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Abstract
Differentiable architecture search (DARTS) has
been a promising one-shot architecture search ap-
proach for its mathematical formulation and com-
petitive results. However, besides its caused high
memory utilization and a large computation re-
quirement, many research works have shown that
DARTS also often suffers notable over-fitting and
thus does not work robustly for some new tasks.
In this paper, we propose a one-shot neural archi-
tecture search method referred to as MergeNAS
by merging different types of operations e.g. con-
volutions into one operation. This merge-based
approach not only reduces the search cost (about
half a GPU day), but also alleviates over-fitting
by reducing the redundant parameters. Extensive
experiments on different search space and vari-
ous datasets have been conducted to verify our ap-
proach, showing that MergeNAS can converge to a
stable architecture and achieve better performance
with fewer parameters and search cost. For test
accuracy and its stability, MergeNAS outperforms
all NAS baseline methods implemented on NAS-
Bench-201, including DARTS, ENAS, RS, BOHB,
GDAS and hand-crafted ResNet.

1 Introduction
Neural Architecture Search is a process to automatically
search for an efficient neural network instead of manually de-
sign, which need a large amount of trails and expert knowl-
edge. There are several basic approaches for neural architec-
ture search: reinforcement learning based NAS, evolution-
ary algorithm based NAS, and differentiable NAS (DARTS).
Many works [Baker et al., 2017; Zoph and Le, 2017;
Zhong et al., 2018; Zoph et al., 2018] frame NAS as a
reinforcement learning problem, and consider the genera-
tion of an architecture as the agent’s action. ENAS [Pham
et al., 2018] proposed weight sharing strategy among the
∗This work was done when the first author was an intern at IBM

Research – China.
†Junchi Yan is the corresponding author.

same operations in different architectures during the search
phase, which can significantly reduce the search cost and ob-
tain a great performance. Other works [Real et al., 2017;
Liu et al., 2018b; Real et al., 2019; Miikkulainen et al., 2019;
Xie and Yuille, 2017; Elsken et al., 2019] encode the neural
architecture and use genetic algorithms to propose a group
of architectures as a population. New individuals are gener-
ated based on the rules of crossover and mutation, and the
next population are selected according to the validation ac-
curacy of each architecture. Unlike the first two frameworks
that regards the searching process as a black box, DARTS
[Liu et al., 2019] introduces architecture parameters to indi-
cate the saliency of the edges and thus trains a single model
that contains all possible operations. By solving a bi-level
optimization problem, DARTS can obtain an efficient neural
architecture in a few GPU days.

However, DARTS suffers a severe over-fitting problem,
which is also referred as the problem of stability [Bi et al.,
2019]. Multiple experiments indicate that the saliency of
none and skip-connect operations will dominate the archi-
tecture parameters after a hundred of epochs, and thus the
accuracy of the chosen architecture declines. Recent work
[Zela et al., 2020] points out that involving early stop strat-
egy or increasing the weight decay can improve the stability
of searching process. In this work, we consider another so-
lution to overcome over-fitting problem by merging different
types of convolutions into one and sharing weights among
those convolutional operations. Specifically, we maintain a
single convolution with a large kernel size as the only para-
metric operation in the search space, and kernels of other con-
volutions can be derived from the large kernel.

The contributions of our approach are as follows:
1) MergeNAS Approach. We propose MergeNAS based

on DARTS to merge the convolutions with different kernel
sizes and dilation rates into one. We also provide weight
merge strategy for separable convolutions. It should be no-
ticed that weight merge strategy can be applied to one-shot
based NAS approaches, including but not limited to DARTS.

2) Strong Robustness. According to the experiments, we
observe the unstable searching process of DARTS, which is
also the over-fitting problem for one-shot based NAS. Mer-
geNAS is able to alleviate the over-fitting problem by reduc-
ing redundant parameters in one-shot model. For test accu-
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racy and stability, MergeNAS achieves state-of-the-art per-
formance on NAS-Bench-201.

3) Strong Cost-effectiveness. We evaluate MergeNAS
on two typical search spaces: the micro search space of
ENAS [Pham et al., 2018] and the search space in NAS-
Bench-201 [Dong and Yang, 2020]. Compared to DARTS,
our approach can converge to an efficient architecture with
fewer memory cost and searching time.

2 Related Work
One-shot Architecture Search. One-shot NAS [Bender et
al., 2018] searched for an efficient architecture by regarding
the neural architecture as a Directed Acyclic Graph (DAG),
and constructing a large graph which integrates all types of
operations and connections. A neural architecture in the
search space can be seen as a sub-graph of the one-shot
model. Based on one-shot NAS, the authors in [Liu et al.,
2019] introduced the architecture parameters indicating the
importances of the operations and connections, which were
optimized iteratively with the network weights based on gra-
dient decent algorithm. Another work [Nayman et al., 2019]
regarded the one-shot NAS as an online selection task, and
utilized the prediction with experts advice (PEA) theory to se-
lect the operations and connections. Some other approaches
[Chen et al., 2019; Zhou et al., 2019] were proposed to reduce
the memory consuming by pruning the redundant connections
in the search phase, which is also a problem of one-shot NAS
due to the over-parameterized model.

Weight Sharing. ENAS [Pham et al., 2018] first used
weight sharing to train the weights of network selected by
an LSTM controller in searching process, which can signifi-
cantly reduce the search time with a good performance. An-
other work [Chu et al., 2019] devised FairNAS to randomly
sample M architectures from a one-shot model, and update
the network weights belonging to the selected operations in
the M networks. Based on DARTS, ProxylessNAS [Cai et
al., 2019] and SNAS [Xie et al., 2019] proposed to sample
a single path of the one-shot model and only trained weights
of the selected small model in one iteration during the search
phase. ProxylessNAS proposed to binarize the connections
between every two nodes by sampling according to the soft-
max of the architecture parameters. While SNAS utilized the
Gumbel softmax trick to sample selected operations.

Discussion. Unlike weight sharing that reuse the weights of
the same operations in various trials, our approach proposes
weight merge for one-shot NAS by merging the convolutions
with different kernel size and dilation rate into one. Weight
merge can not only share the parameters, but also share the
computations, which is the distinction between weight shar-
ing and weight merge. Recent work [Stamoulis et al., 2019]
is also related to our approach. However, they fixed the back-
bone of the architecture as a specific architecture based on
MobileNetV2 [Sandler et al., 2018], and only mixed up dif-
ferent kernels in the depth-wise convolution. Consequently,
the search space only contains the kernel size of depth-wise
convolutions, which is much smaller than ours. In contrast,
we apply weight merge strategy on one-shot DARTS, and

search for not only the types of operations but also the con-
nections.

3 The Proposed MergeNAS
To reduce the number of parameters of one-shot model, we
expand weight sharing strategy by sharing weights among the
convolutions with different kernel sizes and dilation rates on
the same edge. We introduce three propositions, and demon-
strate that the convolutions can be merged into one operation
when they share weights. Furthermore, we also introduce
how to merge parameterless operations, such as skip-connect
and average pooling, into the one operation.

3.1 Theoretical Study
Based on one-shot NAS, we denote eij as the edge from node
i to node j, and oij as the operation associated with edge
eij . Similar to some one-shot based works [Liu et al., 2019;
Bender et al., 2018], we limit the selection of operations to
a basic set denoted as O. We also include the architecture
parameters to control the saliency of different operations in
edges, denoted as αo

ij . The output of the edge eij is denoted
as oj(zi), which is the weighted average of the operations oij .

oj(zi) =
∑
o∈O

αo
ijoij(zi) (1)

where zi is the output of node i, and the output of node j can
be obtained by

zj =
∑
i<j

oj(zi) (2)

In one-shot NAS, the search space consists of parameter-
less and parametric operations. On the one hand, zero opera-
tion, identity operation and pooling operation are categorized
into parameterless operations. On the other hand, multiple
types of convolutions with different kernel sizes and dilation
rates representing various receptive fields belong to paramet-
ric operations which are trainable. We denote the set of para-
metric operations as Op ⊂ O, and the weighted average of
all the parametric (convolutional) operations in the edge eij
is denoted as opj (zi), where zi is the output of node i, Wo

ij is
the parameters belonging to the operation oij , and ‘∗’ denotes
the convolutional operation.

opj (zi) =
∑
o∈Op

αo
ijoij(zi) =

∑
o∈Op

αo
ij

[
zi ∗Wo

ij

]
(3)

In the following, we omit the subscript (i, j) for concise-
ness. To derive new techniques of reducing the computation
of the parametric operations, we first present the following
propositions.
Proposition 1. The convolution operation with kernel W is
equivalent to1 a set of convolution operations whose kernel
W̃ is derived from W by padding 2n (n ≥ 0) zeros around.
Proposition 2. The dilated convolution operation with kernel
size k(1) and dilation rate r is equivalent to a normal convo-
lution operation with kernel size k(2) = r(k(1)−1)+1. In the

1Equivalence in this paper means the output of two convolutions
are the same.
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kernel of the normal convolution, there exits r zeros between
two non-zero weights.

Proof. Suppose a convolution with dilation rate r has weight
tensor W(0) ∈ RCo×Ci×k(0)

h ×k
(0)
w , whereCo, Ci are the num-

ber of output and input channels, respectively. For simplifica-
tion, we denote Wi,j,0,0 the central value of the jth kernel in
the ith filter of the tensor W, and thus Wi,j,−1,0 indicates the
nearest value above the central value. A tensor W(1) can be
derived as Eq. 4 with kernel size k(1)h = rk

(0)
h , k

(1)
w = rk

(0)
w .

We then define the tensor W(2) with a larger kernel k(2)h ×k
(2)
w

by padding 2n (n ≥ 0) zeros around W(1).

W(1)
c,m,p,q =

{
W

(0)
c,m,p/r,q/r p, q mod r = 0

0 otherwise
(4)

Proposition 1 holds if the output of the convolution o1
with weight W(2) equals to the convolution with weight
W(1), and Proposition 2 holds if the convolution with W(1)

equals to the convolution with W(0). The output tensor Y
of a normal convolution, whose input and weight are X and
W(2), can be computed as Eq. 5. For conciseness, we define
u
(i)
h = (k

(i)
h − 1)/2, u

(i)
w = (k

(i)
w − 1)/2, ∀i ∈ {0, 1, 2}

Yn,c,h,w =

u
(2)
h∑

p=−u(2)
h

u(2)
w∑

q=−u(2)
w

Ci−1∑
m=0

Xn,m,h+p,w+qW
(2)
c,m,p,q

(5)
The result of Eq. 5 remains unchanged by removing the

terms that equal to zero. As a consequence, The above convo-
lution is equivalent to the normal convolution with the weight
W(1), which omits the zero padding of W(2). Furthermore,
by omitting the zero values inside the weight tensor, we can
compute the tensor Y as Eq. 6, which is the dilation convolu-
tion with the weight W(0).

Yn,c,h,w =

u
(0)
h∑

p=−u(0)
h

u(0)
w∑

q=−u(0)
w

Ci−1∑
m=0

Xn,m,h+rp,w+rqW
(1)
c,m,rp,rq

=

u
(0)
h∑

p=−u(0)
h

u(0)
w∑

q=−u(0)
w

Ci−1∑
m=0

Xn,m,h+rp,w+rqW
(0)
c,m,p,q (6)

As a consequence, we can learn that the output of the di-
lation convolution equals to a normal convolution, which is
also equivalent to a set of normal convolutions by padding
zero around the kernels2. This ends the proof.

According to Proposition 1 and 2, we can obtain the equiv-
alent convolutions with a large kernel size for all the paramet-
ric operations in the operation set O. As shown in Figure 1,
the white block indicates zero, and the red block indicates the
weights for original operations. Based on the homogeneity

2The spatial size of Y in Eq. 5 and Eq. 6 is guaranteed to be the
same by padding zeros around X

and linearity of convolution, we can then simplify the Equa-
tion 3 as follows, where W̃o is the equivalent weights with
large kernel size for convolutions in the search space, and W̃
is the merged weights of the single convolution.

op(z) =
∑
o∈Op

αo [z ∗Wo] = z ∗

[∑
o∈Op

αoW̃o

]
= z ∗ W̃

(7)
According to Eq. 7, various convolutions can be merged

into one. We can obtain the weighted average of the con-
volutions by conducting convolutional operation once, which
reduces the forward computation.

However, the number of parameters in one-shot model is
unchanged, and the model still demands a large amount of
GPU memories. To reduce the memory cost and further ac-
celerate the searching process, we propose an approach (Mer-
geNAS) to share the weights among different convolutions.

We first describe MergeNAS for normal convolution. Then
we derive the formula of weight merge strategy for separable
convolution. We also introduce the merge of parameterless
operations which can also be merged into one convolution.

3.2 Merge of Normal Convolutions
To further reduce the parameters in one-shot model, we first
construct a tensor W with a large kernel size as the merged
weights. Then all convolutions’ weights can be derived from
the single tensor W. Specifically, we use mask matrices
Mo, o ∈ Op to denote the receptive field of different paramet-
ric operations as shown in Figure 1, and thus W̃o = Mo ·W,
where the convolution with weights W̃o is equivalent to the
convolution with weights Wo according to Proposition 1 and
2. Therefore, the weights of the merged convolution W̃ in
Eq. 7 can be simplified as:

W̃ =
∑
o∈Op

αoW̃o =

[∑
o∈Op

αoMo

]
·W = M̃ ·W (8)

The matrix M̃ =
∑
αoMo denotes the saliency of dif-

ferent receptive field, as shown in Figure 1(e). By sharing
the weights among convolutions, MergeNAS can reduce not
only the number of parameters but also the amount of compu-
tation. Multiple experiments on NAS-Bench-201 [Dong and
Yang, 2020] have been conducted in Section 4 to show the ef-
ficiency and efficacy of MergeNAS for normal convolutions.

3.3 Merge of Separable Convolutions
Many approaches [Liu et al., 2019; Bender et al., 2018] used
separable convolutions as parametric operations because of
large GPU memory costs in one-shot NAS. In order to ap-
ply MergeNAS approach on separable convolutions, we have
the following proposition to reveal the relationship between
separable convolution and normal convolution.

Proposition 3. Given no activation and normalization lay-
ers between the depth-wise and point-wise convolution, the
separable convolution is equivalent to a normal convolution,
whose weight tensor is the Hadamard Product of the weight
tensors of depth-wise and point-wise convolution.
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(a) 3× 3 convolution (b) 5× 5 convolution (c) 3× 3 dilated conv. (d) 5× 5 dilated conv. (e) mask matrix M̃

𝛼" + 𝛼$ + 𝛼%" + 𝛼%$

𝛼$ + 𝛼%" + 𝛼%$

𝛼" + 𝛼$

𝛼$

𝛼%$

Figure 1: (a)-(d) is the equivalent mask Mo of the receptive field for different convolutions (red denotes non-zero weights). (e) is the weighted
average mask M̃. Different color indicate various combinations of architecture parameters α. In the micro search space of DARTS, there are
four kinds of convolutions (see Section 4).

Proof. Noted that the condition of Proposition 3, that no acti-
vation and normalization layers exist between the depth-wise
and point-wise convolution, is satisfied in the search space of
DARTS [Liu et al., 2019] and ENAS [Pham et al., 2018].

We then prove that the proposition holds for dilated sep-
arable convolution, which degrades to a normal separable
convolution when the dilation rate r = 1. Suppose a di-
lated separable convolution with dilation rate r has the depth-
wise weight Wd ∈ RCi×1×kh×kw and point-wise weight
Wp ∈ RCo×Ci×1×1. The output tensor Y of the normal con-
volution with the input X can be computed by Eq. 10, where
uh = (kh − 1)/2, uw = (kw − 1)/2.

Yd
n,m,h,w =

uh∑
p=−uh

uw∑
q=−uw

Xn,m,h+rp,w+rqW
d
m,1,p,q (9)

Yn,c,h,w =

Ci−1∑
m=0

Yd
n,m,h,wW

p
c,m,1,1

=

uh∑
p=−uh

uw∑
q=−uw

Ci−1∑
m=0

Xn,m,h+rp,w+rq

[
Wd

m,1,p,qW
p
c,m,1,1

]
=

uh∑
p=−uh

uw∑
q=−uw

Ci−1∑
m=0

Xn,m,h+rp,w+rqW
s
c,m,p,q (10)

Thus, the separable convolution is equivalent to a normal
convolution with weights Ws. This ends the proof.

To unify the notation, we denotes Wd,o,Wp,o(o ∈ O) as
the weights of the depth-wise and the point-wise convolution,
and the weights of the equivalent convolution is denoted as
Ws,o which can be obtained by Eq. 11, where [Wd,o]> ∈
R1×Ci×kh×kw is the transposed version of Wd,o along the
first two dimensions, and ‘·’ denotes Hadamard product.

Ws,o = Wd,o ∗Wp,o = [Wd,o]> ·Wp,o (11)

According to Eq. 8, we can compute the weights of the
merged convolution as follows by sharing the weights of
depth-wise convolution denoted as Wd.

W̃ =
∑
o∈Op

αoMo · [Wd]> ·Wp,o

= [Wd]> ·
∑
o∈Op

αoMo ·Wp,o (12)

Algorithm 1 MergeNAS: Weight Merge for NAS
Input:
1) Operation set O;
2) Parametric operation set Op ⊂ O;
3) Parameterless operation set Ol = O\Op;
4) The input of node j, zi;
Parameter:
1) The sharing weights for edge eij of one-shot model (Wij

for normal, and Wd
ij ,W

p
ij for separable convolution);

2) The architecture parameters for edge eij , αo
ij , o ∈ O;

3) Mask matrix for convolutional operations Mo, o ∈ Op;
Output:
The output of node j, zj ;
Procedure:

1: Compute the saliency matrix M̃ij =
∑

o∈Op αo
ijM

o;
2: if normal convolution in Op then
3: W̃ij = M̃ij ·Wij

4: Compute the single convolution with weights W̃ij :
opj (zi) = zi ∗ W̃ij

5: else if separable convolution in Op then
6: Wd′

ij = M̃ij ·Wd
ij ;

7: Compute single separable convolution with depth-wise
weights Wd′

ij and point-wise weights Wp
ij :

opj (zi) = zi ∗Wd′

ij ∗W
p
ij

8: end if
9: oj(zi) = opj (zi) +

∑
o∈Ol αo

ijoij(zi)

10: return the output of edge eij , oj(zi);

The weights of point-wise convolution, denoted as Wp can
be further shared, and the merged weights of the single con-
volution is as follows:

W̃ = [Wd]> ·
∑
o∈Op

αoMo ·Wp

=
[
M̃ ·Wd

]>
·Wp = Wd′

∗Wp (13)

As such, the weighted average of separable convolutions
can be merged into a single separable convolution whose
depth-wise weight is Wd′

and point-wise weight is Wp. The
specific algorithm is shown in Alg. 1
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Architecture Test Error (%) Params (M) #ops Search Cost (GPU-days) Search Method
DenseNet-BC [Huang et al., 2017] 3.46 25.6 - - manual

NASNet-A + cutout [Zoph et al., 2018] 2.65 3.3 13 1800 RL
AmoebaNet-B + cutout [Real et al., 2019] 2.55±0.05 2.8 19 3150 evolution
Hierarchical Evo [Liu et al., 2018b] 3.75±0.12 15.7 6 300 evolution
PNAS [Liu et al., 2018a] 3.41±0.09 3.2 8 225 SMBO
ENAS + cutout [Pham et al., 2018] 2.89 4.6 6 0.5 RL

DARTS (1st order) + cutout [Liu et al., 2019] 3.00±0.14 3.3 7 0.4 gradient-based
DARTS (2nd order) + cutout [Liu et al., 2019] 2.76±0.09 3.4 7 1.0 gradient-based
SNAS (moderate) + cutout [Xie et al., 2019] 2.85±0.02 2.8 7 1.5 gradient-based
ProxylessNAS + cutout [Cai et al., 2019] 2.08 5.7 7 4.0 gradient-based
P-DARTS + cutout [Chen et al., 2019] 2.50 3.4 7 0.3 gradient-based
PC-DARTS (1st order) + cutout [Xu et al., 2020] 2.57±0.07 3.6 7 0.1 gradient-based
BayseNAS + cutout [Zhou et al., 2019] 2.81±0.04 3.4 7 0.2 gradient-based

MergeNAS (1st order) + cutout 2.73±0.02 2.9 7 0.2 gradient-based
MergeNAS (2nd order) + cutout 2.68±0.01 2.9 7 0.6 gradient-based

Table 1: Comparison with state-of-the-art image classifiers on CIFAR10 (lower error rate is better). Similar to DARTS, the search cost for
MergeNAS does not include the selection cost or the final evaluation cost. Numbers of compared methods are excerpted from the raw paper.
The search cost only includes the time of the searching process on NVIDIA 1080 Ti.

3.4 Merge of Parameterless Operations
To further reduce the memory cost for MergeNAS, we can
also merge the skip connect operation and average pooling
into the single convolution. Without changing spatial size and
number of channels, the skip connect operation is equivalent
to a point-wise convolution whose weights can be derived
from an Identity Matrix. By Proposition 1, we can obtain
the equivalent convolution with a larger kernel size. Average
pooling can be computed by a separable convolution whose
input channel Ci equals to the output channel Co. The depth-
wise weights are filled with 1/(kh×kw), where kh, kw are the
height and width of the kernel. While the point-wise weights
is an identity matrix. Based on Proposition 3, we can obtain
the equivalent normal convolution for average pooling.

Based on Eq. 7, the average pooling and skip-connect can
be merged with a normal convolution. However, it is hard to
merged them with a separable convolution, which needs to
share the weights of both depth-wise and point-wise convolu-
tions.

4 Experiments
The efficiency and stability of MergeNAS is evaluated on two
cell search spaces: the micro search space of ENAS [Pham et
al., 2018] and DARTS [Liu et al., 2019], as well as the search
space in NAS-Bench-201 [Dong and Yang, 2020].

In the micro search space of ENAS, the operation set O
contains the separable convolutions with different kernel size.
DARTS replaced the single separable convolutions by a pair
of separable convolutions and expanded the search space by
involving dilated convolutions. In our settings, we directly
expand the micro search space of ENAS by involving dilated
convolutions and still use single separable convolutions with
kernel size 3 × 3 and 5 × 5 as the previous work [Pham et
al., 2018], due to their good performance on multiple experi-
ments. Therefore, there are 8 operations in our experiments:
zero, identity, max pooling, average pooling, 3× 3 separable

c_{k-2} 0
sep_conv_3x3 2

sep_conv_3x3

c_{k-1}
sep_conv_3x3

1sep_conv_3x3 sep_conv_3x3

sep_conv_3x3
c_{k}

3
sep_conv_5x5
sep_conv_3x3

(a) Normal Cell

c_{k-2}

0

max_pool_3x3 1

max_pool_3x3

2

max_pool_3x3

3max_pool_3x3

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_3x3

skip_connect
c_{k}

(b) Reduced Cell

Figure 2: The structure of normal and reduced cell searched by
MergeNAS (2nd order) on CIFAR10 dataset under the micro search
space of ENAS and DARTS. The deep architecture stacked by 20
cells based on the above cell structures achieves 97.33% accuracy
with 2.92M parameters.

convolution, 5× 5 separable convolution, 3× 3 dilated sepa-
rable convolution, and 5× 5 dilated separable convolution.

NAS-Bench-201 is a benchmark for neural architecture
search. It designed a specific search space for only normal
cells and maintained the reduced cell as the bottleneck struc-
ture of ResNet [He et al., 2016] to limit the size of search
space. The setO contains 5 basic operations: none, skip con-
nect, average pooling, 1 × 1 convolution, and 3 × 3 convo-
lution. NAS-Bench-201 has evaluated validation and test ac-
curacy of all the possible architectures in the search space, so
we can focus on the searching process and directly index for
the information of the architecture obtained by our approach.

4.1 Search on Micro Cells of ENAS and DARTS
Training Settings. We set the training settings similar as
DARTS. In search phase, we train the one-shot model stacked
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Architecture test accuracy (%) on CIFAR10 CIFAR100 ImageNet-16-120
trial1 trail2 trail3 average valid test valid test

RSPS 90.77 91.91 93.11 91.93 67.45 67.63 39.58 39.80
GDAS 92.28 91.93 91.93 92.05 66.81 67.25 39.42 38.92
SETN 92.48 91.58 93.30 92.45 69.02 69.03 42.19 42.29
ENAS 39.13 39.13 39.13 39.13 15.62 15.62 15.87 15.87
DARTS-V2 (wd=1e− 2) 80.57 93.31 88.21 87.36 59.90 59.80 36.06 35.58
DARTS-V2 (wd=2e− 2) 87.50 87.50 85.21 86.74 57.67 57.38 31.09 30.78
MergeNAS-V2 (wd=1e− 2) 90.65 90.65 94.36 91.89 69.28 69.44 42.38 41.87
MergeNAS-V2 (wd=2e− 2) 94.36 94.36 94.36 94.36 73.49 73.51 46.37 46.34

RS 93.19±0.72 69.73 69.89 43.15 43.09
REA 92.86±0.86 69.07 69.25 42.32 42.34
REINFORCE 93.31±0.58 70.14 70.26 42.62 43.03
BOHB 93.14±0.74 69.58 69.79 43.04 42.96

ResNet 93.97 70.42 70.86 44.53 43.63

Optimal 94.37 73.49 73.51 46.77 47.31

Table 2: Comparison with state-of-the-art image classifiers on NAS-Bench-201. Except DARTS, Numbers of other compared methods are
directly cited from the raw paper. The optimal is provided by the NAS-Bench-201, which indicates the best architecture in the search space.
We evaluate DARTS and MergeNAS for three times under different random seed and provide the test accuracy of each trial on CIFAR10,
CIFAR100, and ImageNet-16-120. MergeNAS is able to converge to the same architecture under different random seed, so the accuracy of
the three trials are the same (We directly index for the detailed information of each architecture).

Number of Cells Acc Params
Search Evaluation (%) (M)
8 (1st order) 20 97.27 2.87
8 (2nd order) 20 97.33 2.92
20 (1st order) 20 97.44 2.96

Table 3: Results on CIFAR10 of the networks with 20 cells whose
structure is searched by MergeNAS on the one-shot network stacked
by 8/20 cells.

by 8 cells for 50 epochs, and optimize the architecture param-
eters and the network weights based on the two-step iteration
of DARTS [Liu et al., 2019]. SGD optimizer with momen-
tum 0.9 and initial learning rate 0.025 is used to optimize the
network weights. Adam optimizer with initial learning rate
10−4 is used to optimize the architecture parameters. In this
search space, we can not merge the average pooling and skip-
connect due to the reason explained in 3.4.

Search Results. The normal and reduced cell found by
MergeNAS is shown in Figure 2. In the evaluation phase,
a large network stacked by 20 cells, where the 6th and 13th

cells are the reduced cell, is trained from scratch with batch
size 96. Noted that the convolutions in the final network is
single separable convolutions in our operation set. Similar
to DARTS[Liu et al., 2019], we use the cutout augmenta-
tion strategy and auxiliary classifier in the evaluation phase.
We search for the architecture based on MergeNAS, and op-
timize the network weights and architecture parameters iter-
atively based on 1st and 2nd DARTS [Liu et al., 2019]. The
comparison with state-of-the-art NAS approaches is give in
Table 1. MergeNAS (1st order) is able to find an efficient
architecture with 97.27% ultimate accuracy on CIFAR10 in
0.2 GPU-days. And the architecture searched by MergeNAS

(2nd order) achieves 97.32% ultimate accuracy in 0.6 GPU-
days. Compared to DARTS and SNAS, MergeNAS achieves
better performance with fewer parameters and shorter search-
ing time. Additionally, due to the limitation of GPU mem-
ory, DARTS [Liu et al., 2019] had to search the architecture
of normal and reduced cells on a shallow one-shot model (8
cells), but evaluate the ultimate performance on a deep net-
work (20 cells). However, the performance gap of the depth
transfer in one-shot NAS can be large. Our approach can re-
duce the memory cost in the search phase, making it possi-
ble to search on a deep one-shot model (20 cells) directly.
To accelerate the search phase, we optimize the architecture
parameters based on the first order of DARTS. Other hyper-
parameters are set similar to DARTS. Results are presented in
Table 3, showing that searching on a deep one-shot network
directly is able to obtain a better architecture than transferring
from a shallow neural architecture.

4.2 Search on NAS-Bench-201
Training Settings. We follow the settings in NAS-Bench-
201 [Dong and Yang, 2020]. In search phase, we train the
one-shot model stacked by 17 cells (including 5 normal cells
in each resolution) for 50 epochs and only search the struc-
ture of the normal cell. We optimize the network weights by
SGD optimizer with momentum 0.9, and the architecture pa-
rameters by Adam optimizer whose β equals to (0.5, 0.999).
Inspired by the recent work [Zela et al., 2020], we increase
the weight decay up to 2e − 2 for both DARTS and Merge-
NAS. For NAS-Bench-201, the convolutions in the operation
set are normal ones, so we can merge average pooling into
parametric operation, to further reduce the memory cost.

Search Results. NAS-Bench-201 provides the detailed in-
formation of all possible architectures belonging to the
specific search space, including the accuracy and latency
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Figure 3: Stability of DARTS and MergeNAS. The accuracy is the
ultimate test accuracy of the architecture found at various epochs in
the search phase.

on three datasets: CIFAR10 [Krizhevsky et al., 2009],
CIFAR100 [Krizhevsky et al., 2009], and ImageNet-16-
120 [Dong and Yang, 2020]. ImageNet-16-120 contains 120
different classes in ImageNet dataset [Russakovsky et al.,
2015], and all images are reshaped to 16 × 16. The training
settings and split protocol can be found in [Dong and Yang,
2020]. We can directly index for the accuracy of the network
searched by MergeNAS instead of training from scratch. We
search for the architecture based on DARTS and MergeNAS
for three times with different random seed. Because the in-
formation of the architectures is indexed from the benchmark,
the accuracy is the same if the approach converges to the same
architecture. The results are given in Table 2, showing that
our method achieves state-of-the-art.

Stability of MergeNAS. The stability of NAS approaches
can be evaluated by compare the ultimate performance of the
searched architecture in each epochs. A good NAS approach
should be able to converge to an efficient architecture, whose
ultimate performance should not drop a lot. However it needs
a large amount of computation resource and time to obtain the
ultimate performance. Fortunately, NAS-Bench-201 bench-
mark provides the ultimate performance for all the architec-
tures in the specific search space. Therefore, we can evalu-
ate the stability of MergeNAS by plotting the learning curve
for accuracy over epochs. Figure 3 compares the stability of
DARTS and our approach at different weight decay. Merge-
NAS converges at around 40 epochs, while DARTS has the
trend of decline at 20 epoch. Though the search process of
DARTS with large weight decay also converges, the ultimate
performance is worse.

5 Conclusion
We have proposed an efficient and stable differentiable NAS
approach referred to as MergeNAS. By sharing weights
among the convolutions with different kernel size and dila-
tion rate, we can merge all the convolutions associated to the
same edge into one. We also propose merge strategy for sep-
arable convolutions, average pooling, and skip connect oper-
ation. Compared to vanilla DARTS [Liu et al., 2019], Mer-
geNAS is able to reduce the memory cost in search phase,
and obtain an efficient architecture with fewer GPU-days.

Furthermore, MergeNAS shows strong robustness and cost-
effectiveness on two different search spaces. Especially, Mer-
geNAS achieves state-of-the-art on NAS-Bench-201 for both
test accuracy and stability.
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