled elemental mercury
vapor is absorbed through the mucous membrane of the lungs and is rapidly oxidized to other forms.
The organic compounds of mercury have a higher solubility in lipids than the inorganic species, thus
they diffuse more easily through the lipid bilayer of biological membranes, increasing their potential
toxicity. Mercury absorbed in the body mainly accumulates in the kidneys and brain. The half-life of
mercury in the body is about 70 days.

Mercury has no known physiological role in human metabolism; furthermore, the human body
lacks effective mechanisms to excrete it [36]. Mercury is not actively excreted by the human body;
on average, during the life span of a 70–75 kg human being up to 13 mg of mercury is accumulated
in the human body [37]. Mercury is the most dangerous of all heavy metals to which humans and
wildlife can be exposed. Both Hg0 and MeHg are neurotoxic, whereas inorganic mercury salts are
nephrotoxic [38]. Mercury links to numerous biological structures blocking their activity. Indeed, it has
a high affinity for sulfhydryl groups (-SH) of aminoacids, proteins, enzymes, and sulfur-containing
antioxidants such as N-acetylcysteine (NAC), α-lipoic acid (ALA), and glutathione (GSH) (Figure 3).
Glutathione provides about 30%–40% of the plasma antioxidant capacity, and is the most potent
intracellular and mitochondrial antioxidant for protecting against oxidative stress, inflammation, and
cardiovascular diseases [36,37,39–42].
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Indeed, mercury induces oxidative stress and mitochondrial dysfunctions. The latter occur at the
NADH (reduced nicotinamide adenine dinucleotide) level: ubiquinone oxidoreductase (complex I of
the respiratory chain), cytochrome C, and cytochrome oxidase (complex IV of the respiratory chain),
by causing displacement of Fe2+ and Cu+, by determining depolarization and autoxidation of the inner
mitochondrial membrane with a reduction in adenosine 5’-triphosphate (ATP) synthesis, depletion
of glutathione, and increased lipid peroxidation [43]. Physiologic consequences include increased
hydrogen peroxide, depletion of mitochondrial glutathione, increased lipid peroxidation, oxidation of
pyridine nucleotides NAD(P)H (nicotinamide adenine dinucleotide phosphate), and altered calcium
homeostasis [43]. Mercury binds to metallothioneines, replacing zinc, copper, and other trace metals,
and competes for selenium, reducing the effectiveness of the metalloenzymes. In addition, the complex
mercury-selenium reduces the availability of selenium into the formation of the glutathione peroxidase,
an enzyme that breaks hydrogen peroxide and other toxic products. Omega-3 polyunsaturated fatty
acids of fish and selenium antagonize some of the adverse effects of this heavy metal [44–47].
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4. Cardiovascular Effect of Mercury

For many years mercury toxic effects were associated mainly with the central nervous system,
kidney and brain; however, mercury may also produce cardiotoxicity [48–52]. It was reported that
exposure to mercury compounds, caused by frequent consumption of fish by the population of the
Amazon basin (Brazil), has a strong correlation with increased arterial blood pressure (BP) [53,54].
Studies regarding BP and heart rate variability (HRV), among aboriginal populations from Quebec,
who are indirectly exposed to mercury and methyl mercury, have been reported by Valera and
coauthors [55–59]. These studies suggest a deleterious impact of mercury and MeHg on BP and
HRV in Inuit adults, while MeHg exposure during childhood affects HRV among Nunavik Inuit
children without concerning BP. Thurston et al. reported that prenatal exposure to MeHg from seafood
consumption increases children’s BP [60]. Grandjean et al. studied whether heart function in childhood
is affected by exposure to MeHg from seafood. Methylmercury exposure was associated with decreased
sympathetic low-frequency and parasympathetic high-frequency modulation of the HRV [61]. Other
studies [37,41,62,63] correlate toxic mercury exposure with increased risk of myocardial infarction,
atherosclerosis, hypertension, and coronary dysfunction.

Mercury levels in the hair are predictors of the levels of oxidized LDL (low-density lipoprotein)
that are frequently found in atherosclerosis lesions and are associated with atherosclerosis disease
and acute coronary insufficiency [37,41,64]. The toxic effects of mercury in all its forms have been
demonstrated both in vitro, in animals and human beings. Exposure to mercury increases the
production of free radicals, reactive oxygen species (ROS), and superoxide anions on account of
Fenton reaction [65–70]. Mercury binds to thiol (-SH) containing molecules and binds to selenium,
forming selenium-mercury complexes, reducing the glutathione peroxidase, catalase, and superoxide
dismutase activities due to the absence of selenium in the active site of these enzymes [67,68,70–72].
The increment of ROS and the reduction of antioxidant enzymes activity increase the risk of developing
cardiovascular disease [73,74]. In addition, mercury increases LDL oxidation and destroys plasma
membrane phospholipid integrity by externalization of phosphatidylserine [37,66,75,76]. Moreover, the
translocation of phosphatidylserine from the inner to the outer mitochondrial membrane leaflet leads
to a modification of mitochondrial membranes with loss of mitochondrial potential and the occurrence
of apoptosis. As a consequence, mitochondrial functions are altered, mitochondrial permeability
transition (MPT) is affected with a reduction of the membrane potential, oxidative phosphorylation,
and ATP production.

Another mechanism through which mercury is responsible for toxic effects on the cardiovascular
system is the inactivation of the paraoxonase, an extracellular antioxidative enzyme related to HDL
(high-density lipoprotein) [77,78]. The inactivation of paraoxonase causes dysfunctional HDL to
reduce reverse cholesterol transport. This enzyme also plays an important role as an antioxidant
of LDL, a process that is directly involved in the development of atherosclerosis and in the risk
of acute myocardial infarction, cardiovascular disease, coronary heart disease, and carotid artery
stenosis [79]. Mercury, in mammals, activates phospholipase A2 contributing to the development of
several inflammatory diseases correlated with coronary artery disease, acute coronary syndrome, and
cerebral plaque rupture [80]. Phospholipase A2 catalyzes the hydrolysis of glycerophospholipids at
the sn-2 position, producing lysophosphatidic and arachidonic acids. In addition, mercury induces the
formation of arachidonic acid metabolites, such as prostaglandins, thromboxanes, leukotrienes, and
related compounds that all are considered to be mediators of the inflammatory response even with
cardiovascular problems [81]. According to the study by Salonen et al. [37], the level of mercury in the
hair and fish intake was positively associated with an increased risk of acute myocardial infarction,
and death from cardiovascular disease and coronary heart disease This association was due to the
effect of lipid peroxidation catalyzed by mercury that highly contaminated fish in that region.

In Finland, lakes and soil have a low content of selenium, thus Finnish people have low dietary
intake of selenium. Mercury effects and selenium deficiency in Eastern Finland populations have been
related to myocardial infarction, coronary heart disease and cardiovascular death, lipid peroxidation,
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and progression of carotid atherosclerosis [82,83]. Fish are rich in selenium, an essential dietary
trace element that in human beings is an important component of numerous selenoproteins and
selenoenzymes [84,85], and that plays an important role in several antioxidant defense systems,
protecting both against cardiovascular diseases and toxic effects of mercury. Indeed, in a population
with low selenium intake the toxic effects of mercury may be more pronounced because the metal
forms an insoluble complex with selenium, thus reducing its bioavailability in several antioxidant
systems (e.g., glutathione peroxidase). Many of the cardiovascular problems related to mercury and
mercury compounds are reduced by intake of fish or fish oil, which contain omega-3 PUFA, and by the
intake of selenium. Changes in most risk factors are generally evident within weeks as a consequence
of fish intake and can result from altered cell membrane fluidity following incorporation of omega-3
PUFA into cell membrane phospholipids [86], as well as direct binding of omega-3 PUFA to cytosolic
receptors that regulate gene transcription [87]. Considerable evidence indicates that the consumption
of fish reduces coronary heart disease mortality [88], the leading cause of death in developed and
in most developing nations. Many cardiovascular problems related to mercury are mitigated by the
concomitant intake of fish, which contains omega-3 PUFA, and by intake of selenium [35]. On the other
hand, concerns about potential damage from exposure to mercury (present in some fish species) have
modified the concept of fish as the model of healthy food. MeHg may be a risk factor for cardiovascular
disease, as suggested by mechanistic evidence and experimental animal toxicological studies [89].
However, epidemiological evidence is inconclusive [90]. Roman et al. [13] considered the current
epidemiological literature sufficiently robust to support the development of a dose−response function
between MeHg exposure and acute myocardial infarction. However, the results of two major cohort
studies in the U.S. found no evidence of any clinically relevant adverse effects of Hg exposure on
coronary heart disease, stroke, or total CVD disease in adults [91]. The public health implications are
potentially significant, as CVD is the leading cause of mortality in most developed countries. Therefore,
it is important to improve the characterization of the potential linkage between MeHg exposure and
the risk of cardiovascular disease.

5. Mercury Chelating Agents

In acute mercury intoxication, after metal absorption into the circulatory system, to avoid further
distribution and penetration in tissues, the elimination of mercury from the body should be envisaged
in order to reduce more serious damage. Employing mercury chelating agents [92], inducing diuresis,
modulating urinary pH for metal excretion, employing complexing agents to enhance fecal excretion
for metals undergoing extensive enterohepatic circulation, and finally hemodialysis, may be employed.
The applicability and efficacy of these techniques vary depending upon type, intensity, and extent of
exposure and conditions of the patient.

Chelating agents (Figure 4), that can be used for inorganic mercury poisoning (Hg0 and
Hg++) include: 2,3-dimercaptopropanol (British Anti Lewisite, BAL), D-penicillamine (DPCN),
2,3-dimercaptosuccinic acid (DMSA), monoisoamyl ester of DMSA (MiADMSA), and 2.3-dimercapto-
1-propanesulfonic acid (DMPS). These compounds are able to chelate and immobilize mercury, because
they contain sulfhydryl groups (-SH). BAL is highly water-soluble and can be administered orally
and intravenously. DPCN is a water soluble derivative of penicillin, and increases the excretion of
mercury through the urine. This drug is used only for metallic and inorganic mercury poisoning,
but it cannot to be used for organic mercury poisoning [93]. Contraindications for this agent include:
thrombopenia, proteinuria, hematuresis, and nephrotic syndrome. DMSA increases excretion of
methylmercury and inorganic mercury and when this drug is administered orally, its absorption
rate is about 20%, which differs from DMPS, whose absorption rate is about 40% when taken orally.
DMPS is a more stable form of DMSA, and it is frequently administered intravenously with a half-life
of about 20 h. DMPS, as DMSA, promotes the excretion of methylmercury and inorganic mercury
in urine. The water soluble MiADMSA is a derivative of DMSA and is administered via oral and
intraperitoneal route, although oral administration has been found to be better than intraperitoneal
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injection. The concomitant administration of DMSA and MiADMSA has demonstrated better results
than DMSA or MiADMSA administrated alone, thus allowing for a reduction in the amount of
chelating agents, thereby promoting better clinical recovery and minimizing side effects [92].
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6. Conclusions

Mercury is among the most toxic heavy metals and has no known physiological role in human
beings. History has left us with a lot of information and records, regarding the effect of mercury toxicity
on the humans. The earliest recorded death caused by mercury is the one of Qin Shi Huang, an Emperor
of China (260–210 BC). The existence of different intake pathways of mercury (air, water, food,
vaccines, pharmaceuticals, and cosmetics) accounts for its easy accessibility to humans. In particular,
in populations whose diet is based mainly on fish consumption, the risk of mercury exposure is
increased. In many developing countries, mercury is still a big problem. Efforts have to be made to
reduce global mercury use. Exposure to mercury and its compounds has resulted in harmful effects
to human health as documented by the monstrous disasters that originated from industrial spills in
Japan (Minamata Bay and Agano River) and a rural poisoning in Iraq from MeHg-based fungicide.
Mercury has a high affinity for thiol and seleno groups that are present in aminoacids as cysteine
and Se-cysteine, N-acetylcysteine, lipoic acid, proteins, and enzymes. Cysteine is a precursor for the
biosynthesis of glutathione, which is among the most powerful intracellular antioxidants. Mercury
and methylmercury induce mitochondrial dysfunction, lowers ATP synthesis, depletes glutathione,
and increases phospholipid, protein, and DNA peroxidation. Selenium and fish, rich in omega-3
polyunsaturated fatty acids, antagonize mercury toxicity. The vascular effects of mercury include
increases in oxidative stress and inflammation, reductions in oxidative defense, thrombosis, and
mitochondrial dysfunction, depolarization, and autoxidation of the inner mitochondrial membrane.
Another mechanism through which mercury exerts toxic effects on the cardiovascular system is the
inactivation of paraoxonase, which causes dysfunctional HDL to reduce reverse cholesterol transport
to the liver. This enzyme plays an important role as an antioxidant of LDL, thus it is directly involved in
atherosclerosis, myocardial infarction, and cardiovascular disease. Mercury toxicity is indeed strongly
correlated with hypertension, coronary heart disease, myocardial infarction, cardiac arrhythmias,
carotid artery obstruction, cerebrovascular accident, and generalized atherosclerosis. Although in
populations that eat fish the risk of mercury exposure is increased, important evidence, from human
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experimental studies indicate that even modest consumption of fish and seafood significantly reduces
cardiac disease and death. Selenium and fish rich in omega-3 polyunsaturated fatty acids antagonize
mercury toxicity. In any case, it is necessary to elucidate the risks and benefits of fish consumption
and balance the toxic effects of mercury with the benefits derived from omega-3 polyunsaturated fatty
acids consumption. Mercury toxicity should be evaluated in any patient with hypertension, coronary
heart disease, cerebral vascular disease, or other vascular diseases and in patients who have a clinical
history of exposure or clinical evidence on examination of mercury overload. The development of
a dose-response function relating MeHg exposures with MIs for use in regulatory benefits analyses of
future rules targeting Hg air emissions should be envisaged.
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