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Abstract

Pre-trained multilingual language models

(LMs) have achieved state-of-the-art results

in cross-lingual transfer, but they often lead

to an inequitable representation of languages

due to limited capacity, skewed pre-training

data, and sub-optimal vocabularies. This has

prompted the creation of an ever-growing pre-

trained model universe, where each model is

trained on large amounts of language or do-

main specific data with a carefully curated, lin-

guistically informed vocabulary. However, do-

ing so brings us back full circle and prevents

one from leveraging the benefits of multilin-

guality. To address the gaps at both ends of

the spectrum, we propose MERGEDISTILL, a

framework to merge pre-trained LMs in a way

that can best leverage their assets with mini-

mal dependencies, using task-agnostic knowl-

edge distillation. We demonstrate the applica-

bility of our framework in a practical setting by

leveraging pre-existing teacher LMs and train-

ing student LMs that perform competitively

with or even outperform teacher LMs trained

on several orders of magnitude more data and

with a fixed model capacity. We also highlight

the importance of teacher selection and its im-

pact on student model performance.

1 Introduction

While current state-of-the-art multilingual lan-

guage models (LMs) (Devlin et al., 2019; Conneau

et al., 2020) aim to represent 100+ languages in

a single model, efforts towards building monolin-

gual (Martin et al., 2019; Kuratov and Arkhipov,

2019) or language-family based (Khanuja et al.,

2021) models are only increasing with time (Rust

et al., 2020). A single model is often incapable of

effectively representing a diverse set of languages,

evidence of which has been provided by works

highlighting the importance of vocabulary curation

and size (Chung et al., 2020; Artetxe et al., 2020),

Figure 1: Previous works (left) typically focus on

combining fine-tuned models derived from a single

pre-trained model using distillation. We propose

MERGEDISTILL to combine pre-trained teacher LMs

from multiple monolingual/multilingual LMs into a sin-

gle multilingual task-agnostic student LM.

pre-training data volume (Liu et al., 2019a; Con-

neau et al., 2020), and the curse of multilinguality

(Conneau et al., 2020). Language specific mod-

els alleviate these issues with a custom vocabulary

which captures language subtleties1 and large mag-

nitudes of pre-training data scraped from several

domains (Virtanen et al., 2019; Antoun et al., 2020).

However, building language specific LMs brings

us back to where we started, preventing us from

leveraging the benefits of multilinguality like zero-

shot task transfer (Hu et al., 2020), positive trans-

fer between related languages (Pires et al., 2019;

Lauscher et al., 2020) and an ability to handle code-

mixed text (Pires et al., 2019; Tsai et al., 2019).

We need an approach that encompasses the best of

both worlds, i.e., leverage the capabilities of the

powerful language-specific LMs while still being

multilingual and enabling positive language trans-

1For example, in Arabic, (Antoun et al., 2020) argue that
while the definite article “Al”, which is equivalent to “the” in
English, is always prefixed to other words, it is not an intrinsic
part of that word. While with a BERT-compatible tokenization
tokens will appear twice, once with “Al-” and once without
it, AraBERT first segments the words using Farasa (Abdelali
et al., 2016) and then learns the vocabulary, thereby alleviating
the problem.
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Figure 2: Overview of MERGEDISTILL: The input to MERGEDISTILL is a set of pre-trained teacher LMs and pre-

training transfer corpora for all the languages we wish to train our student LM on. Here, we combine four teacher

LMs comprising of three monolingual (trained on English, Spanish and Korean respectively) and one multilingual

LM (trained on English and Hindi). The student LM is trained on English, Spanish, Hindi and Korean. Pre-training

transfer corpora for each language is tokenized and masked using their respective teacher LMs vocabulary. We

then obtain predictions for each masked word in each language, by evaluating all of their respective teacher LMs.

For example, we evaluate English masked examples on both the monolingual and multilingual LM as shown. The

student’s vocabulary is a union of all teacher vocabularies. Hence, the input, prediction and label indices obtained

from teacher evaluation are now mapped to the student vocabulary, and input to the student LM for training. Please

refer to Section 3.1 for details.

fer.

In this paper, we use knowledge distillation (KD)

(Hinton et al., 2015) to achieve this. In the con-

text of language modeling, KD methods can be

broadly classified into two categories: task-specific

and task-agnostic. In task-specific distillation, the

teacher LM is first fine-tuned for a specific task

and is then distilled into a student model which can

solve that task. Task-agnostic methods perform dis-

tillation on the pre-training objective like masked

language modeling (MLM) in order to obtain a

task-agnostic student model. Prior work has either

used task-agnostic distillation to compress single-

language teachers (Sanh et al., 2019; Sun et al.,

2020) or used task-specific distillation to combine

multiple fine-tuned teachers into a multi-task stu-

dent (Liu et al., 2019b; Clark et al., 2019). The

former prevents positive language transfer while

the latter restricts the student’s capabilities to the

tasks and languages in the fine-tuned teacher LMs

(as shown in Figure 1).

We focus on the problem of merging multiple

pre-trained LMs into a single multilingual student

LM in the task-agnostic setting. To the best of our

knowledge, this is the first effort of its kind, and

makes the following contributions:

• We propose MERGEDISTILL, a task-agnostic

distillation approach to merge multiple teacher

LMs at the pre-training stage, to train a strong

multilingual student LM that can then be fine-

tuned for any task on all languages in the stu-

dent LM. Our approach is more maintainable

(fewer models), compute efficient and teacher-

architecture agnostic (since we obtain offline

predictions).

• We use MERGEDISTILL to i) combine mono-

lingual teacher LMs into a single multilingual

student LM that is competitive with or outper-

forms individual teachers, ii) combine multi-

lingual teacher LMs, such that the overlapping

languages can learn from multiple teachers.

• Through extensive experiments and analysis,

we study the importance of typological simi-

larity in building multilingual models, and the

impact of strong teacher LM vocabularies and

predictions in our framework.
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2 Related Work

Language Model pre-training has evolved

from learning pre-trained word embeddings

(Mikolov et al., 2013) to contextualized word

representations (McCann et al., 2017; Peters

et al., 2018; Eriguchi et al., 2018) and to the most

recent Transformer-based (Vaswani et al., 2017)

LMs (Devlin et al., 2019; Liu et al., 2019a) with

state-of-the-art results on various downstream NLP

tasks. Most commonly, these LMs are pre-trained

with the MLM objective (Taylor, 1953) on large

unsupervised corpora and then fine-tuned on

labeled data for the task at hand. Concurrently,

multilingual LMs (Lample and Conneau, 2019;

Siddhant et al., 2020; Conneau et al., 2020; Chung

et al., 2021), trained on massive amounts of

multilingual data, have surpassed cross-lingual

word embedding spaces (Glavaš et al., 2019;

Ruder et al., 2019) to achieve state-of-the-art in

cross-lingual transfer. While Pires et al. (2019);

Wu and Dredze (2019) highlight their cross-lingual

ability, several limitations have been studied.

Conneau et al. (2020) highlight the curse of

multilinguality. Hu et al. (2020) highlight that

even the best multilingual models do not yield

satisfactory transfer performance on the XTREME

bechmark covering 9 tasks and 40 languages.

Importantly, Wu and Dredze (2020) and Lauscher

et al. (2020) observe that these models significantly

under-perform for low-resource languages as

representation of these languages in the vocabulary

and pre-training corpora are severely limited.

Language-specific LMs are becoming increas-

ingly popular as issues with multilingual language

models persist. As language identification systems

are extended to 1000+ languages (Caswell et al.,

2020), increasing capacity for a single model to

uniformly represent all languages is prohibitive.

Often, practitioners prefer to have a model

performing well on a subset of languages that

their application calls for. To address this, the

community continues its efforts in building strong

multi-domain language models using linguistic

expertise. A few examples of these are AraBERT

(Antoun et al., 2020), CamemBERT (Martin et al.,

2020), and FinBERT (Virtanen et al., 2019).2

Knowledge Distillation in pre-trained LMs has

2(Nozza et al., 2020) maintain an ever-growing list of
BERT models here

most commonly been used for task-specific model

compression of a teacher into a single-task stu-

dent (Tang et al., 2019; Kaliamoorthi et al., 2021).

This has been extended to perform task-specific

distillation of multiple single-task teachers into one

multi-task student (Clark et al., 2019; Liu et al.,

2020; Turc et al., 2019). In the task-agnostic sce-

nario, prior work has focused on distilling a single

large teacher model into a student model leverag-

ing teacher predictions (Sanh et al., 2019) or inter-

nal teacher representations (Sun et al., 2020, 2019;

Wang et al., 2020) with the goal of model compres-

sion. To the best of our knowledge, this is the first

attempt to perform task-agnostic distillation from

multiple teachers into a single task-agnostic stu-

dent. In the context of neural machine translation,

Tan et al. (2019) come close to our work where they

attempt to combine multiple single language-pair

teacher models to train a multilingual student. How-

ever, our work differs from theirs in three key as-

pects: 1) our students are task-agnostic while theirs

are task-specific, 2) we can leverage pre-existing

teachers while they cannot, and 3) we support teach-

ers with overlapping sets of languages while they

only consider single language-pairs teachers.

3 MERGEDISTILL

Notations: Let K denote the set of languages we

train our student LM on and T denote the set of

teacher LMs input to MERGEDISTILL
3. Conse-

quently, Tk denotes the set of teacher LMs trained

on language k, where |Tk| ≥ 1 ∀ k ∈ K.

3.1 Workflow

An overview of MERGEDISTILL is presented in

Figure 2. Here we detail each step involved in

training the student LM from multiple teacher LMs.

Step 1: Input

The input to MERGEDISTILL is a set of pre-trained

teacher LMs and pre-training transfer corpora for

all the languages we wish to train our student LM

on. With reference to Figure 2, the student LM is

trained on K ={English (en), Spanish (es), Hindi

(hi), Korean (ko)}. We combine four teacher LMs

comprising of three monolingual and one multi-

lingual LM. The monolingual LMs are trained on

English (Men), Spanish (Mes), and Korean (Mko)

while the multilingual LM is trained on English

3Note that T can comprise of monolingual or multilingual
models

https://bertlang.unibocconi.it/


2877

and Hindi (Men,hi). Therefore, for each language,

the corresponding set of teacher LMs (Tk) can be

defined as: [Ten = {Men,Men,hi},Tes = {Mes},
Thi = {Men,hi},Tko = {Mko}]. First, the pre-

training transfer corpora is tokenized and masked

for each language using their respective teacher

LM’s tokenizer. For the language with two

teachers, English, we tokenize each example using

both the teacher LMs.

Step 2: Offline Teacher LM Evaluation

We now obtain predictions and logits for each

masked, tokenized example in each language, by

evaluating their respective teacher LMs. For En-

glish, we obtain predictions from both Men and

Men,hi on their respective copies of each training

example. In an ideal situation, we believe that

multiple strong teachers can present a multi-view

generalisation to the student as each teacher learns

different features in training. Let x denote a se-

quence of tokens where xm = {x1, x2, x3...xn}
denote the masked tokens, and x−m denote the

non-masked tokens. Let v be the vocabulary of

student LM θs. In the conventional case of learning

from gold labels, we minimize the cross-entropy

of student logit distribution for a masked word xmi
,

with the one-hot label vj, given by:

P(xmi
, vj)=1(xmi

=vj)× log p(xmi
=vj|x−m; θs)

(1)

With the teacher evaluations, we obtain predictions

(and corresponding logits) of the teacher for the

masked tokens. Let us denote the teacher output

probability distribution (softmax over logits) for

token xmi
by Q(xmi

|x−m; θt). Therefore, in addi-

tion to the loss from gold labels, we minimize the

entropy between the student logits and the teacher

distribution, given by :

P̂(xmi
, vj)=Q(xmi

=vj|x−m; θt)×

log p(xmi
=vj|x−m; θs) (2)

It is extremely burdensome (both memory and

time) to load multiple teacher LMs and obtain

predictions during training. Hence, we first store

the top-k logits for each masked word offline,

loading and normalizing them during student LM

training, similar to (Tan et al., 2019). Additionally,

obtaining offline predictions gives one the freedom

to use expensive teacher LMs without increasing

the student model training costs and makes our

framework teacher-architecture agnostic.

Step 3: Vocab Mapping

A deterrent in attempting to distill from multiple

pre-trained teacher LMs is that each LM has its

own vocabulary. This makes it non-trivial to uni-

formly process an input example for consumption

by both the teacher and student LMs. Our student

model’s vocabulary is the union of all teacher

LM vocabularies. In the vocab mapping step, the

input indices, prediction indices, and the gold

label indices, obtained after evaluation from each

teacher LM are processed using a teacher→student

vocab map. This converts each teacher token index

to its corresponding student token index, ready for

consumption by the student model. For simplicity,

each teacher and student LM uses WordPiece

tokenization (Schuster and Nakajima, 2012; Wu

et al., 2016) in all our experiments.

Step 4: Student LM Training

The processed input indices, prediction indices,

and gold label indices can now be used to train

the multilingual student LM. In training, exam-

ples from different languages are shuffled together,

even within a batch. We train the student LM with

the MLM objective. Let LMLM denote the MLM

loss from gold labels. Therefore, with reference to

Equation 1 :

LMLM(xm|x−m) = −
1

n

n∑

i=1

|v|∑

j=1

P(xmi
, vj)

In addition to learning from gold labels, we use

teacher predictions as soft labels and minimize the

cross entropy between student and teacher distribu-

tions. Let LKD denote the KD loss from a single

teacher LM. With reference to Equation 2:

LKD(xm|x−m) = −
1

n

n∑

i=1

|v|∑

j=1

P̂(xmi
, vj);

The total loss across all languages is minimized, as

shown below:

LALL =

K∑

k=1

λ(LTk

KD) + (1− λ)Lk
MLM

In the case of multiple teacher LMs, we have n
tokenized instances for a given example (where n
denotes the number of teachers for a particular lan-

guage). In this case, each example in English has
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two copies – one tokenized using Men and another

using Men,hi. Thus, we explore two possibilities of

training in this multi-teacher scenario :

• Include all the copies in training. Here the

model is exposed to n different teacher LM

predictions, each presenting a multi-view gen-

eralisation to the student LM.

• Include the best copy in training. The best

copy is the one having minimum teacher LM

loss for a given example. Here the model is

only exposed to the best teacher LM predic-

tions for each example.

4 Experiments

In this section, we aim to answer the following

questions :

1) How effective is MERGEDISTILL in combining

monolingual teacher LMs, to train a multilingual

student LM that leverages the benefits of multi-

linguality while performing competitively with

individual teacher LMs? (Section 4.2)

2) How effective is MERGEDISTILL in combining

multilingual teacher LMs, trained on an overlap-

ping set of languages, such that each language can

benefit from multiple teachers? (Section 4.3)

3) How important are the teacher LM vocabulary

and predictions in MERGEDISTILL? Further, can

MERGEDISTILL enable pre-trained zero-shot

transfer? (Section 4.4)

4.1 Setup

Data: For all our experiments, we use Wikipedia

data as pre-training transfer corpora to train

the student model, irrespective of the data used

in training individual teacher LMs. We use

α = 0.7 for exponential smoothing of data across

languages, similar to mBERT (Devlin et al., 2019).

Model Size: Since transformer-based models

perform better as capacity increases (Conneau

et al., 2020; Arivazhagan et al., 2019), we keep the

number of parameters close to mBERT (∼178M)

by appropriately modifying the vocabulary

embedding size (like Lan et al. (2019)) to isolate

the positive effects of learning from teacher LMs.

Student Language Language Family Model

Studentsimilar

English Indo-European BERT(Devlin et al., 2019)

German Indo-European DeepSet(Chan et al., 2020)

Italian Indo-European ItalianBERT(Schweter, 2020b)

Spanish Indo-European BETO(Cañete et al., 2020)

Studentdissimilar

Arabic Afroasiatic AraBERT(Antoun et al., 2020)

English Indo-European BERT(Devlin et al., 2019)

Finnish Uralic FinBERT(Virtanen et al., 2019)

Turkish Turkic BERTurk(Schweter, 2020a)

Chinese Sino-Tibetan ChineseBERT(Devlin et al., 2019)

Table 1: Monolingual BERT Models used as teacher

LMs. Please refer to Section 4.2 for details.

Distillation Parameters: We have two hyper-

parameter choices here: 1) k in top-k logits - as

it increases, we observe that while performances

remain similar, storing k>8 number of predic-

tions for each masked word offline significantly

increases resource requirements4. Hence, we set

k=8 in all our experiments. 2) the value of λ in

the loss function, which decides the proportion of

teacher loss, is annealed through training similar to

Clark et al. (2019).

Evaluation Metrics: We report F1 scores for struc-

tured prediction tasks (NER, POS), accuracy (Acc.)

scores for sentence classification tasks (XNLI,

PAWS-X), and F1/Exact Match (F1/EM) scores

for question answering tasks (XQuAD, MLQA,

TyDiQA). We also report a task-specific relative

deviation from teachers (RDT) (in %) averaged

across all languages (n). For each task, RDT is

calculated as:

RDT(S, {T1, ...,Tn}) =
100

n

n∑

i=1

(PTi
− PS)

PTi

(3)

where PTi
and PS are performances of the ith

teacher and student LMs, respectively.

4.2 Monolingual Teacher LMs

Pre-training: In this experiment, we use pre-

existing monolingual teacher LMs, as shown in

Table 1, to train a multilingual student LM on

the union of all teacher languages. In this setup,

|Tk| = 1 ∀ k ∈ K, i.e., each language can learn

from its respective monolingual teacher LM only.

Our teacher selection and setup follows a

two-step process. First, we aim to select languages

having pre-trained monolingual LMs available,

and evaluation sets across a number of downstream

tasks. This makes us choose teacher LMs for :

Arabic (ar), Chinese (zh), English (en), Finnish (fi),

4More details in Appendix A.4
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Language Model
NER UDPOS QA

F1 F1 F1/EM

English
BERT 89.5 96.6 87.1/78.6

Studentsimilar 89.8 96.3 89.8/82.1

German
DeepsetBERT 93.0 98.3 -

Studentsimilar 93.9 98.3 -

Italian
ItalianBERT 94.5 98.6 73.5/61.6

Studentsimilar 95.2 98.6 75.8/63.8

Spanish
BETO 94.2 99.0 74.9/56.6

Studentsimilar 94.7 98.9 76.5/58.4

RDT(%) +0.6 -0.1 +2.8/+3.7

Arabic
AraBERT 94.3 96.3 83.1/68.6

Studentdissimilar 93.7 96.4 81.3/66.6

Chinese
ChineseBERT 83.0 96.9 81.8/81.8

Studentdissimilar 82.6 96.8 80.8/80.8

English
BERT 89.5 96.6 87.1/78.6

Studentdissimilar 89.5 96.3 88.6/80.7

Finnish
FinBERT 94.4 97.9 81.0/68.8

Studentdissimilar 94.4 95.5 77.7/65.9

Turkish
BERTurk 95.2 95.6 76.7/59.8

Studentdissimilar 95.4 92.9 76.2/59.1

RDT(%) -0.2 -1.1 -1.3/-1.4

Table 2: Results for monolingual teacher LMs and mul-

tilingual students on downstream tasks as described in

Section 4.2. Relative deviations of 5% or less from

teacher (i.e., RDT ≥ −5%) are marked in bold. We

find that Studentsimilar outperforms individual teacher

LMs, with a maximum gain of upto +2.8/+3.7% for

QA, while Studentdissimilar is competitive with teacher

LMs, with a maximum drop of -1.3/-1.4% for QA.

Please refer to Section 4.2 for details.

German (de), Italian (it), Spanish (es), and Turkish

(tr). Second, as previous work has evidenced

positive transfer between related languages in a

multilingual setup (Pires et al., 2019; Wu and

Dredze, 2020), we further group the chosen teacher

LMs based on language families as shown in Table

1, where:

i) Studentsimilar is trained on four closely

related languages from the Indo-European family –

de, en, es and it.

ii) Studentdissimilar is trained on languages

from different language families – ar, en, fi, tr and

zh.

Both student LMs have a BERT-base architec-

ture. Studentsimilar has a vocabulary size of

99,112 with a total of 162M parameters, while

Studentdissimilar has a vocabulary size of 180,996

with a total of 225M parameters. We keep a batch

size of 4096 and train for 250,000 steps with a

maximum sequence length of 512.

Fine-tuning: We evaluate both the teacher

Student Language
Teacher LM Student LM

% of Data
Tokens Tokens

Studentsimilar

English 3300M 2285M 69.25%

German 23723M 847M 3.57%

Italian 13139M 506M 3.85%

Spanish 3000M 639M 21.31%

Total 43162M 4277M 9.9%

Studentdissimilar

Arabic 8600M 135M 1.58%

English 3300M 2285M 69.25%

Finnish 3000M 83M 2.77%

Turkish 4405M 60M 1.36%

Chinese 71M 71M 100.00%

Total 19376M 2634M 13.6%

Table 3: Number of Tokens (in Millions) in the teacher

(Table 1) and student LMs as described in Section 4.2

and student LMs on three downstream tasks with

in-language fine-tuning for each task5 :

i) Named Entity Recognition (NER): We use the

WikiAnn (Pan et al., 2017; Rahimi et al., 2019)

dataset for all languages.

ii) Part-of-Speech Tagging (UDPOS): We use the

Universal Dependencies v2.6 (Zeman et al., 2020)

dataset for all languages.

iii) Question Answering (QA): We use DRCD for

zh (Shao et al., 2018), TQuAD6 for tr, SQuADv1.1

(Rajpurkar et al., 2016) for en, SQuADv1.1-

translated for it (Croce et al., 2018) and es (Carrino

et al., 2020) and the TyDiQA-GoldP dataset (Clark

et al., 2020) for ar and fi.

Results: We report results of our teacher and

student LMs in Table 2. Overall, we find that

Studentsimilar outperforms individual teacher mod-

els on NER (+0.6%) and QA (+2.8/3.7%) while

performing competitively on UDPOS (-0.1%).

Studentdissimilar is competitive with the teacher

LMs with only small differences of up to 1.3/1.4%

(QA), as shown in Table 2. For each language,

we find Studentsimilar is either competitive or

outperforms its respective teacher LM. Our re-

sults provide evidence for positive transfer across

languages in two ways. First, we observe that

Studentsimilar outperforms Studentdissimilar for

the common language - English. Given that the

English teacher (BERT) and the pre-training trans-

fer corpora7 is common for both student LMs,

5More details in Appendix A.3
6https://tquad.github.io/turkish-nlp-qa-dataset
7In fact, we can hypothesize that Studentdissimilar sees

more English tokens as compared to Studentsimilar because
the Non-English languages in Studentdissimilar are relatively
low resourced (a sum total of 349M unique tokens) in compar-
ison to Studentsimilar (a sum total of 1992M unique tokens)

https://tquad.github.io/turkish-nlp-qa-dataset
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Languages Model Teacher
PANX UDPOS PAWSX XNLI XQUAD MLQA TyDiQA

Avg.
F1 F1 Acc. Acc. F1/EM F1/EM F1/EM

MuRIL Languages

mBERT - 58.8 68.5 93.4 66.2 70.3/57.5 65.0/50.8 62.5/52. 69.2

MuRIL - 76.9 74.5 95.0 74.4 77.7/64.2 73.6/58.6 76.1/60.2 78.3

StudentMuRIL MuRIL 69.3 72.3 95.4 71.9 75.7/62.1 72.0/56.3 70.7/59.2 75.3

StudentmBERT mBERT 38.1 52.1 93.5 64.8 56.9/44.8 51.1/39.7 41.6/33.9 56.9

StudentBoth all mBERT + MuRIL 67.9 72.3 94.5 71.1 76.1/62.9 70.4/55.5 70.8/55.3 74.7

StudentBoth best mBERT + MuRIL 68.5 71.5 93.9 70.7 77.7/64.3 70.8/55.6 70.6/58.4 74.8

RDT(StudentMuRIL,mBERT) (%) +17.9 +5.6 +2.1 +8.6 +7.7/+8 +10.8/+10.8 +13.1/+12.3 +8.8

RDT(StudentMuRIL,MuRIL) (%) -9.9 -3 +0.4 -3.4 -2.6/-3.3 -2.2/-3.9 -7.1/-1.7 -3.8

Non MuRIL Languages

mBERT - 63.5 71.1 80.2 65.9 62.2/47.1 59.7/41.4 60.4/46.1 66.1

StudentMuRIL mBERT 63.9 72.8 83.3 68.7 66.5/51.2 63.1/44.4 61.7/45.0 68.6

StudentmBERT mBERT 64.6 72.1 84.0 68.8 64.5/49.0 61.1/42.7 58.9/44.1 67.7

StudentBoth all mBERT 64.1 72.6 83.9 68.1 61.3/47.1 60.5/42.2 59.7/44.0 67.2

StudentBoth best mBERT 63.3 72.6 83.2 67.2 66.0/50.6 61.4/43.2 62.4/46.5 68.0

RDT(StudentMuRIL,mBERT) (%) +0.6 +2.4 +3.9 +4.3 +6.9/+8.7 +5.7/+7.2 +2.2/-2.4 +3.8

Table 4: Results for multilingual teacher and student LMs on the XTREME benchmark. We compare perfor-

mances of three student LM variants as described in Section 4.3 to the two teachers mBERT and MuRIL. Relative

deviations of 5% or less from teacher (i.e., RDT ≥ −5%) are marked in bold. Overall, we find that StudentMuRIL

performs the best among all student variants and report its RDT (in %) (Equation 3) from the two teachers. Please

refer to Section 4.3 for a detailed analysis.

we can attribute this gain to the fact that En-

glish is trained with linguistically and typolog-

ically similar languages in Studentsimilar. Sec-

ond, Studentsimilar outperforms its teacher LMs

while Studentdissimilar is competitive for all lan-

guages. These two results across all languages

point towards Studentsimilar benefiting from a pos-

itive transfer across similar languages. In Table 3,

we observe that Studentsimilar is trained on 9.9%

of the total unique tokens seen by its respective

teacher LMs and Studentdissimilar lies close with

13.6%. Despite this huge disparity in pre-training

corpora, student LMs are competitive with their

teachers. This encouraging result proves that even

with very limited data, MERGEDISTILL enables

one to combine strong monolingual teacher LMs

to train competitive student LMs that can leverage

the benefits of multilinguality.

4.3 Multilingual Teacher LMs

Pre-training: In this experiment, we make use

of pre-existing multilingual models: mBERT and

MuRIL. mBERT is trained on 104 languages and

MuRIL covers 12 of these (11 Indian languages +

English): Bengali (bn), English (en), Gujarati (gu),

Hindi (hi), Kannada (kn), Malayalam (ml), Marathi

(mr), Nepali (ne), Punjabi (pa), Tamil (ta), Telugu

(te), and Urdu (ur), with higher performance for

these languages on the XTREME benchmark. We

train the student model on all 104 languages. In

this case, the MuRIL Languages (MuL) have two

as shown in Table 3

teachers (mBERT and MuRIL) and the Non-MuRIL

Languages (Non-MuL) can learn from mBERT

only. Therefore, while we only use mBERT

as the teacher LM for Non-MuL across all ex-

periments, we consider three possibilities for MuL :

i) StudentMuRIL: We only use MuRIL as

the teacher LM and each input training example is

tokenized using MuRIL.

ii) StudentmBERT: We only use mBERT as the

teacher LM and each input training example is

tokenized using mBERT.

iii) StudentBoth: As highlighted in Section 3,

we consider two possibilities to incorporate both

teacher LM predictions in training:

• StudentBoth all: Tokenize each input exam-

ple using mBERT and MuRIL separately and

include both copies in training.

• StudentBoth best: Tokenize each input ex-

ample using mBERT and MuRIL separately

and include only the best copy in training. The

best copy is the one having minimum teacher

LM loss for the example.

Note, it is non-trivial to tokenize each example in a

way that is compatible with all teacher LMs. One

must resort to tokenization using an intersection of

vocabularies which is sub-optimal.

All the student LMs use a BERT-base architecture

and have a vocabulary size of 288,973. We reduce

our embedding dimension to 256 as opposed to
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Model Vocabulary Labels PANX UDPOS PAWSX XNLI XQUAD MLQA TyDiQA Avg.

SM1 mBERT Gold 63.2 73.0 94.8 71.2 70.2/57.9 65.1/51.3 60.8/48.7 71.2

SM2 mBERT∪MuRIL Gold 69.3 73.9 95.3 71.2 76.2/63.1 71.1/56.0 70.9/56.0 75.4

SM3 mBERT∪MuRIL Gold+Teacher 69.3 72.3 95.4 71.9 75.7/62.1 72.0/56.3 70.7/59.2 75.3

SM2 100k mBERT∪MuRIL Gold 65.5 72.3 94.3 67.5 72.3/58.2 66.9/51.5 62.5/51.9 71.6

SM3 100k mBERT∪MuRIL Gold+Teacher 71.2 73.5 93.1 69.6 76.4/62.9 69.1/53.9 68.6/54.9 74.5

Table 5: Importance of teacher vocabulary and predictions in MERGEDISTILL. We observe maximum perfor-

mance gains, by changing the vocabulary from mBERT in SM1 to (mBERT∪MuRIL) vocabulary in SM2. Here,

SM3 is the standard StudentMuRIL. We also observe that SM3 100k, trained for 20% of the total training steps, is

competitive to SM3 and significantly outperforms SM2 100k, highlighting the importance of teacher LM predic-

tions in a limited data scenario. Please see Section 4.4 for details.

768 to bring down the model size to be around

160M, comparable to mBERT (178M). We keep a

batch size of 4096 and train for 500,000 steps with

a maximum sequence length of 512.

Finetuning: We report zero-shot performance for

all languages in the XTREME (Hu et al., 2020)

benchmark8.

Results: We report results of our teacher and

student LMs in Table 4. Overall, we find that

StudentMuRIL performs the best among all student

variants. For Non-MuL, StudentMuRIL beats the

teacher (mBERT) by an average relative score of

3.8%. For MuL, StudentMuRIL beats one teacher

(mBERT) by 8.8%, but underperforms the other

teacher (MuRIL) by 3.8%. There can be two fac-

tors at play here. MuRIL is trained on monolingual

and parallel data 9 while the student LMs only see

∼22% of unique tokens in comparison. MuRIL

also has different language sampling strategies

(α = 0.3 as opposed to 0.7 in our setting, where

a lower α value upsamples more rigorously from

the tail languages), which have a significant role to

play in multilingual model performances (Conneau

et al., 2020). We also observe a significant drop in

StudentmBERT’s performance for MuL when com-

pared to the other student LM variants. This might

be because the input is tokenized using the mBERT

tokenizer which prevents learning from MuRIL to-

kens in the student vocabulary. For StudentBoth,

we do not observe much of a difference between

StudentBoth all and StudentBoth best. This obser-

vation may differ with one’s choice of teacher LMs

depending on how well it performs for a particular

language. In our case, we don’t observe much of a

difference in incorporating mBERT predictions for

MuL.

8More details in Appendix A.3
9More details in Appendix A.2

4.4 Further Analysis

The importance of vocabulary and teacher LM

preditions: In Table 4, we see that StudentMuRIL

significantly outperforms mBERT for MuL,

despite both being trained on Wikipedia corpora,

and having comparable model sizes. With regard

to MuL, StudentMuRIL differs from mBERT in

two main aspects – i) StudentMuRIL’s vocabulary

is a union of mBERT and MuRIL vocabularies. ii)

StudentMuRIL is trained with additional MuRIL

predictions as soft labels. To disentangle the

role both these factors play in StudentMuRIL’s

improved performance, we train two models :

i) SM1 is trained exactly like StudentMuRIL, but

with mBERT vocabulary and on gold labels.

ii) SM2 is trained using StudentMuRIL’s vocabu-

lary (mBERT ∪ MuRIL) but on gold labels only,

without teacher predictions.

The results are summarized in Table 5. Note,

we refer to StudentMuRIL as SM3. Overall, we

observe a ∼4.2% gain in average performance

for SM2 over SM1. This clearly highlights that

given fixed data and model capacity, LM training

significantly benefits by incorporating a strong

teacher’s vocabulary.

Furthermore, we also observe that SM2 and SM3
achieve competitive performances despite SM3
being additionally trained on teacher LM labels. To

motivate the need for teacher predictions, Hinton

et al. (2015) argue that when soft targets have high

entropy, they provide much more information per

training case than hard targets and can be trained

on much less data than the original cumbersome

model. In our case, we hypothesize that training

on 500,000 steps exposes the model to sufficient

data for it to generalize well enough and mask the

benefits of teacher LM predictions. To validate this,

we evaluate the performances of SM2 and SM3,
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20% into training (i.e. 100,000 steps / 500,000

total steps) as shown in Table 5. We observe a

∼2.9% gain in average performance for SM3
over SM2, clearly highlighting the importance of

teacher LM predictions in a limited data scenario.

This is especially important when one has access

to very limited monolingual data and a strong

teacher LM for a particular language.

Pre-trained zero-shot transfer: Interestingly,

StudentMuRIL performs the best on almost all

tasks for Non-MuL. This hints at positive transfer

from strong teachers to languages that the teacher

does not cover at all, due to the shared multilin-

gual representations.10 This would mean that learn-

ing from strong teachers can improve the student

model’s performance in a zero-shot manner on re-

lated languages not covered by the teacher. This

would make MERGEDISTILL highly beneficial for

low-resource languages that do not have a strong

teacher or limited gold data. We leave this explo-

ration to future work.

5 Conclusion

In this paper we address the problem of merging

multiple pre-trained teacher LMs into a single mul-

tilingual student LM by proposing MERGEDIS-

TILL, a task-agnostic distillation method. To the

best of our knowledge, this is the first attempt of its

kind. The student LM learned by MERGEDISTILL

may be further fine-tuned for any task across all

of the languages covered by the teacher LMs. Our

approach results in better maintainability (fewer

models) and is compute efficient (due to offline

predictions). We use MERGEDISTILL to i) com-

bine monolingual teacher LMs into one student

multilingual LM which is competitive with the

teachers, thereby demonstrating positive cross-

lingual transfer, and ii) combine multilingual LMs

to train student LMs that learn from multiple teach-

ers. Through experiments on multiple benchmark

datasets, we show that student LMs learned by

MERGEDISTILL perform competitively or even

outperform teacher LMs trained on orders of mag-

nitude more data. We disentangle the positive im-

pact of incorporating strong teacher LM vocabu-

10For example, if you want to train a multilingual model
covering English and a closely related low-resource language
for which there exists no strong teacher, it may be possible
to improve performance for the low resource language using
teacher predictions for English only, due to a shared embed-
ding space and possibly shared sub-words.

laries and learning from teacher LM predictions,

highlighting the importance of the latter in a lim-

ited data scenario. We also find that MERGEDIS-

TILL enables positive transfer from strong teachers

to languages not covered by them (i.e. zero-shot

transfer). Our work bridges the gap between the

universe of language-specific models and massively

multilingual LMs, incorporating benefits of both

into one framework.
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A. R. Fonollosa. 2020. Automatic Spanish transla-
tion of SQuAD dataset for multi-lingual question
answering. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 5515–
5523, Marseille, France. European Language Re-
sources Association.

Isaac Caswell, Theresa Breiner, Daan van Esch, and
Ankur Bapna. 2020. Language ID in the wild:
Unexpected challenges on the path to a thousand-
language web text corpus. In Proceedings of

https://www.aclweb.org/anthology/2020.osact-1.2
https://www.aclweb.org/anthology/2020.osact-1.2
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://www.aclweb.org/anthology/2020.lrec-1.677
https://www.aclweb.org/anthology/2020.lrec-1.677
https://www.aclweb.org/anthology/2020.lrec-1.677
https://www.aclweb.org/anthology/2020.coling-main.579
https://www.aclweb.org/anthology/2020.coling-main.579
https://www.aclweb.org/anthology/2020.coling-main.579


2883

the 28th International Conference on Computa-
tional Linguistics, pages 6588–6608, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.
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A Appendix

A.1 Knowledge Distillation

We train our LMs with the MLM objective. Let

x denote a sequence of tokens where xm =
{x1, x2, x3...xn} denote the masked tokens, and

x−m denote the non-masked tokens. Let v be the

vocabulary of LM θ. The log-likelihood loss (cross-

entropy with one-hot label) can be formulated as

follows:

LMLM(xm|x−m) = −
1

n

n∑

i=1

|v|∑

k=1

P(xmi
, k);

P(xmi
, k) = 1(xmi

= k)logp(xmi
= k|x−m; θ)

In a distillation setup, the student is trained to not

only match the one-hot labels for masked words,

but also the probability output distribution of the

teacher t. Let us denote the teacher output probabil-

ity distribution for token xmi
by Q(xmi

|x−m; θt).
The cross entropy between the teacher and student

distributions then serves as the distillation loss :

LKD(xm|x−m) = −
1

n

n∑

i=1

|v|∑

k=1

P̂(xmi
, k);

P̂(xmi
, k) = Q(xmi

= k|x−m; θt)

logp(xmi
= k|x−m; θ)

The total loss is then defined as :

LALL = λLKD + (1− λ)LMLM

With the addition of the teacher, the target distri-

bution is no longer a single one-hot label, but a

smoother distribution with multiple words having

non-zero probabilities which yields in a smaller

variance in gradients (Hinton et al., 2015). Intu-

itively, a single masked word can have several valid

predictions, which appropriately fit the context.
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Teacher Language
Teacher LM Student LM

% of Data
Tokens Tokens

MuRIL

Bengali 1181M 27M 2.30%

English 6986M 2816M 40.30%

Gujarati 173M 7M 3.90%

Hindi 2368M 38M 1.61%

Kannada 196M 15M 7.64%

Malayalam 337M 14M 4.17%

Marathi 274M 8M 3.02%

Nepali 231M 5M 2.16%

Punjabi 141M 9M 6.45%

Tamil 769M 26M 3.34%

Telugu 331M 30M 8.99%

Urdu 722M 23M 3.21%

Total 13709M 3018M 22%

Table 6: Number of Tokens (in Millions) in the

teacher (MuRIL) and student LMs as described in Sec-

tion 4.3. Note, we only show the MuRIL Languages

here because for Non-MuRIL Languages, the teacher

(mBERT) and student variants are trained on the same

data.

A.2 Pre-training Details

A.2.1 Monolingual Teacher LMs

We pre-train our student models using the BERT

base architecture. Studentsimilar has a vocabulary

size of 99112 and a model size of 162M parameters.

Studentdifferent has a vocabulary size of 180996

and a model size of 225M parameters. We keep a

batch size of 4096 and train for 250k steps with a

maximum sequence length of 512. We use TPUs,

and it takes around 1.5 days to pre-train each stu-

dent LM.

A.2.2 Multilingual Teacher LMs

We pre-train our student models using the BERT

base architecture. All student LMs have a

vocabulary size of 288973. Hence, we reduce our

embedding dimension to 256 as opposed to 768

to bring down the model size to be around 160M,

comparable to mBERT (178M). We keep a batch

size of 4096 and train for 500k steps with a maxi-

mum sequence length of 512. We use TPUs, and

it takes around 3 days to pre-train each student LM.

We present pre-training data statistics for

MuRIL and the student LMs in Table 6. Here

we only include the monolingual data statistics,

but MuRIL is additionally trained on parallel

translated and transliterated data.

Task Batch
Learning No. of Warmup Max. seq.

Rate Epochs Ratio Length

NER 32 3e-5 10 0.1 256

POS 32 3e-5 10 0.1 256

QA 32 3e-5 10 0.1 384

Table 7: Hyperparameter Details for each fine-tuning

task in Section 4.2

A.3 Fine-tuning Details

A.3.1 Monolingual Teacher LMs

Data Statistics We evaluate our monolingual

teacher LMs and multilingual student LMs, as

described in Section 4.2, on three tasks as follows:

i) Named Entity Recognition (NER): We

use the WikiAnn (Pan et al., 2017; Rahimi

et al., 2019) dataset for all languages. Each

language comprises of a train/dev/test split of

20000/10000/10000 tokens. Specifically, we use

the huggingface re-packaged implementation of

the dataset11.

ii) Part-of-Speech tagging (POS): We use

the Universal Dependencies v2.6 (Zeman et al.,

2020) dataset for all languages. Detailed statistics

for each language can be found in Table 9.

Specifically, we use the huggingface re-packaged

implementation of the dataset12.

iii) Question Answering (QA): We use the

TyDiQA dataset (Clark et al., 2020) for ar and

fi, SQuADv1.1 (Rajpurkar et al., 2016) for en,

SQuAD-translated for it (Croce et al., 2018) and es

(Carrino et al., 2020), DRCD for zh (Shao et al.,

2018) and TQuAD13 for tr. Detailed statistics for

each language can be found in Table 10. Note,

we use the dev set as our test sets, since most

datasets only have a train/dev split. We use 10%

of randomly shuffled training examples as our dev

sets.

Hyperparameter Details: We use the same hy-

perparameters for fine-tuning all teacher and stu-

dent LMs, as shown in Table 7. We report results

on the best-performing checkpoint for the valida-

tion set. The performance of the best checkpoint

on validation sets are shown in Table ??

11https://huggingface.co/datasets/wikiann
12https://huggingface.co/datasets/universal dependencies
13https://tquad.github.io/turkish-nlp-qa-dataset

https://huggingface.co/datasets/wikiann
https://huggingface.co/datasets/universal_dependencies
https://tquad.github.io/turkish-nlp-qa-dataset
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Languages Model PANX UDPOS PAWSX XNLI XQUAD MLQA TyDiQA

MuRIL Languages

mBERT 58.8 68.5 93.4 66.2 70.3/57.5 65.0/50.8 62.5/52.7

MuRIL 76.9 74.5 95.0 74.4 77.7/64.2 73.6/58.6 76.1/60.2

k=8 69.3 72.3 95.4 71.9 75.7/62.1 72.0/56.3 70.7/59.2

k=128 67.5 72.8 94.4 70.7 75.5/61.9 71.1/56.1 70.2/55.4

k=512 69.2 77.2 94.7 71.3 75.6/61.8 72.3/56.9 68.5/53.9

Non MuRIL Languages

mBERT 63.5 71.1 80.2 65.9 62.2/47.1 59.7/41.4 60.4/46.1

k=8 63.9 72.8 83.3 68.7 66.5/51.2 63.1/44.4 61.7/45.0

k=128 63.7 72.8 83.4 67.9 66.1/51.1 61.4/43.4 62.6/46.7

k=512 64.8 73.3 82.7 67.4 65.7/50.7 63.6/44.9 58.7/44.8

All Languages

mBERT 62.5 70.6 82.0 65.9 63.7/49.0 61.2/44.1 61.1/48.3

k=8 65.0 72.7 85.0 69.3 68.2/53.2 65.6/47.8 64.7/49.7

k=128 64.5 72.8 85.0 68.4 67.9/53.0 64.2/47.1 65.2/49.6

k=512 65.7 74.0 84.4 68.2 67.5/52.8 66.1/48.3 62.0/47.8

Table 8: Results of the best performing student model StudentMuRIL for different top-k values

Language Dataset Examples (Train/Dev/Test)

Arabic AR PADT 6075/909/680

Chinese ZH GSD 3997/500/500

English EN EWT 12543/2002/2077

German DE HDT 15305/18434/18459

Finnish FI FTB 14981/1875/1867

Italian IT ISDT 13121/564/482

Spanish ES ANCORA 14305/1654/1721

Turkish TR IMST 3664/988/983

Table 9: Universal Dependencies v2.6 overview for

each language, used in Section 4.2

Language Dataset Examples (Train/Test)

Arabic TyDiQA-GoldP 14805/921

Chinese DRCD 26936/3524

English SQuADv1.1 87599/10570

German - -

Finnish TyDiQA-GoldP 6855/782

Italian SQuADv1.1-translated 87599/10570

Spanish SQuADv1.1-translated 87595/10570

Turkish TQuAD 8308/892

Table 10: Question Answering datasets, used in Sec-

tion 4.2

A.3.2 Multilingual Teacher LMs

Data Statistics We evaluate all the teacher

(mBERT and MuRIL) and student (StudentMuRIL,

StudentmBERT and StudentBoth) LMs on the

XTREME (Hu et al., 2020) benchmark. We fine-

tune the pre-trained models on English training

data for the particular task, except TyDiQA, where

we use additional SQuAD v1.1 English training

data, similar to (Fang et al., 2020). All results are

computed in a zero-shot setting.

Hyperparameter Details We use the same

hyperparameters for fine-tuning all teacher and

student LMs, as shown in Table 11. We report

results on the best-performing checkpoint for the

Task Batch
Learning No. of Warmup Max. seq.

Rate Epochs Ratio Length

PANX 32 2e-5 10 0.1 128

UDPOS 64 5e-6 10 0.1 128

PAWSX 32 2e-5 5 0.1 128

XNLI 32 2e-5 3 0.1 128

XQuAD 32 3e-5 2 0.1 384

MLQA 32 3e-5 2 0.1 384

TyDiQA 32 3e-5 2 0.1 384

Table 11: Hyperparameter Details for each task in

XTREME

eval set.

A.4 Different top-k values

We present results for StudentMuRIL trained with

different top-k values from teacher predictions in

Table 8. We observe that while performances re-

main similar for higher values of k, storage be-

comes increasingly expensive. Hence, we stick to

a value of k=8 in all our experiments.


