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ABSTRACT

Computer systems are increasingly heterogeneous with nodes
consisting of CPUs and GPU accelerators. As such systems
become mainstream, they move away from specialized high-
performance single application platforms to a more general
setting with multiple, concurrent, application jobs. Deter-
mining how jobs should be dynamically best scheduled to
heterogeneous devices is non-trivial. In certain cases, perfor-
mance is maximized if jobs are allocated to a single device,
in others, sharing is preferable. In this paper, we present a
runtime framework which schedules multi-user OpenCL tasks
to their most suitable device in a CPU/GPU system. We
use a machine learning-based predictive model at runtime to
detect whether to merge OpenCL kernels or schedule them
separately to the most appropriate devices without the need
for ahead-of-time profiling. We evaluate out approach over
a wide range of workloads, on two separate platforms. We
consistently show significant performance and turn-around
time improvement over the state-of-the-art across programs,
workload, and platforms.
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1 INTRODUCTION

Incorporating GPUs into multi-core parallel systems is in-
creasingly popular. They provide the potential for high
performance computing with relatively low power consump-
tion. Users typically write part of their applications as a
kernel, using CUDA or OpenCL, which is then executed on
a GPU.

GPUs are normally used as dedicated accelerators for a
single application. There is no overall operating system
resource management, no hardware support for time sharing
and very limited support for space sharing. This lack of
support is a problem as GPUs become incorporated into
mainstream parallel systems and used by multiple concurrent
user applications.
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While GPUs are excellent at accelerating certain jobs, they
are poorly suited to others. The research challenges are to
determine (i) when to share the GPU among jobs and (ii)
when to schedule jobs to the multi-core CPU. Given that
this trade-off will be based on programs and the underlying
platform, we want an approach that is portable and low
overhead. Furthermore, as we focus on a general purpose
dynamic multi-user setting, we need an approach that does
not require profiling or prior knowledge of the user program.

This problem of space sharing GPU to increase utilization
has been recognized by other researchers. However, such ap-
proaches are inappropriate for multi-user scheduling. Elastic
Kernels [21] (EK) is the best-known work. Here, they scale
the kernel code to fit multiple kernels on the same GPU.
The performance improvement is poor in practice unless
the best co-execute kernels are known in advance. In [14],
Energy-Efficient Concurrent Kernel (EECK), they determine
the best combination of kernels by profiling every candidate
application ahead of time and then selecting the two kernels
that are likely to improve energy and throughput. While
this approach may work in single-user cases where the same
combinations of kernels are executed repeatedly, it cannot
be used in a dynamic multi-user setting with unknown jobs
where prior profiling is not feasible.

Both EK and EECK focus on sharing the GPU but do
not consider the host CPU as a potential scheduling target.
As all GPU systems have a host multi-core CPU, this is a
wasted opportunity. In [2, 29] they determine whether to
schedule OpenCL kernels to a CPU or GPU. They show
performance improvement over partitioning the job between
CPU and GPU but do not consider scheduling multiple
jobs concurrently to the GPU in order to exploit hardware
resources.

This paper develops a new scheduling approach for multiple
OpenCL applications on CPU/GPU heterogeneous systems.
It first determines which user jobs should be scheduled to
the CPU and which to the GPU. It then determines, if
appropriate, which kernels should be merged and executed
concurrently on the GPU to improve performance. The
merging of kernels is performed by a JIT compiler, while
scheduling is performed by a thin runtime layer. Unlike
previous approaches, this is totally transparent to the user
and requires no profiling. To achieve this, our approach relies
on offline predictive modeling. We show that merging kernels
based on simple characteristics such as as memory intensity
or branch divergence does not work. Instead, we build a
one-off, statistical model ”at the factory”, based on offline
experiments to determine the best merging and scheduling
of kernels. It uses both static program features and dynamic
runtime parameters such as data and workgroup size. This
model is then cheaply deployed at runtime to predict the
best scheduling decision.

It is evaluated on a large number of workloads ranging
from 2 to 64 jobs in size randomly selected from 20 bench-
marks selected from the Parboil and Polybench benchmark
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(b) Performance improvement by concurrent kernel execu-
tion.
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(c) Performance improvement by different multi-task exe-
cution approaches.

Figure 1: Multi-Kernel execution on CPU+GPU plat-
form (AMD). Each kernel runs on its default input pro-
vided by the benchmark suite. The platform hardware
configuration is shown in Table 6.

suites. Our framework was evaluated on an NVIDIA and
AMD platform where in each case we significantly improve
performance over state-of-the-art techniques by between 11%
and 36% on average over the best competitive technique.

2 MOTIVATION

This section shows that sharing a GPU and effectively us-
ing the CPU can improve performance for multi-program
OpenCL workloads. We first examine six benchmarks, from
the Polybench and Parboil benchmark suites and show that
they have widely varying GPU performance. We then show
that concurrent execution can improve performance but exist-
ing approaches perform poorly. We then show that combining
concurrent GPU execution with CPU/GPU scheduling can
deliver significant performance gains.

Single kernel GPU performance. Figure 1a shows the speed-
up of individual kernels on an AMD GPU. Kernels such as
mriQ, gemm and 3mm sgemm, perform well, while others e.g.
sad and atax, slowdown because of data transfer overhead.
Knowing which device to use clearly impacts application
performance.

Concurrent kernel execution. The concurrent execution
of kernels on a GPU can improve hardware utilization and
performance. However, such improvement depends on the
kernels and how much of the GPU’s resources are allocated
to each one. The proportion of GPU resource allocated
to each kernel is called the mizing ratio. To illustrate the
impact of kernels and mixing proportion on performance, we
ran all pairwise combination and mixing proportions of the
programs shown in Figure la. The kernel pairs are created
by a source-to-source transformation described in Section 5.

Figure 1b shows the results. Here the x-axis denotes the
pair of programs run together, and the y-axis describes the
performance improvements over running the kernels non-
concurrently. Each pair has three performance bars. The
first corresponds to 25% of the GPU allocated to the first
program with the rest assigned to the second program. The
second and the third bar represent 50% and 75% respectively.
As can be seen, performance of many concurrent kernels is
poor and only improves in certain cases.

In Figure 1b, no matter how atax and sgemm are com-
bined, their performance is always worse than running these
two kernels sequentially. Kernel pairs, such as 3mm+mriQ,
sgemm+mriQ, sgemm+sad, and mriQ+sgemm, experience a higher
throughput when running them concurrently. Other ker-
nel pairs, such as 3mm+atax, gemm+3mm, and mriQ+atax, can
achieve good performance, but the correct allocation of re-
sources is critical. Otherwise, they will slow down.

Ezisting Concurrent Approaches. In Figure 1c the first
three bars correspond to existing concurrent scheduling ap-
proaches. The first bar corresponds to Elastic-Kernel [21]
(EK) which merges kernels pairwise without regard to suit-
ability. The second, Energy-Efficiency Concurrent Kernel
[14] (EECK) uses prior profiling to determine what to run
concurrently, ahead of time. To make the use of profiling
realistic, we use profiling information from a smaller data set
to guide merging.

The third bar to refers Best_GPU_only which represents the
best performance available by choosing the right kernels to
execute together by trying all combinations and represents an
upper-bound on performance Figure 1c shows the speedup of
each approach relative to just running the kernels sequentially
on the GPU. EK suffers a 25% slowdown while there is a
4.5% improvement when using EECK.

For EK, the slowdown is caused by poor kernel pair and
mixing ratio selection. EECK is sensitive to the accuracy of
the profiling. More accurate profiling would certainly help
but its excessive cost cannot be justified in a multi-tasking
environment. The third bar in Figure 1lc shows that there
is a potential 22% performance improvement available when
merging kernels smartly.

Separate vs Concurrent Kernel Scheduler. GPU based sys-
tems have host multi-cores which are also scheduling targets
[29]. The final three bars in Figure 1c show the performance
achieved when using different scheduling policies that also
use the CPU relative to the performance achieved when just
executing kernels sequentially on the GPU. FCFS is a simple



first-come-first-served scheduler that gives 19% improvement.
The Heterogeneous-Scheduler (HS) [29] can achieve a sig-
nificant improvement, 38%. If, however, we were able to
correctly determine which kernels to merge and which kernels
to schedule to the CPU by exhaustively trying all possbilities,
we can achieve a 69% improvement as shown by last bar
labelled Best.

In summary, both concurrent kernel execution and schedul-
ing to CPU/GPU can boost performance. Furthermore, there
is significant room for improvement over existing schemes.
In this paper, we propose a runtime framework together with
a Just-In-Time compiler to create and schedule concurrent
kernels to CPU/GPU heterogeneous platforms without the
use of profiling.

3 CONCURRENT KERNEL ANALYSIS

Correctly sharing resources between kernels is difficult. This
section explores the impact of program characteristics on
performance and shows that no single characteristic is useful
in determining what kernels to execute concurrently. Similar
fact has been abserved by other work, such as [24]. One
widely accepted view is that complementary computation
and memory bandwidth intensity (or memory intensity) have
a significant impact on resource sharing. To examine this,
Table 1 shows the percentage of time the GPU computing
and memory units are active for the kernels shown in Figure
la. Values in bold highlight high intensity. Most kernels are
memory bound except for sgemm and mri-q.

Table 1: Compute vs. Memory Intensity.

Kernels Compute Intensity Memory Intensity Benchmark Suite
atax_kernell 0.315 88.86 Polybench
sad_calc_8 1.7 90.27 Parboil
sgemm 7.58 32.43 Parboil
3mm _kernel2 20.83 87.41 Polybench
gemm kernel 23.3 88.9 Polybench
mri-q 35.16 0.16 Parboil

Combining compute and memory intense kernels can im-
prove performance in some cases. Co-running mri-q with sad
improves performance. However, when co-executing mri-q
with a different memory intense kernel, such as atax, the
mixing ratio is critical. If mri-q has 25% of the resources,
the system experiences a 50% slowdown.

Conversely, a memory intense kernel such as gemm, co-
running with another memory intense kernel 3mm can benefit
from co-execution as long as one of the applications receives
the majority of resources. Equal resource partition surpris-
ingly leads to slowdown.

3.1 Concurrent execution based on kernel
characteristics

We now examine the impact of kernel characteristics on
concurrent performance across a larger number of programs
to see if a pattern emerges. The programs are detailed in
Table 7, section 7.

Impact by branches. Branches within a kernel have a signifi-
cant impact on a single kernel’s performance [26, 27].Figure 2
shows their impact on concurrent execution performance.
Here, the kernels are sorted according to the percentage of
branches executed. On the x-axis, the kernels located on the
left have fewer branches, as do the kernels located on the
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Figure 2: Performance distribution when co-executing
kernels according to branch density. Kernels are ordered
increasingly on branch density. Performance of the ker-
nel pair is designated by the size of the dot. Red means
a slowdown, blue means speedup.

lower part in y-axis. Red dots represent slowdown, blue dots
speedup. While we would expect co-execution of kernels with
few branches to be advantageous (lower left hand corner) this
is not the case. In fact, there is no clear pattern.

If we separate the kernels into low and high branch cate-
gories, Figure 3a shows the result of kernel co-execution in
three categories: low branch with low branch, low branch
with high branch and high branch with high branch averaged
across mixing ratio. While it is true that increasing the
branches in the workload decreases performance, from 12%
to 47% to slowdown, executing kernels which have low branch
rates does not improve performance either, confirming Figure
2.

Impact by compute intensity. It is often claimed that co-
running a high and low compute intensity kernel will allow
effective utilization of resources. After dividing kernels into
low and high compute intensity categories Figure 3b shows
their co-execution performance. The middle bar shows that
co-running low with high compute intensity actually gives
a 35% slowdown. Surprisingly if both have low compute
intensity, then a small gain of 7% is possible. Co-running of
high intensity workloads, however is clearly not a good idea.

Impact by memory accessing intensity. It may be the case
that sharing low computation intensity kernels can be ex-
tended to memory intense kernels. Figure 3c presents the
result of kernel co-running into the previous three categories.
It shows that memory intensities alone as a criteria for con-
current execution is a poor policy.

Impact by NDRange. Finally, we consider the impact of
the number of threads on performance. Figure 3d shows the
results of kernel co-running in all three categories. While
co-executing small kernels gives best performance, it is still
a 4% slowdown

In summary, using program characteristics such as diver-
gence, memory and compute intensity or number of parallel
threads alone is not a useful guide to selecting which kernels
to merge. In the next three sections we develop a smarter
scheme that combines these and other characteristics to best
exploit concurrent execution and also allows exploitation of
the multi-core CPU host.
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intensity etc.
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Figure 4: Kernels are scheduled to either CPU or GPU
from different ends of the queue in parallel.

4 OVERALL SCHEME

Figure 4 shows a specific example of our overall scheme. It
requires no modification or recompilation of user application
code or system software. Initially, the framework queries all
devices and sets up a global context. This context is shared
with the application threads and saves considerable overhead.

Users compile and execute their applications. Each ap-
plication, as usual, builds its kernel and data buffer and
registers with the runtime. Our runtime then extracts both
static and dynamic features from the kernel which are input
into a predictive model. This model determines (i) whether
to schedule it on CPU or GPU and (ii) whether to merge
it with another currently available kernel. Based on these
predictions, the kernels are then inserted into a double-ended
sorted task queue with CPU friendly kernels at one end and
(merged) GPU friendly kernels at the other. Tasks are dy-
namically dispatched from one end of the queue to the CPU,
the other end to the GPU.

application 1 application 2
Time PP PP Merged Kernel

ot | [Lhos2 |
[ host2 | arg arg
| oo
. kernel-1

else:

[Kemet-2 ] kemek2 | )
[hostt Jecszme oS

Figure 5: Merged kernel construction.

5 JIT COMPILER

Kernels are compiled at runtime, so as to be portable across
OpenCL devices. As each application registers its kernel,
our JIT compiler is called, extracting kernel static features
and creating concurrent kernels based on a predictive model
where appropriate.

5.1 Concurrent kernel construction

Concurrent kernel execution is a well-studied topic. Prior
work uses either separate streams or command-queues for
CUDA and OpenCL platforms respectively. However, fair
sharing actually depends on driver implementation and, as
shown in [19], is not guaranteed. Rather than relying on
device drivers, we use a compiler based approach that gives
fine-grain control over the merging of kernels and hence their
co-execution.

Our approach creates a concurrent kernel by the source-
code merging of two OpenCL kernels as shown in Figure 5.
In this paper, we only consider the merging of two kernels,
as more than two usually degrades performance, [19, 20]. We
use an improved version of inter-thread-block-fusion [28] to
merge kernels. We first replace the workgroup ID comparison
with a modulo operation, in which the divisor represents
the number of computing units and the dividend illustrates
how many of these computing units would be used by one of
the constituent kernels. Hence, two kernels could share the
GPU concurrently with a workgroup index transformation.
Secondly, we adapt the thread decoupling technique [21] to
decouple physical hardware allocation from logical workgroup
identities for both the merged kernel and its constituent
kernels. The kernels’ ND-Ranges became variable and can
be adjusted.

Using a modulo operation to control kernel mixing does
not introduce branch divergence, as the workgroup is a basic
scheduling unit to the SIMD processor. However, it presents
a problem to thread index acquisition, as such operation
splits the workgroup index space into two areas, each area
contains the workgroups with indices of either quotient or
remainder of the division and the thread index space suffers
the same problem. To tackle this problem, we transform
discrete physical workgroup indices to continuous logical
indices.

6 PREDICTIVE MODEL

At the heart of our scheme is a machine learning based pre-
dictive models which classify newly arriving OpenCL kernels.
The first model separates kernels into two groups CPU or
GPU based on estimated device affinity. The second model
determines whether or not to merge two GPU kernels and
their merging ratio as shown in Figure 6. These models deter-
mine where, in the double-ended sorted task queue, (merged)
kernels are inserted.
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and the other is used to predict co-executing kernels.

Table 2: Program Features

#load /stores
#br/condbranches
#mathFunctions #vector operations
#int operations #float operations
#control instruction #logic operations

#instructions

Static features #blocks

#barriers #atomic operations
. local k_siz lobal k_siz
Runtime features Local-work-size global-worx-size
input size output size

6.1 Model Training

Machine learning is a well known technique which uses train-
ing samples to build a model that classifies kernels into the
appropriate category. Samples consisting of kernel features f
and the best scheduling classification ¢. The algorithm builds
a model m that, given a new feature f predicts the target
classification ¢ i.e. m : f + t. This learning is a one-off
activity performed “at the factory”. Once the model is learnt
it can be used online to determine kernel scheduling. There
are many types of models available; we use decision trees as
they are easier to explain. Crucial to model accuracy are the
types of features used.

6.2 Features

Determining the right features is critical. We considered
all features that can be extracted from kernel functions and
their runtime parameters, and only those shown Table 2 had
any impact on performance. Features improtance is analysed
in Section 9.1. All such features were collected from the
kernel source file using our LLVM based JIT compiler and
the runtime environment.

Feature Transformation. Using all these features directly
leads to model overfitting [1, 3, 11]. so we normalise and
transform them. Table 3 shows the seven features used by the
first CPU vs GPU model. Features F1 through F4 represent
the percentage of each each instructions in the source code
Table 4 shows the features used in the concurrent kernel
model. Here the features are a weighted sum of the features
from the two kernels to be mixed. depending on mixing ratio.
Different weighted sums of kernel features are input to this
model. The first ratio that yields a positive classification i.e.
merge the kernel determines the mixing ratio selected.

In all our experiment, we use leave-N-out cross-validation
[5] to ensure we do not use the same training data when
evaluating. This means whenever we have 2 programs to
consider for merging, neither have been used in training.

6.3 Predicting device affinity

To illustrate how the model works, Figure 7 shows the deci-
sion tree for NVIDIA. We just show the first few layers of the

Table 3: Combined feature for separate kernel model

Description

compute instruction ratio
memory instruction ratio
branch ratio

barriers ratio

datasize

number of global threads
number of local threads

Features
F1 comptlnst / (alllnst)
F2 memlnst / (alllnst)
F3 br / (alllnst)
F4  barriers / (alllnst)
F5 dataSize / (MaxMem)
F6 globalWorkSize
F7 localWorkSize

Table 4: Combined feature for concurrent kernel model

Features
F1 comptlnst / (alllnst)
F2 memlnst / (alllnst)
F3  br / (alllnst) branch ratio
F4  barriers / (alllnst) barriers ratio
F5 dataSize / (MaxMem) datasize
F6 dataSizeRatiol first kernel datasize ratio
F7 dataSizeRatio2 second kernel datasize ratio
F8 globalWorkSizel / (globalWorkSize) first kernel global threads ratio
F9 globalWorkSize2 / (globalWorkSize) second kernel global threads ratio
F10 localWorkSizel / (localWorkSize) first kernel local threads ratio
F11 localWorkSize2 / (localWorkSize) second kernel local threads ratio

Description
compute instruction ratio
memory instruction ratio

Root

True False
F1<=0.6795

v
O (S%

atax

Figure 7: Single kernel classification on Intel+Nvidia.
The nodes stand for tests on separate features values.
Leaf nodes refer to the classification, gray for GPU, white
for CPU. All input tasks are correctly classified except
Sad which has CPU affinity but misclassified to a GPU

group.

Table 5: Combined feature for separate kernel model

F1 F2 F3 Fé F7
atax_kernell 0.6 0.2 0.2 0.25 0.0.0055
sad_scalc_8 0.8039  0.1275 0.0686  0.125 0.0.0029
sgemm 0.7143 0.1904 0.0952 0.25 6.4e-05
3mm _kernel2 0.6923 0.1538 0.1538 0.25 0.0003
gemm _kernel 0.6551 0.1724 0.1724 0.25 0.0003
mri-q 0.7188 0.25 0.0312  0.0625  0.0002

tree due to space. The leaf nodes refer to the classification,
gray for GPU, white for CPU. Table 5 shows the features of
the programs shown in Figure la. As an example, consider
atax. Its F1 value, which corresponds to compute intensity, is
0.6<=0.6795 which means that the left hand branch is taken.
Its F'2 value, representing memory intensity, is 0.2<=0.2341
so again the left hand branch is taken. F7, representing num-
ber of work threads, is 0.00055>0.0021 so the right branch is
taken this time . Finally, after checking its compute intensity
again, it is classified as being best scheduled on the CPU. A
similar tree will be learnt for the AMD platform. Discussion
of the trees learnt for merging are provided in the analysis
section.

7 EXPERIMENT SETUP

7.1 Platform and Benchmarks

We evaluate on two CPU+GPU systems. The details are
shown in Table 6. Both have an Intel Core i7 4-core CPU
and 16GB main memory. Both systems host OpenSUSE



Table 6: Hardware platform

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 4770K  GeForce GTX 780 Radeon HD7970

Architecture Haswell-DT Kepler GK110 Tahiti XT
Core Clock 3.4 GHz 1215 MHz 1000 MHz
Core Count 4 (8 w/ HT) 2304 2048
Memory 16 GB 3 GB 3GB
Memory Bandwidth 21GB 288 GB 264 GB

Table 7: Benchmarks

Suite Benchmarks
Parboil  BFS Cutcp Sgemm Spmv Sad
ATAX BICG CORRELATION GESUMMV  SYR2K
Polybench  SYRK 2DCONV  3DCONV GEMM GRAMSCHMIDT
2MM 3MM COVAR FDTD-2D MVT

12.3 Linux. We use LLVM 3.4 for JIT compilation and
benchmarks are compiled using GCC 4.7.2 with -O3 option.

We restrict our attention to benchmarks with 1D and
2D NDranges from two mainstream OpenCL benchmark
suites: Parboil and the Polybench benchmark suite giving
20 programs in all. The selected benchmark applications are
shown in Table 7.

7.2 Scheduling Approaches

We compare our approach to a number of approaches on two
platforms.

Elastic Kernels (EK) This approach runs two kernels con-
currently and merges the corresponding host programs. It
does not have a model to determine what to merge and does
not use the CPU as a scheduling target.

Energy-Efficient Concurrent Kernels (EECK) This
approach is similar to EK but requires profiling of the ap-
plications beforehand to determine what to merge. We use
smaller data sizes as profile training sizes as profile input. It
does not use the CPU as a scheduling target

Separate or Concurrent on GPU(SoC_GPU) Our ap-
proach to concurrent execution of kernels without using the
CPU as a scheduling target
First-come-first-served (FCFS) This is a simple scheme
that schedules jobs to either the CPU or GPU based on
availability. It does not run kernels concurrently on GPU.
Heterogeneous Scheduling (HS) This uses a model to
schedules jobs to either the CPU or GPU based on availabil-
ity. It does not run kernels concurrently

Separate or Concurrent on GPU (SoC) Our approach
to both concurrent execution of kernels and using the CPU
as a scheduling target

To make a fair comparison, we ignore the introduced over-
head i.e. the cost of profiling and recompilation for EK and
EECK. Such overheads always outweighed the benefits, making
them hard to work in practice.

7.3 Performance Evaluation

We evaluated our schemes with 500 different task configura-
tions. We selected 10 different task queue sizes containing
between 2 and 64 kernels. For each task queue size, we
randomly selected 50 different programs, to give 500 con-
figurations. As behaviour is dynamic, we evaluated each
configuration 30 times and report the median performance.
This results in 15000 experiments per policy. We then sum-
marize our results into three categories according to the
number of tasks: the small group has less than 16 tasks,
the medium group includes less than 32 tasks, and the large
group contains less than 64 tasks. Performance is presented
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Figure 8: Summary of performance improvement when
run all tasks on GPU only. Task sizes: small (2-16 ker-
nels), medium (16-32 kernels), large(32-64 kernels).

throughout as speedup relative to executing just on a GPU
i.e. the throughput speedup STP metric and normalized turn
around time - the ANTT metric [29].

8 RESULTS

In this section, we evaluate our approach against alternative
approaches for throughput and turnaround time,

8.1 Speedup over State-of-the-art
Methods

Figure 8 and 9 presents the throughput or speedup perfor-
mance for each approach relative to sequential execution on
the GPU. The results are presented for small, medium and
large job size.

When evaluating those methods that use just target the
GPU (see Figure 8), EECK and our approach (SoC_GPU)
improve performance by up to 38% but EK experiences a
small slowdown on both platforms. Both EECK and our ap-
proach increase performance as the number of task increases,
as more pairing options are possible.

Using the multi-core CPU as another scheduling device im-
proves throughput further. Our approach (SoC) consistently
outperforms FCFS and HS, as shown in Figure 9. All three
approaches increase in speedup as the number of tasks in-
crease. Since our strategy also optimizes GPU utilization our
overall performance is better and increases with the number
of tasks.

8.2 ANTT Improvement over
State-of-the-art Alternatives

Turnaround time describes the amount of time has been
taken from a task’s arrival to its computation finish. We use
Average Normalized Turnaround Time (ANTT) to measure
the amortized waiting time for all tasks. As ANTT is a
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Figure 9: Performance improvement when use both
CPU and GPU.

Table 8: Improvement on Average Turnaround Time for
both Nvidia and AMD Platforms

Benchmarks Small Medium Large Average

EK -15 -5 7 -4.3
EECK 5.5 15 17 12.5

Nvidia SoC.GPU 11 12 23 15.3
FCFS 16 20 27 21
HS 25 36 53 38
SoC 51 65 77 64
EK 12 -1 1 -3.3
EECK 3 10 16 9.7

AMD SoC_GPU 9 21 25 18.3
FCFS 15 31 33 26
HS 30 52 59 47
SoC 44 61 68 57

smaller is better metric, we transform the results into ANTT
improvement; analogous to speedup.

Table 8 shows the results on NVIDIA and AMD platforms.

When considering the GPU as the only device, our technique
outperforms the others. Once we take multi-core CPU into
consideration, our approach is significantly better than its
counterparts. EK has a poor ANTT, which is worse than
the baseline due to the performance degradation caused by
incorrect pairing of kernels.

8.3 Overall Performance Summary

On average, on the GPU alone, our (SoC_GPU) method has
11.2% better speedup than the best alternative (EECK) on

the NVIDIA platform and 11% better on the AMD platform.

ANTT is 3% and 9% better than EECK on NVIDIA and
AMD platform separately. When we include the CPU into
consideration, throughput speedup improves to 36% and 28%
respectively. ANTT is also significantly improved, widening
to 52% and 47%. This shows that a smart scheduling policy
has significant impact.

When comparing to the other approaches that use both
CPU and GPU as their target scheduling device, our method
(SoC) provides an enhanced performance which is 17% and

10% better than the best alternative (HS) on NVIDIA and
AMD platform respectively. The corresponding ANTT im-
provement between our method and HS is 26% and 10%.

8.4 Detailed Performance in Pairwise
Execution

While this paper is concerned with performance of multi-task
scheduling, it is useful to explore performance in more detail
by focusing on what happens when we restrict our attention
to just 2 kernels to be scheduled. Figure 10 presents the
performance distribution of an individual kernel when paired
against every other kernel within the best mixing ratio. The
horizontal line represents the mean execution time of our
approach for that kernel, while the box and whiskers represent
the 75% and max range of speedups.

As can be seen, most kernels are improved by our approach
with a positive pairwise speedup. In some cases there are
slowdowns caused by misprediction of our model. For some,
correlation_corr_kernel, covariance_covar_kernel, syr2
k_kernel, the best configuration is running it sequentially
on GPU with the other candidate kernel, hence there is no
speedup available. This is due to their very long execution
time compared to others. Similarly, kernels with very short
execution time such as sgemm NT and spmv_jds_native have
the same behaviour. One exception is gesummv_kernel, which
has a long execution time and is best scheduled to the CPU
. It is always scheduled to the CPU and dominates overall
throughput. On average, our approach improves performance
by 21.8% for all pairwise executions over the baseline of
running sequentially on a GPU.

To dig deeper, we compare our performance against the
Best scheduler. The results are shown in Figure 11. Due to
space we cannot show all kernel pairs and just paired them up
alphabetically. Results are grouped according to scheduling
decisions. Bars in the white area represent kernels where we
scheduled to the CPU/GPU while those in the gray areas
means that the kernel pairs are running concurrently on the
same GPU.

We have the same behavior as the Best scheduler except
in 3 cases. For atax_kernell+bfs_kernel, both of the kernel
have CPU affinity and incur data transfer costs between CPU
and GPU. Best schedules them both to the CPU. However,
our model classifies bfs_kernel as a GPU task leading to de-
graded performance. For Convolution3D kernel+correlatio
n_corr kernel and correlation mean kernel+covariance._c
ovar kernel, both candidate kernels are classified as having
GPU affinity. As we concurrently dequeue from both ends
of the task queue, one of them will be scheduled to CPU
while the right choice would be to stall CPU dequeuing and
execute both on the GPU and prevent CPU dequeuing. As
the number of tasks increases, this is a less of an issue as
there will be more CPU suitable jobs available.

9 ANALYSIS

The decision tree models trained for the Nvidia and AMD
platform to predict concurrent kernel merging are shown in
Figure 12 and 13. In both cases, only the first few levels
are shown due to space. The percentage labels refer to the
number of kernels merged down a particulate branch. The two
trees have separate shapes that reflect the difference between
the two models trained for Nvidia and AMD platform. In
both cases F3 (branches) and F5 (datasize) are used to classify
early on though with different thresholds. The number of
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Figure 10: Performance distribution of a given kernel co-running with all other kernels in pairs on AMD GPU only
with the best mixing ratio. Baseline: run both kernels on the GPU sequentially
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two kernel’s co-execution by our approach vs the best achievable.

Kernels are paired

alphabetically. The results are shown in form of speedup over the baseline in which two kernels run on GPU sequentially.
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Figure 12: Decision tree to estimate kernel merging on
Intel4+Nvidia platform. Lables at each branch account
for the percentage of how many merged kernels out of
the whole can be found in that branch.

threads, F8 and F10 are also important in later classification.

Estimation Accuracy. In our system, we trained our clas-
sifier using a leave-one-out-cross-validation [5, 29], on 38
distinct kernels and 2031 concurrent kernels with different
mix ratios. For the CPU/GPU classifier, we have an accu-
racy of 88% on NVIDIA and 90.3% on AMD platform. For
concurrent kernel classifier, its accuracy is 81% and 85% on
those platforms.
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Figure 13: Decision tree to estimate kernel merging on
Intel+AMD platform.

9.1 Feature Importance

While the decision trees precisely describe the model used,
they do not give much insight into how important certain
program features are. Figure 14 shows detailed Hinton di-
agrams for each platform and model. The size of each box
corresponds to importance and measures how correlated a
feature is with performance. If we first consider scheduling
to either the CPU or GPU, then 2 features, F1 and F2 domi-
nate on the Nvidia platform. These correspond to compute
and memory intensity as shown in Table 3. On the AMD
platfrom, F5, datasize is just as important. This appeals to
intuition as programs with high computational intensity are
likely to benefit from GPU scheduling.
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Figure 14: Feature Importance

When it comes to concurrent kernel execution, F5 or data
size (Table 4) is the key factor especially on NVIDIA. This
suggests that whether 2 kerenls can fit in memory is highly
signicant. Feature F4, the percentage of barriers has the
least impact. This is because barriers are rarely found in the
benchmarks. Section 3 showed that no single characteristic
was useful enough for scheduling. In fact, all characteristics
are important and need to be combined carefully.

9.2 Limit Study

To examine how the classifier accuracy impacts the perfor-
mance, we performed a limit study. We evaluated the system
throughput in three different cases. In the first case, we use
our our learnt models. In the second case, we replace the
models with decisions that are 100% accurate. They use
prior execution runs to always correctly determines whether
a kernel runs faster on a GPU or a CPU and whether or not
it runs faster concurrently. This is of course, not possible in
practise.

In the third case, for each sequence of tasks, we run 10,000
different scheduling orders to test the potential performance
upper bound. Because of combinatorial complexity, we can
not evaluate all possible kernel combinations and scheduling
orders, and this approach gives only an approximation of per-
formance achievable. It represents the Best schedule found.
Figure 15b and 15a show our results on two different plat-
forms. In general, the more accurate a classifier is the higher
throughput we can expect. For a 100% accurate classifier, we
can get a 5% performance improvement on NVIDIA platform
and 7% on AMD platform over our classifier on average.

Classifying accurately is not enough. There may be a
case where 2 kernels have large concurrent speedup but have
insignificant execution time while 2 others have a small con-
current improvement but are long running and dominate
throughput time. This is shown by the performance of the
best scheduler which improves STP further. On NVIDIA
platform, its performance is 20% better than our classifier
and on AMD platform this performance improvement is 19%.
This shows that while our approach has significant improve-
ment over existing schemes, there is still further room for
improvement

10 RELATED WORK

Running multiple kernels on the same GPU in parallel is
a popular way to improve system performance [8, 30] and
power consumption [17]. There are static and dynamic ap-
proaches to run multiple kernels concurrently. In [10], kernels
are combined at compile time to execute concurrently on
the GPU, which has no hardware support for concurrency.
Thread blocks of different kernels run interleaved on the
GPU to improve hardware utilization. Static kernel merging

approach is also used to optimize data movement between
kernels that have data dependencies [7]. Several kernel fusing
methods are discussed and compared in [28] to reduce energy
consumption and improve GPU power efficiency.

In dynamic approaches, kernels are issued via independent
stream, or command queue, blocks by blocks. In [30], kernels
are partitioned slices containing a fixed number of thread
blocks. Kernels are co-executed on by issuing their slices
simultaneously via separate CUDA stream. Combining kernel
slice with DVFS, Jiao et al [14]. present an approach to
improve GPU energy efficiency through concurrent kernel
execution.

Though concurrent kernel execution is good for throughput
by improving hardware utilization, indiscriminate running
multiple kernels leads to a sub-optimal GPU performance.
Jog et al. [15] propose an application-aware memory system
to improve the fairness and efficiency of concurrent kernels.
Chimera [23] utilizes streaming machine flushing technique
to preempt GPU and keeps multiple tasks sharing GPU in a
balanced way.

Task scheduling on CPU/GPU heterogeneous [25] often
requires the estimated execution time for each task on each
device. An accurate execution time is hard to get unless run
the task ahead of time on the target device, which limits
the range of its uses in practice. Wen et al. [29] present a
machine learning based approach to schedule OpenCL kernels
on CPU/GPU platform according to the kernels predicted
speedup. The system throughput is improved by finding
tasks their best-fitting devices, however, it cannot increase
GPU hardware resource utilization.

Some prior work uses kernel partitioning to balance the
workload between CPU and GPU [9, 16, 22]. In this method,
a kernel is usually partitioned into two sub-kernels, one run-
ning on CPU and the other running on GPU. However, this
method is only good at speedup a single kernel’s performance.
When there are multiple kernels running concurrently, per-
formance delivered by kernel partitioning is usually not as
good as separate kernel scheduling [29].

PALMOS [18] provides a runtime infrastructure to elim-
inate high setup overhead for OpenCL applications. Dy-
ManD [13] proposes a run-time library and a set of compiler
passes to optimize the data management and communica-
tion on CPU-GPU system. StarPU [4, 6, 12] provides a
runtime framework that enables mapping single application
on heterogeneous with various type of devices.

11 CONCLUSION

In this paper, we have proposed a runtime system and a JIT
compiler to schedule multiple OpenCL kernels on a CPU-
GPU heterogeneous platform without profiling. We have
trained two predictive models from OpenCL kernel’s static
and runtime features to determine whether the kernels would
be merged and launched together, or dispatched to the best-fit
device separately. To evaluate the performance, we compare
our approach with a wide range of state-of-the-art methods on
two different heterogeneous platforms and outperfromed tem
in throughput and turn around time. Though our approach
has a significant improvement over existing methods, there
is still further room for improvement. Precisely predicting
task execution time would improve performance further and
is future work.
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