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Introduction

The Bushveld Complex is a large layered
igneous intrusion which spans about 350 km
from east to west. It is situated in the northern
part of South Africa (Figure 1). The platinum
group metals are concentrated in two planar
orebodies known as the Merensky Reef, a
mineralized pegmatoidal pyroxenite 0.7 m to
1.4 m thick, and, underlying this, the UG2
Reef comprising one or more chromitite seams
of similar thickness. 

The strata generally dip at 8° to 15° toward
the centre of the complex. The horizontal to
vertical stress ratio (k ratio) varies from about
0.5 to over 2.5. The depth of mining ranges
from outcrop to 2 300 m.

In the mining depth range from surface to
about 1 400 m, the vertical tensile zone often
extends high into the hangingwall. If a
sufficiently large mining span is achieved, or
the stope abuts a geological feature, a large
volume of hangingwall rock can become
unstable, resulting in a stope collapse, or
colloquially, a ‘backbreak’1. In order to prevent
these backbreaks a high resistance support
system is required. This is universally
achieved by the use of small in-stope chain
pillars orientated either on strike for breast

mining (Figure 2) or on dip for up-or down-
dip mining.

In the past, pillar design on the Merensky
and UG2 reefs has been done using experience
and strength formulae derived for other hard-
rock mines. The consequence of this uncertain
methodology is to cut oversize pillars, which
lowers the extraction ratio. In addition, pillars
cut in the deeper levels are required to fail in a
stable manner soon after being cut. These
pillars are known as crush pillars and their
residual strengths provide the required support
resistance to prevent backbreaks and keep the
stope hangingwall stable. A recent series of
pillar bursts, with serious consequences, has
raised questions about the design of these
pillars. A maximum likelihood back-analysis
study was conducted on failed and stable
pillars, and strength formulae were developed
for the Merensky Reef at Impala Platinum (just
north of Rustenburg, Figure 1).

Data collection procedures

Site observations

The in situ dimensions of the evaluated pillars
were directly measured and the
presence/absence of sidings adjacent to pillars
was noted. Pillar condition was documented
according to the following scale of condition
codes (CC):

➤ 5:  Pillar heavily damaged,
date/geometry at failure not accurately
known 

➤ 4:  Pillar presumed failed, date/geometry
at failure not accurately known
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Merensky pillar strength formulae based on back-analysis of pillar failures

➤ 3: Pillar definitely failed (or burst), date/geometry at
failure known

➤ 2:  Pillar sidewalls visibly fractured/scaled,
date/geometry known

➤ 1:  Pillar sidewall scaling barely visible, date/geometry
known

➤ 0: Pillar with no visible damage, date/geometry known.
Pillars with condition code 3 are the most directly relevant

for back-analysing strength parameters, although pillars with
other codes give confirmatory information.

Pillar load estimation

Pillar loads were estimated using pseudo 3D, elastic, MinSim2

and MINF3 modelling. Mine plans were digitized, capturing in
each instance an area large enough to provide realistic stress
conditions. Usually, these conditions were inferred by direct
modelling and subsequent elimination of superfluous
abutting mining windows. In many cases, it was necessary to
estimate a ‘correction factor’ (CF), based on a comparison of
coarse-grid average pillar stress (APS) values on large pillars
near the areas of interest, with and without a large flanking
area of mining. Such factors were generally less than 1.2
(20% correction), and were, where feasible, checked using
Equation [1]4. This equation may be used if there is a large
sea of mining with roughly uniform convergence S over a
sector θ bounded by radii R1 and R2 (Figure 3).

[1]

▲
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Figure 2—Plan view of a typical stope on one of the platinum orebodies

Figure 3—Areas of remote mining, well outside the centre (+) of the

area of interest

Figure 1—The extent of the Bushveld platinum exposure
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S = (E*S/q) is the normalized average convergence in this
region, where S is the convergence and q is the virgin vertical
stress. E*=E/4(1-ν2) where E is the Young’s modulus and ν is
the Poisson’s ratio. 

If, for example, the RHS of Equation 1 evaluates to 0.002,
then the driving stress on the area of interest, and all
calculated convergence or APS values, need to be increased
by 0.2 %.

A grid size of 0.5 m was used in order adequately to
capture true pillar dimensions in the area of interest. The
modelling results were validated, where possible, by analytic
solutions and by comparing MinSim and MINF results. Errors
of less than 10% in APS values are estimated from the
numerical modelling.

Generally a series of runs was carried out. In the first run,
all small pillars were modelled as intact structures. In the
second run, any pillars carrying more load and being smaller
than known failed pillars in an area of interest were deemed
to have failed, assigned a CC of 4 or 5, and allocated a
residual stress of 20 MPa as suggested by Watson et al.5 and
Roberts et al6. This procedure was repeated until no further
pillars fulfilled the failure criterion.

In the analysis, pillar height has been corrected to allow
for the presence of gullies unprotected by sidings using
Equation [2]. The correction is based on numerical modelling
performed by Roberts et al.7.

he ≈ [1 + 0.2692(w/h)0.08] h [2]
where w and h are the pillar width and mining height respec-
tively.

As a typical example, the effective height (in terms of
expected strength) of a sidingless pillar with a gully depth of
2.0 m increases from 1.2 m to about 1.6 m.

Pillar effective widths (we) account for rectangular pillars,
taking cognisance of pillar length (L) according to the widely
used ‘perimeter rule’, described by Wagner8:

we ≈ 2 w L /(w + L) [3]

Strength parameter estimation

The strength of a pillar may be assumed to be a function of
its known physical characteristics (including width, height,
length), and certain unknown parameters (e.g. Salamon and
Munro9 K, α, β values). The maximum likelihood analysis
was used to estimate a best fit for these parameters. (This
type of statistical back-analysis accounts for the many
variables that contribute to pillar strength without necessarily
needing to understand the failure mechanisms.) The process
involved the evaluation of a database of APS values
calculated by MinSim where the ‘condition’, i.e. ‘intact’ or
‘failed’, was known.

Following the approach of Salamon and Munro9, the
safety factor (SF) of each pillar was defined by:

SF = Strength / APS [4]
A probabilistic distribution of SFs governs the condition of
pillars, in the sense that a pillar with SF>1 is likely to be
intact, while one with SF<1 is likely to have failed. A
lognormal distribution was assumed for the SFs, having a
log-mean of zero and standard deviation of s. With this
formulation, physically meaningless negative SFs are
disbarred, and reciprocal symmetry pertains, e.g. a pillar
having SF=0.5 is about as likely to have failed as one with
SF=2 to have not failed. The logarithmic standard deviation

was assumed to account for all uncertainties in the system of
pillars, e.g. mismeasurement of widths, misestimation of
pillar APS values, real geotechnical variations in pillar
properties, etc.  For historical reasons, logarithms to base 10
are used in the lognormal distribution, and to interpret s,
10± s needs to be evaluated in relation to unity. The value of s
is a parameter that has to be estimated along with the
unknown parameters governing the strength of the pillars in
a given observed set.

A ‘likelihood function’ (Li) of the probability of the pillars
exhibiting their stipulated condition (‘intact’ or ‘failed’) was set
up. To avoid multiplications, the logarithm (base e) of Li was
used so that the function F was defined as in Equation [5]:

F = ln Li = ∑ ln(prob. of intact cases) 
+ ∑ ln(prob. of failed cases) [5]

The probability of an intact case (condition codes CC = 0, 1,
or 2 in this study) was given by Φ(log SF) where Φ is the
cumulative normal distribution. Such cases biased the
derived best parameter fits so that their SFs were as large as
possible.

The probability of a failed case in which the APS value
was the estimated load at which failure actually occurred (the
situation in Salamon and Munro’s9 back analysis, and CC=3
in the present study) was given by Φ(log SF)/SF, where Φ is
the normal probability density function. These cases strongly
biased the best-fit parameters so that their SFs were more or
less symmetrically disposed about unity. Note that this
corresponds exactly to the formulation presented in Salamon
and Munro9.

The probability of a failed case where the APS was merely
an upper bound and failure probably took place earlier at
some lower APS value (the situation in many of the back-
analysis scenarios, CC = 4 or 5) was expressed by the
function (1– Φ(log SF)). This is analogous to the treatment of
intact cases, and biased the best-fit parameters so that the
SFs were as small as possible. The fit is weaker than for the
situation where APS values reflect actual strengths at which
failure occurred. 

Validation of the numerical models used to determine

pillar strength

A system of regularly spaced, stable, rib pillars at Lonmin
Karee provided an unusual quasi-2D situation where the
numerical models could be validated against an analytic
solution. Figure 4 depicts the geometry of this site. 

A 7 m wide by 1.4 m high dip pillar, with 28 m mined-
out panels on either side, was observed in situ to be just
beginning to scale (CC=1). The APS provided by the MinSim
model was 80.8 MPa. This result compared favourably with
an analytic estimate of 82 MPa. The area of interest was
about 660 m below surface.

Data collection sites

Introduction

A total of five stopes from three shafts at Impala were used in
the evaluation. The pillars were composite, consisting of
pyroxenite and anorthosite with a 1 cm wide chromitite
stringer at the pillar centre (Figure 5). Generally the pillars
consisted of equal parts of pyroxenite and anorthosite.
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Pyroxenite and anorthosite samples were collected from
one of the investigated pillars and tested in a stiff-testing
machine. Figure 6 and Figure 7 show the stress-strain
behaviour of these rock types under uniaxial and triaxial
testing conditions. 

The geomechanical behaviours of the two rock types differ
slightly from one another, which would have resulted in
complex interactions during loading. The more brittle Type II
behaviour10 shown by the anorthosite in Figure 7 could
explain why some pillars burst, while others of similar size do
not, i.e. pillars with a higher proportion of anorthosite may be
more vulnerable to bursting.

Impala 4 shaft 

In 1968 Impala Platinum introduced a system of nominal 5 m
by 5 m pillars, spaced 32 m by 30 m (centre-to-centre). The
system supported the stopes until August 1974, when a
massive collapse involving an area of roughly 200 m by
200 m in a recently holed pair of stopes (total strike span of
600 m) occurred at a depth of 160 m (Figure 8). The
hangingwall failure affected surface structures, including the
mine hospital. The fall was bounded on the up- and down-
dip extremities by a fault and dyke respectively. No potholes
were present in the stope and the extraction ratio was about
98%. Pillar loads, based on tributary area theory, were
estimated at about 240 MPa11, and the suggested mechanism

of failure was the activation of the bounding weak planes,
which removed the bridging effect of the strata and applied
full overburden loads to the pillars. Pillars appeared heavily
damaged, but no loss of integrity of hangingwall or pillar
foundations was seen. Since this is one of the few well-
documented hard-rock collapse scenarios in South Africa, it
was included in this study. 

The pillars reported as the worst affected were selected for
the strength analyses and are highlighted by the dotted block
in Figure 8. This area also formed part of the highest elastic
convergence in the evaluation and therefore the most
vulnerable region between the fault and dyke structures (see
the dotted region between the geological structures in 
Figure 8). Closure was estimated from underground visits

▲
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Figure 5—A typical composite pillar used in the statistical evaluations

Figure 8—Impala 4 shaft collapse site (depth 160 m, dip 9°)

Figure 4—Karee dip pillar geometry (grid size 0.5 m, depth 660 m, dip 9°,

stope width 1.4 m, k = 1)

Figure 6—The stress-strain behaviour of the pyroxenite rock type

Figure 7—The stress-strain behaviour of the anorthosite rock type
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just after the collapse to be about 300 mm in the area of
interest and varied between 40 mm and 150 mm over the rest
of the collapse. Surface deformations above the worst
affected area were also 300 mm, suggesting that the block
slipped down on the fault and dyke structures with very little
bulking. Further justification for the participation of the fault
and dyke in the collapse was provided when cracks matching
the extrapolated positions of the underground structures
were observed on surface.

The modelling of this site was particularly difficult, since
not only was there extensive remote mining, but, at a mean
depth of only 160 m, the finite depth effect had to be taken
into account. This was accomplished by assuming a second,
completely mined out reef, on surface elevation, about four
times larger than the area of interest. The effects of remote
mining were included by modelling a basic window size of
1 024 m by 1 024 m to establish a correction factor. After
this the area of interest (256 m by 256 m) was modelled
using a grid size of 0.5 m and the results corrected for
external mining using a factor of 1.26. 

Further analysis of the MinSim finite-depth run revealed
that the stress carried by all pillars in the collapse area,
averaged over this area, amounted to 3.5 MPa. If the
mechanism of preliminary rupture of the bounding dyke/fault
structures is correct, the average would be 4.8 MPa, i.e. cover
load tributary area. This is about 37% higher than the
MinSim evaluation. Since the stresses shown by the MinSim
analysis were already very high, a more likely mechanism is
that one or two pillars failed at about 180 MPa (the elastic
stress calculated by MinSim for the smallest pillars),
triggering a pillar run and the final general collapse, along
with failure of the bounding dyke/fault structures. The pillar
with the highest stress was also the smallest pillar. It was
therefore assigned CC3 and included in the database.

Impala 8 shaft 

During the mid-1990s, Impala Platinum returned to some
old, shallow-depth Merensky workings to mine out the in-
stope pillars between barrier pillars spaced 140 m to 200 m
apart. The investigated stope is located about 320 m below
surface and is shown in Figure 9. An area of about 140 m x

300 m is isolated from the surrounding stopes by significant
pillars on all four sides. The only pillars left within the area
of interest are shown in Figure 9.

Pillar 14 burst some time after the in-stope pillars were
extracted from the original stope (Figure 10). The stress
carried by the pillar at the time of failure was calculated using
MinSim. This pillar was then used as a benchmark to
determine whether other pillars had failed. A residual
strength of 20 MPa was assigned to all failed pillars.

Impala 10 shaft (Site 1)

These workings are located about 890 m below surface
(Figure 11). Pillars 16 and 17 were observed to have burst
some time after mining and sweeping had been completed in
the stope (Figure 12). 
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Figure 10—Pillar 14 and the fractured rock in the ASG after the burst

Figure 9—Plan showing the Impala 8 shaft investigation site (depth

320 m, dip 9°)

Figure 11—Plan showing the Impala 10 shaft investigation site (depth

890 m, dip 9°)
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The pillars were assumed to be close to their load bearing
capacity when the stope reached its limits and may have
burst because of mining in the surrounding stopes or as a
result of local seismicity. The pillar numbers shown in the
plan were used in the analysis.

Impala 10 shaft (Site 2)

The stope was mined during the first half of 2005 using a
breast configuration. The depth of workings and reef dip
were about 1 100 m below surface and 9°, respectively.
Pillars 11, 9 and 12 (Figure 13) burst on 25 March, 15 April
and 17 April 2005, respectively. The face positions shown in
Figure 13 did not change between the bursts.

The bursts took place during sweeping operations, when
the rock left in the ASG was removed. This site provided
strengths for large w/h ratio pillars. Figure 14 shows some of
the broken fragments of rock in the siding on the up-dip side

of Pillar 9 after cleaning-up operations. Note the stress
fractures in the hangingwall, indicating that the pillar was
highly stressed at some stage.

Impala 10 shaft (Site 3)

The mining conditions were similar to Site 2. However, poor
local ground conditions led to Pillar 24 (Figure 15) being cut
to unusually large dimensions. The pillar burst at the mining
configuration shown. 

Maximum likelihood evaluation

Database description

The database consisted of 179 pillars, of which 109
represented stresses at some value below the peak strength, 
8 were CC=3 pillars and 62 provided some stress higher than
the strength. The majority of the pillar we/he ratios ranged

▲
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Figure 14—Up-dip side of Pillar 9

Figure 15—Plan showing the 3rd Impala 10 shaft investigation site

(depth 1 100 m, dip 9°)

Figure 12—Up-dip side of Pillar 16

Figure 13—Plan showing the 2nd Impala 10 shaft investigation site

(depth 1 100 m, dip 9°)



between 2 and 6, with the largest proportion being between
2.5 and 3.5 (Figure 16). Very little data was available below
1.5 or greater than 6.

The data-set included a wide range of pillar lengths
(Figure 17) and widths (Figure 18) but all the heights fell
into the limited range between 1.2 m and 2 m (Figure 19).

Two types of pillar strength formulae were back fitted,
using the maximum likelihood evaluation:

➤ Linear formula 12 and
➤ Power formula9.

Linear formula

The linear equation, in its original form (Equation 6),
assumes square pillars. Ryder et al4 modified the equation
(Equation [7]) to obtain an explicit estimate of length (L)
strengthening, partially based on expected strengthening
under plane strain conditions13.

[6]

[7]

The back-fit values for Equation [7] are provided in Table I.
The a parameter predicts a 27% increase in the strength

of a rib as opposed to a square pillar, which is similar to the
strengthening effects suggested by Ryder and Ozbay13 and
Roberts et al7 (~30%). The b parameter is similar to values
obtained by Bieniawski and van Heerden12 for large in situ
South African coal specimens (b=0.64). The predicted in situ
cube strength (Ki) appears slightly high as the laboratory
UCS on a w/h=0.3 cylinder is only about 90 MPa. A
comparison between the modelled and calculated APS values
is shown in Figure 20. The Figure shows a good separation
between failed and unfailed pillars, with a correspondingly
low evaluated standard deviation s.

As an illustrative example of the use of Equation [7], a
pillar with dimensions (L x w/he) of 6 m x 3 m/ 1.2 m,
provides an estimated strength of 246 MPa. 

The linear equation can also be used assuming we
(perimeter rule)8 (Equation [3]) for rectangular pillars.
Equation [6] can thus be rewritten as:
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Figure 16—Distribution of pillar we/he in the database

Figure 17—Distribution of pillar lengths in the database

Figure 18—Distribution of pillar widths in the database

Figure 19—Distribution of pillar heights in the database

Table I

Back fit values for Equation [7]

Parameter Value

Ki (in situ cube strength) 136 MPa

a (length parameter) 0.27

b (linear w/he parameter) 0.59

s 0.073



Merensky pillar strength formulae based on back-analysis of pillar failures

[8]

Only two parameters are required in Equation 8 and the
back-fit values are provided in Table II.

The calculated in situ cube strength (Ki) provided by the
back-fit analysis on Equation [8] is higher than expected and
the standard deviation s is also slightly higher than in 
Table I. However, the b value is similar to widely reported
values (0.78) for materials including coal, norite and
sandstone13. Figure 21 also shows a good separation
between failed and unfailed pillars, but the strength
prediction for the CC3 pillars is not as good as in Figure 20,
particularly for higher w/h ratios.

Figure 22 compares the strengthening effects of the Ryder
et al.4 and Wagner8 correction for length. The Wagner8

correction depends on w and h whereas the Ryder et al4

adjustment is independent of these variables. Figure 22
represents the range of CC3 widths.

Power formula

Table III shows the results of the standard power formula
backfit (Equation [9]). The length strengthening effects are
implicit in the use of the perimeter-rule8 effective width we:

[9]

These α and β values differ significantly from those back-
fitted for the South African coal mines9 (α = 0.46, β = -0.66)
or for the Hedley and Grant14 formula (α = 0.50, β = -0.75).
The β value in Table III was determined from a relatively
small range of heights (Figure 19) and may therefore be
unreliable. The estimated strength using the power formula
for a pillar with dimensions 6 m x 3 m (we = 4 m) and a

height of 1.2 m, is 231 MPa, slightly lower than that
determined by the linear formula.

Figure 23 compares the modelled and calculated APS
values. This also indicates a good separation between failed
and unfailed pillars, but the CC3 pillars do not fit as well as in
Figure 20. The standard deviation is also slightly higher than
the analyses shown in Table I.

These initial investigations suggest a good correlation
between calculated and actual strengths for both the linear
and power formulae. However, the linear formula provides a
slightly smaller standard deviation, and therefore better
results for the whole database.

This linear relationship between strength and w/h is
also supported if just the eight CC3 pillars are considered—
Figure 24 and Figure 25.

▲
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Figure 21—Back-fit strengths, using the linear pillar strength formula

(Equation [8])

Figure 22—Comparison between the strengthening effects of pillar

length for the Wagner5 (Equation [8]) and Ryder et al1 ((Equation [7])

equations

Table III 

Back-fit values for Equation [9]

Parameter Value

K 86 MPa

α (effective width parameter) 0.76

β (effective height parameter) -0.36
s 0.080
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Figure 20—Backfit strengths, using the linear pillar strength formula

(Equation [7])

Table II

Back fit values for Equation 8

Parameter Value

Ki (in situ cube strength) 147 MPa

b (linear w/he parameter) 0.70

s 0.075



The results of the CC3 pillars show a similar relationship
between pillar strength and w/h as the rest of the database.
The regression shown in Figure 24 does not match the CC3
values as well as in Figure 25 because no correction has been
made for the effect of pillar length on strength in Figure 24.
Theoretically the CC3 data points should be located between
the extremes of the square and rib pillars in Figure 24 and on
the back analysed strength line in Figure 25. The slope of the
CC3 regression line is, however, steeper than the slope of the
back-analysed strength equations. These results suggest that

the database may be slightly underestimating the pillar
strength at higher w/h. However, there were only eight CC3
pillars and their statistical relevance may be limited. It is
interesting that the back-analyses suggest an approximately
linear increase of strength even above w/h ratios of five.
Squat-pillar theory14 suggests an exponential increase in
strength at a w/h of greater than five. This theory, therefore,
does not appear to apply to the pillars in the database; the
reason, most probably, being that foundation-failure effects
play a large role in determining the system strength of
underground hard rock squat pillars. This is discussed in
more detail in the following section. 

The Wagner8 width correction for pillar length (Figure 25)
provides a better correlation coefficient for linear regression
analysis of the CC3 pillars than the Ryder et al4 evaluation in
Figure 24, but only eight pillars were used in the assessment.
In addition, the Wagner8 length strengthening effect for
pillars with w=3 m and h=1.2 m, when applied to the linear
equation with the constants in Table II (see Figure 22),
provides similar results to Stravropoulou’s16 findings, i.e.
that a conventionally tested uniaxial specimen is 45% weaker
than a sandstone tested under plane strain conditions.
However, the Wagner8 correction is dependant on pillar w
and h (see the curves in Figure 22 for 3 m and 8 m wide
pillars), probably providing unrealistically high factors for the
larger pillars in the database. The worse fit of the Ryder et al4

regression analysis (Figure 24) compared to the Wagner8

evaluation (Figure 25), and the larger influence of length on
strength increase predicted by Stravropoulou16 suggests that
the Ryder et al4 correction for length may be slightly conser-
vative. The conservative nature of the Ryder et al4 correction
for length, the smaller standard deviation shown in Table I
and the better evaluation of larger pillars by Equation [7],
suggests that this equation with the parameters in Table I is
preferred over the Wagner8 length correction (Equation [8])
for the design of stable pillars.

The value for s in Table I was used to determine a range
of safety factors. Safety factors have been plotted as a
function of probability of stability in Figure 26, and may be
used when designing stability pillars with similar
geomechanical and geotechnical conditions to the pillars in
the database. A safety factor of 1.7 will provide a probability
of stability of 99.9%, on the basis of the limited data in the
database.
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Figure 24—Linear regression of CC3 pillar strengths (MinSim) as a

function of w/he ,compared to strengths of square and rib pillars using

Table I

Figure 25—Linear regression of CC3 pillar strengths (MinSim) as a

function of we/he (using the Wagner8 correction for length)

Figure 26—Safety factor for the Impala Merensky pillars as a function

of probability of stability, based on the linear back-fit analysis (log

s=0.073)
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Figure 23—Back-fit strengths, using the power pillar-strength formula
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The database consisted of a mixture of pillars with and
without sidings, and the siding depths and the heights of
gullies also varied. The effect of these parameters on pillar
strength was applied using unproven theory and needs to be
investigated further.

FLAC strain softening analysis

Model description

FLAC17 was used to determine the response of a rib pillar
system comprising the pillar itself and the immediate
hanging- and footwalls. Of particular interest are the effects
of w/h on pillar (system) strength. The results of laboratory
tests, in combination with previous modelling work5 were
initially used to select parameters that control the strength
and the post-failure behaviour of the Merensky Reef pillars.
Final parameters for the Mohr-Coulomb strength criterion
were calibrated from the back-fit strength results of
underground pillars. 

As the triaxial laboratory test data showed a rapid build-
up of the internal friction angle to a constant value, it was
decided to represent the changes in material strength by a
constant internal friction angle, combined with a linearly
decreasing cohesive resistance. This allowed for a fairly
simple constitutive model in which the maximum strength in
the triaxial tests is determined by two constants: the internal
friction angle and the initial cohesive strength. Post-failure
behaviour is controlled by the loss of cohesion with
increasing deformation. 

Boundary conditions play an important role in the
punching mechanism, as they affect horizontal confinement. In
the models, the vertical boundaries are not allowed to move in
a horizontal direction (thus simulating a fully replicated set of
pillars). The presence of discontinuities such as bedding
planes, faults and joints should also affect the punch
resistance, but this has not been investigated in the present
study.

While the numerical models provide insight into the failure
mechanisms and allow quantification of the pillar system
strength, it must be emphasized that these models always need
to be calibrated against realistic data. Mesh density and rate of
softening are important parameters in this respect and they
cannot be arbitrarily selected. Table IV shows the parameters
that have been used in the numerical model, as well as the
parameters that are obtained from triaxial compression tests on
pyroxenite and anorthosite (Figure 6 and Figure 7). The
softening rate that has been used for the numerical models
appears to be relatively large. Unfortunately, it was not
possible to obtain realistic post-failure parameters from the
laboratory tests, as failure localization obscured the data.

Results

The selected strength parameters for the Mohr-Coulomb
strain softening model are a cohesive resistance of 20 MPa
and an internal friction angle of 40°. This results in a UCS of
86 MPa, which is similar to the laboratory-determined UCS
(Figure 6). The rate of cohesion softening (brittleness) has a
major influence on the pillar strength, as can be discerned
from Figure 27. Two extremes were selected: a relatively
brittle material with a cohesion loss of 20 MPa over 25
millistrain (brittle model), and a relatively ductile material

with a cohesion loss of 20 MPa over 100 millistrain (ductile
model). However, it was subsequently found that the mesh
density, or the element size, also controls the ‘effective
brittleness’. The results displayed in Figure 27 are obtained
from models with a high mesh density in which the pillar
consisted of 48 square elements across the height of the
pillar, which was kept constant in the ‘constant height’
models. The stope span was five times the pillar width
(extraction ratio ~ 83%) and the model height was more than
eight times the pillar width. The latter was varied in order to
change the w/h ratio in the ‘constant height’ models, in
which the number of elements across the width of the pillar
increased proportionally. In order to investigate the
possibility of this affecting punch resistance, another set of
models, the ‘constant width’ models, was analysed. In these
models, the height of the pillars was varied by using the
same number of elements across the height (48), while
changing the shape of the pillar elements from square to
rectangular. All results are displayed in Figure 27 where it
can be seen that the differences between the ‘constant height’
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Figure 27—Effect of pillar w/h ratio for pillars that are allowed to punch,

as well as for pillars that are surrounded by an infinitely strong rock

mass; high density mesh and varying brittleness

Table IV

Material and model properties

�3 Co �
0

�
res

�
pr

�
0

�
res

(MPa) (MPa) (m�)

A 2 15 55 50 < 0 - -

5 15 55 50 < 0 - -

10 15 55 40 < 0 - -

P 2 16 52 50 0.75 - -

10 16 52 40 0.65 - -

B 20 40 40 25 10 10

S 20 40 40 100 10 10

A = anorthosite lab.test,

P = pyroxenite lab.test,

B = brittle model,

S = ductile model,

Co = cohesion,

�0 = internal friction angle at peak load,

�res = residual internal friction angle,

�pr = residual plastic shear strain,

�0 = Dilation angle at peak load and

�res = residual dilation angle.



and ‘constant width’ width models are relatively small. This
is because an increase in mesh density does not have a
substantial effect on punch resistance, once a certain mesh
density is exceeded. 

The graphs labelled ‘pillar brittle’ and ‘pillar ductile’ refer
to models in which the hanging- and footwall material is not
allowed to fail, so that punching is not possible and failure is
concentrated in the pillar. Figure 27 also shows the pillar
UCS, along with the ultimate punch resistance for these
relatively brittle and ductile materials. These are labelled
‘punch brittle’ and ‘punch ductile’.

As the graphs are based on a UCS of 86 MPa, a change in
the value of the UCS would affect the values in the graphs
proportionally.

While the softening rate (brittleness) and mesh density
affect the effective pillar brittleness and consequently the
effect of width-to-height ratio on strength, the mesh density
also affects the punching potential of the pillar models.
Models with a relatively high mesh density show a change in
the mode of pillar failure once the pillar w/h ratio exceeds a
certain value. At smaller w/h ratios, the pillars fail by
progressively crushing from the edges towards the core, but
in the wider pillars additional fracturing of the hanging-
and/or footwall rock is initiated. Figure 27 shows that there
is a disparity between the strengths of pillars with and
without elastic foundations. This suggests that punching is
initiated once the strength exceeds 250 MPa (~3 x UCS).

If the hanging- and footwall material is relatively strong
and failure is restricted to the pillar, the pillars become
virtually indestructible at a width-to-height ratio in excess of
3.0 (the so-called ‘squat’ pillar effect). The graphs labelled
‘pillar’ in Figure 27 illustrate this effect. Laboratory
experiments on hard rock pillar specimens, loaded between
steel platens, have not demonstrated such an extreme
exponential relationship between w/h ratio and strength.
However, it should be emphasized that the boundary
conditions in such laboratory experiments are not represen-
tative of in-stope pillars. The interface between the loading
platen and the specimen provides limited friction18 while the
draping effect of the stope is not represented. As a
consequence, the laboratory specimens experience far less
confinement than the in situ pillars and numerical modelling
results are probably more representative of actual pillar
behaviour.

A more realistic model includes the presence of the
hanging- and/or footwall. In such a model the fracturing or
damage can expand beyond the pillar itself. This ‘punching’
phenomenon becomes an important aspect of the failure
mechanism of the pillar system, and effectively controls the
pillar strength at larger width-to-height ratios. The graphs in
Figure 27 suggest an approximately linear increase in pillar
strength with an increasing w/h ratio. At relatively large w/h
ratios, the punch resistance does, however, reach a maximum
at the stress levels indicated in the figure. These levels
indicate the ultimate punching resistance of infinitely stiff
and strong pillars.

The fact that material brittleness has such a profound
effect on system strength can be explained on the basis of the
pillar failure process. Unlike in triaxial tests, where uniform
stress conditions prevail prior to specimen failure, pillar
failure initiates at the pillar edges and progresses gradually

towards the core of the pillar. Edge failure typically starts at a
relatively low average pillar stress. Failure progression
towards the pillar core is to a large extent controlled by the
post-failure behaviour of the previously failed material near
the pillar edge. A relatively ductile material would provide
more resistance during its post-failure degradation, as it
requires more deformation to become completely destroyed.
Pillar failure progression will therefore be more restrained in
the case of a more ductile material as compared to a more
brittle material. This implies that an increasing pillar width-
to-height ratio will be associated with a larger rate of
strength increase in the case of a relatively ductile material,
while the rate of strength increase will be minimal in the case
of a very brittle material. This is consistent with the non-
punching pillar results shown in Figure 27. 

The relationship between pillar strength and width-to-
height ratio is likewise influenced by mesh density. At higher
densities, an increase in width-to-height ratio brings with it
less of an increase of strength. This can be explained from
the fact that an increased mesh density leads to an increase
in effective brittleness. Fracture localization is enhanced in
the case of a denser mesh, which implies that foundation
fracturing is more likely to occur in a model with a fine mesh
than in a model with a coarse mesh. However, foundation
fracturing is not synonymous with foundation failure.
Foundation failure is the final stage, in which vertical
punching is accommodated by horizontal dilation. It appears
that this dilation is induced at a lower resistance level when
the element sizes are relatively large. In other words, a
reduction in element size (and thus an increase in mesh
density) would cause an increased punch resistance. This is
in contrast to the effects of mesh density on the crushing of
the pillar itself and on foundation fracturing. In order to
obtain a representative material brittleness as well as a
correct correlation between pillar failure and rock mass
failure, the combination of mesh density and rate of cohesion
softening needs to be calibrated properly. Most appropriate,
obviously, would be the combination which results in the
most accurate estimates of a wide range of pillar strengths.
Figures 28 to 30 show the load-deformation characteristics
and failure distributions for certain pillar geometries, mesh
densities and cohesion softening rates.

It is of interest to note that the pillar with a w/h ratio of
2.0 is completely crushed, with limited failure in the footwall,
while the pillar with a w/h ratio of 5.0 shows extensive

Merensky pillar strength formulae based on back-analysis of pillar failures
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Figure 28—Load-deformation relationship; dense grid and most brittle

material
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footwall failure combined with relatively large solid wedges in
the core of the pillar. The typical ‘Prandtl wedge’19 formed in
the footwall enables the footwall material to dilate into the
stope, thus accommodating the actual pillar deformation and
failure. Failure of a pillar system, which includes the adjacent
footwall and/or hangingwall rock, involves in essence a
combination of three mechanisms. First there is fracturing
and crushing of the pillar itself, which often is reproduced
under laboratory conditions with unrealistic boundary
conditions. Then there is the fracturing into the surrounding
material, the Herzian20 crack and wedge formation. The third
mechanism is the horizontal dilation of the foundation, which
controls the ultimate resistance against punching. These
latter two mechanisms have been investigated only to a very
limited extent as far as brittle materials are concerned and
references are therefore sparse (Cook et al21, Dede22, Özbay
and Ryder23, Wagner and Schümann24). It is, however, clear
that the failure of realistic pillar systems, with the probable
exception of very slender pillars in hard rock, is to a large
extent controlled by the fracture and failure processes in the
foundation. These processes thus need to be included in any
realistic analysis.

Discussion

The very small standard deviations in pillar strength
estimated by the statistical back-analyses are evidence of a
good quality database. An excellent correlation coefficient
was obtained for the linear regression of the data relating
pillar strength to w/h ratio for the CC3 pillars in Figure 24

and Figure 25. The analysis suggests that a linear formula is
appropriate for strength analysis. Although the statistical
relevance of only eight pillars may be limited, the back-
analysis performed on the CC3 pillars also matches the
strength parameters calibrated from the whole database very
well (Figure 24 and Figure 25). The small value for s shown
in Table I offers further evidence of a linear relationship
between pillar strength and width-to-height ratio. The effect
of length-to-width ratio has also been investigated in this
study. As 90% of the pillars in the database have a length of
less that 16 m, the range of w/l ratios is limited. 

Nevertheless, when stresses calculated using the Ryder et
al4 and Wagner8 length corrections are compared, the former
such correction appears to be more realistic. This is especially
true at greater pillar widths and lengths. The Wagner8 length
correction appears to overestimate the pillar strength for wide
and long pillars. We believe that Equation 7, with the back-fit
parameters provided in Table I, provides the best estimate of
pillar strength (at least for the range of w/he in the database)
for the following reasons:

➤ The smaller standard deviation; and 
➤ The reasonable (perhaps slightly underestimated)

calculation of the effect of length on strength.
The numerical models (Figure 27) suggest that the w/he-

strength relationship may not be linear at very high w/he ratios.
It is suggested that the formula may be used on pillars with
similar geotechnical and geomechanical characteristics to those
of the pillar systems in the database. The effects of gullies
adjacent to pillars and the depth of sidings have not been
properly investigated and improved w/h ratio estimates may be
possible when these factors are established. This would also
enable a re-evaluation of the effects of pillar length on strength.

Figure 31 compares the strengths predicted by the linear
formulae with those modelled in 2D by FLAC, by assuming
infinitely long pillars. In this case, a good correlation has been
obtained between underground data and the numerical results.
Both indicate an approximately linear relationship between
pillar strength and pillar w/h ratio. The numerical models
demonstrate that the ultimate punch resistance is reached
when the w/h ratio approaches 10. The results of the
numerical models clearly show that pillars need to be viewed as
a system that incorporates the immediate hanging- and
footwall, as well as the pillar itself. With increasing w/h ratio,
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Figure 29—Load-deformation relationship; dense grid and least brittle

material

Figure 30—Failure distribution, using dense mesh and ductile material;

w/h =2.0 (left) and 5.0 (right) (double symmetry)

Figure 31—Comparison between the strength database and FLAC

modelling results



failure is not contained solely within the pillar, but also
expands into the hanging- and/or footwall. The so-called
‘squat’ effect is still present, but it no longer dominates the
pillar system behaviour. Increasing pillar strength and pillar
load results in increasing damage and failure in the hanging-
and/or footwall. 

The modelling results suggest that the pillar systems in
the database compare very well with the ‘ductile’ model. This
implies that footwall and/or hangingwall damage would have
initiated at relatively low w/h ratio (~1.2), that is, for most of
the pillars in the database. Under these conditions, pillar
failure is always associated with footwall and/or hangingwall
damage, and the pillar system’s ability to carry load is
reduced, as shown in Figure 28 and Figure 29. A further
conclusion is that no benefit is gained by cutting pillars with
a w/h ratio greater than about 10.

Conclusions

The database used in the paper to back analyse underground
pillar strengths is shown to be high-quality. It included a
wide range of widths w (2 m–7 m) and lengths L (4 m–20
m), though a lesser range of heights he (1.2 m–2 m). A
convincing match was also obtained between FLAC modelling
and the statistical analyses performed on the database. Both
the database and the FLAC modelling suggest an approxi-
mately linear relationship between pillar strength and w/h
ratio in areas where the pillars have geomechanical properties
similar to those of the surrounding rock mass. The investi-
gations suggest that Equation [7] with the constants in Table
I best describe pillar strength for the pillars in this particular
database. Analyses performed on the CC3 pillars indicate only
that the constants in Table I may be slightly conservative and
therefore safely applied to stable pillar design. Caution should
be exercised when applying this formula and the calibrated
constants to areas with different geotechnical and
geomechanical properties.

The modelling demonstrates that pillar behaviour cannot
be considered in isolation. Under conditions where the
hangingwall and footwall have geomechanical properties
similar to those of the pillar, foundation damage is inevitable,
particularly for wider pillar systems. The pillars in the
database followed the trends of the ‘ductile’ system in the
model, indicating that damage would have initiated in the
footwall and possibly the hangingwall for w/h ratios
exceeding about 1.2. At higher w/h ratios, pillars may not
necessarily fracture throughout, but the system fails with
ensuing load loss. Thus, while the so-called squat effect
persists, it does not dominate the system and a linear
relationship is shown up to a w/h of about 10. No further
strength increase was shown above a w/h of 10 and
therefore no benefit is likely to be gained by cutting pillars
larger than this.
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