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ABSTRACT

We present an algorithm for generating merger histories of dark matter haloes. The algorithm

is based on the excursion-set approach with moving barriers whose shape is motivated by the

ellipsoidal collapse model of halo formation. In contrast to most other merger-tree algorithms,

ours takes discrete steps in mass rather than time. This allows us to quantify effects which

arise from the fact that outputs from numerical simulations are usually in discrete time bins.

In addition, it suggests a natural set of scaling variables for describing the abundance of halo

progenitors; this scaling is not as general as that associated with a spherical collapse. We test

our algorithm by comparing its predictions with measurements in numerical simulations. The

progenitor mass fractions and mass functions are in good agreement, as is the predicted scaling

law. We also test the formation-redshift distribution, the mass distribution at formation, and

the redshift distribution of the most recent major merger; all are in reasonable agreement with

N-body simulation data, over a broad range of masses and redshifts. Finally, we study the

effects of sampling in discrete time snapshots. In all cases, the improvement over algorithms

based on the spherical collapse assumption is significant.
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1 IN T RO D U C T I O N

Most models of galaxy formation in a hierarchical universe assume

that the merger history of the surrounding dark matter halo plays an

important role in determining the properties of a galaxy (e.g. White

& Rees 1978; White & Frenk 1991; Baugh 2006 and references

therein). Although halo-merger histories can be measured using

N-body simulations, these can be time consuming and computation-

ally intensive (Springel et al. 2005). This has fuelled considerable

study of the formation and merger histories of dark matter haloes

from a Monte Carlo perspective. Monte Carlo merger trees have the

advantage of being fast and one may easily probe mass regimes in-

accessible to current N-body simulations. Moreover, unlike N-body

experiments, the cosmology and initial conditions may be easily

modified.

The excursion-set framework (Bond et al. 1991; Lacey & Cole

1993), which is motivated by the pioneering work of Press &

Schechter (1974), provides the basis for current models of halo

assembly. Initially, this framework was based on the assumption

that haloes form from a spherical collapse, of the type first de-

scribed by Gunn & Gott (1972). Fast algorithms for generating halo

merger trees, in which haloes were assumed to form from a spher-

ical collapse, were developed in the 1990s (Kauffmann & White

⋆E-mail: jmoreno@physics.upenn.edu (JM); carlogiocoli@unipd.it (CG);

shethrk@physics.upenn.edu (RKS)

1993; Sheth & Lemson 1999; Somerville & Kolatt 1999; Cole et al.

2000) (see Zhang, Fakhouri & Ma 2008b, for a review). How-

ever, spherical collapse overpredicts (underpredicts) the abundance

of haloes in the low (high) mass regime. To address these issues,

Sheth & Tormen (1999) extended the excursion-set framework to

include ellipsoidal collapse (Sheth, Mo & Tormen 2001; Sheth &

Tormen 2002). This clearly showed that merger-trees which assume

spherical collapse are inadequate.

Hiotelis & Del Popolo (2006) describe a merger-tree algorithm

which extends some of the older algorithms to incorporate aspects

of the ellipsoidal collapse results. In addition, a number of new

algorithms have recently been published (Neistein & Dekel 2008;

Parkinson, Cole & Helly 2008); although efficient and accurate,

such methods side-step the idea of ellipsoidal collapse altogether.

Moreover, these methods are calibrated to match N-body simula-

tions, and are therefore limited by the accuracy and scope of these

simulations.

The aim of the present work is to provide a merger history tree

algorithm, which is based explicitly on the excursion-set formalism

with ellipsoidal collapse. The most significant difference between

the algorithms we derive and all the others described above is that

it takes discrete steps in mass rather than time. This feature allows

us to study a few problems which are more difficult to address with

the other methods.

After we completed this project, Zhang et al. (2008b) presented

an alternative algorithm with ellipsoidal collapse (and discrete-time

snapshots). This algorithm generates progenitors across many mass
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1730 J. Moreno, C. Giocoli and R. K. Sheth

bins and then assigns them to final haloes. In this sense, it is very

similar to the Kauffmann & White (1993) merger tree, but solves

many of its problems. Although this tree is quite different from

ours, it also attempts to describe the merger history of a halo from

the excursion-set formalism. These two approaches show that gen-

erating merger trees without tuning to N-body simulations is a quite

non-trivial, yet interesting, challenge.

A review of background material and a description of our al-

gorithm are given in Section 2. Section 3 compares our algorithm

with excursion-set theory predictions, and with measurements in

N-body simulations. The tests include the progenitor mass fractions

and mass functions, the formation-redshift distribution, the mass

distribution at formation and the redshift distribution of the most

recent major merger. Section 4 summarizes our findings and dis-

cusses possible applications of our algorithm, an outline of which

is in Appendix A.

2 MERGER TREES IN THE EXCURSION-SET
APP ROAC H

In the excursion-set approach, the problem of estimating halo abun-

dances is mapped to one of estimating the distribution of the number

of steps a Brownian-motion random walk must take before it first

crosses a barrier of specified height (Bond et al. 1991). In this

approach, the height of the barrier plays a crucial role.

2.1 Constant and moving barriers

The Press–Schechter mass function is associated with barriers of

constant height – such barriers arise naturally in models in which

haloes form from a spherical collapse model. In contrast, in the

ellipsoidal collapse model, barriers of the form

B(S, δc) =
√

qδc

[

1 + β

(

S

qδ2
c

)γ ]

(1)

are more natural. Here, δc is the overdensity required for spherical

collapse – it is a monotonically increasing function of redshift, and

it is given by δc0/D(z), where δc0 ≡ δc(z = 0) ∼ 1.686 and D(z) is

the linear-growth factor. S is a monotonically decreasing function

of halo mass, given by

S(m) ≡ σ 2(m) =
1

2π
2

∫

dk k2 P (k) W̃ 2(kR), (2)

where P(k) is the initial power spectrum of density fluctuations,

linearly evolved to the present time, W̃ is the Fourier transform

of W (x) = (3/x3)(sin x − x cos x), R = (3m/4πρ̄)1/3, and ρ̄

is the comoving background density. At large R, the overdensity

contained in the associated volume is practically zero. As R [and

m(R)] decreases, S(R) increases, and δR executes a random walk.

We refer the reader to Lacey & Cole (1993) for more details.

Consider a barrier B[S, δc(z)], as in equation (1), and an ensemble

of random walks which start from the origin: (S, δ) = (0, 0). The

excursion-set approach maps the distribution of S, the number of

steps a random walk must take to first cross such a barrier, to the

fraction of mass in m haloes at redshift z. This quantity is associated

with the so-called unconditional mass function. The conditional

mass function of high-redshift progenitors of a more massive final

M halo at some lower redshift Z is modelled using walks which start

from [SM , δc(Z)] instead.

The shape of the mass functions (unconditional and conditional)

is determined by the shape of the barrier, encoded in the (q, β, γ )

parameters. The spherical collapse model is associated with (q, β,

γ ) = (1, 0, 0), whereas ellipsoidal collapse has (0.707, 0.47, 0.615).

When γ > 1/2, not all walks are guaranteed to cross the ellipsoidal

collapse barrier (Sheth & Tormen 2002). Moreover, the barriers as-

sociated with two different times may intersect; of course, this never

happens for the spherical collapse barriers. Sheth & Tormen suggest

that this intersection of barriers may represent the possibility that

haloes can fragment. This complicates the algorithm we describe

below, so we instead study the limiting case of ‘square-root’ barriers

for which γ = 1/2:

B(S, δc) =
√

qδc + β
√

S. (3)

The predicted halo abundances associated with (q, β, γ ) = (0.55,

0.5, 0.5) are very similar to those in simulations (Mahmood &

Rajesh 2005; Moreno, Giocoli & Sheth 2008). Moreover, the first

crossing distribution of this barrier is known (Breiman 1967).

2.2 A conditional scaling symmetry

Recall that the unconditional mass function is associated to the first

crossing distribution associated with walks which start from the

origin: (S, δ) = (0, 0). When constant barriers are use, it can be

expressed self-similarly as

f (m|z) dm = f (S|δc) dS = f (ν) dν, (4)

where ν ≡ δ2
c/S. The conditional mass function of m haloes at z that

end up in bound objects of mass M > m at Z < z is given by f (m,

z|M, Z) dm = f (Sm, δ1|SM , δ0) dSm, where δ1 = δc(z), δ0 = δc(Z).

In other words, the conditional mass function is associated with the

first crossing distribution of a barrier of height δ1 by random walks

with origin at (SM , δ0). Because a straight line is straight whatever

the origin of the coordinate system, the conditional mass function,

in the spherical collapse model has the same functional form as that

of the unconditional mass function, provided one sets ν = (δ1 −
δ0)2/(Sm − SM ).

However, for the square-root barrier, a walk which starts from

(
√

q δ0 + β
√

SM , SM ) must cross a barrier of shape
√

q(δ1 − δ0) +
β
√

Sm − SM + SM . This is not quite of the same form as equa-

tion (3). As a result, the conditional mass function is not simply a

rescaled version of the unconditional one. Rather, in this model,

f (m, z|M, z0) dm = f (Sm/SM |η) d(Sm/SM ), (5)

where

η ≡
δ1 − δ0√

SM

(6)

(see Breiman 1967 or Giocoli et al. 2007 for the exact expressions).

Thus, final haloes of different masses will have similar progenitor-

mass functions when expressed in terms of Sm/SM , provided they

have similar values of η. While this scaling is like that for the con-

stant barrier model, in the square-root barrier model, the progenitor

mass function is not a function of the combination ν2 = η2/(Sm/

SM − 1). This is interesting, because Sheth & Tormen (2002) have

shown that the conditional mass function in simulations is not well-

fit by a function of ν. In what follows, we will present evidence that

it is, however, a function of η and Sm/SM separately, so the quali-

tatively different scaling associated with the square-root barrier is

indeed seen in simulations.

2.3 Mass histories and merger trees

Fig. 1 illustrates how the mass-growth history of an object is en-

coded in the excursion-set approach if objects form from a spherical

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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Moving barrier merger trees 1731

Figure 1. A random walk and its associated mass history. The dark filled

circles represent the history of a halo of mass M at redshift z = 0. A merger

(m′, m − m′ ) → m at redshift z is depicted by the Sm → Sm′ jump at height

δc(z). A new branch associated with (m − m′) is connected at [Sm−m′ , δc(z)].

The light-filled circles denote the mass history of this object.

collapse (also see fig. 1 of Lacey & Cole (1993)). The jagged line

shows a random walk which starts from the origin: (S, δ) = (0,

0). Imagine drawing a horizontal line with height δc0 = 1.686 and

marking the smallest value of S at which the walk intersects this

‘barrier’ of constant height (δc0 corresponds to the present time and

δc > δc0 corresponds to higher redshifts). The dotted-horizontal line

denotes such barrier. Then increase the height of this barrier, and

record how this value of S changes as δ increases. Such mass history

points are depicted as dark filled circles in Fig. 1. The dashed lines

show that S will occasionally jump from a small value to a larger

one. Since S is a proxy for mass, and δc for time, such a jump is

a proxy for an instantaneous change in mass: a merger. Note that

the random walk steps under such jumps are not part of the mass

history (e.g. the gray portion with Sm < S < Sm′ ).

The key to our merger tree algorithm, which is described in detail

in Appendix A, is to recognize that these jumps mean that there are a

set of other walks which one might associate with this one – one for

each jump. One such walk is illustrated by the second jagged curve,

which starts at about the middle of the panel. If the jump from Sm to

Sm′ occurred when the barrier height was δc(z), then this other walk

starts from [Sm−m′ , δc(z)]. The ‘merger history’ associated with this

new branch is represented by the light-shade filled circles in Fig. 1.

For every such jump, a new random walk must be drawn. For each

jump within each of those new walks, the same process applies –

more walks must be drawn. In summary, the bundle of such walks

encodes the entire merger history of a present-day object. Notice

that jumps can occur at any z – there is no constraint that they

happen at discrete times. However, if one is interested in the mass

function of progenitors at some fixed z, one simply reads-off the list

of values of S at which this bundle of walks first cross δc(z).

So far, we have discussed how to generate trees in the spherical

collapse model. Fig. 2 shows the same walk as before, but now the

mass growth history associated with the walk is given by its intersec-

tion with square-root barriers of gradually increasing height. This

shows clearly that the jumps in mass, and the times at which they oc-

cur, are modified. But the overall logic remains the same. Each jump

Figure 2. The same random walk as in Fig. 1, but now with square root

rather than constant barriers, illustrating that the mass-accretion history

depends on the barrier shape. In our algorithm, the new object with mass

(m − m′) is now connected at (Sm−m′ ,
√

qδc(z) + β
√

Sm−m′ ).

gives rise to a new walk that starts from {Sm−m′ , B[Sm−m′ , δc(z)]},
where B is given by equation (3).

The natural generalization to spherical collapse is to incorporate

the original γ > 1/2 barrier of Sheth et al. (2001). Such a choice

would complicate this algorithm significantly. First of all, as Fig. 2

illustrates, the shape of the square-root barrier remains the same

with different redshifts, except for an overall vertical shift. This is

not the case with γ > 1/2. As δc increases (increasing redshift),

the term δ1/2−2γ
c makes the barrier in equation (1) increase less

rapidly with S. A consequence of this is that the barriers associated

with different redshifts cross. In the absence of crossing-barriers

(e.g. constant and square-root barriers), one may uniquely map any

point in the (S, δ) plane to (m, z). The crossing of barriers invalidates

this property, making the identification of jumps with mergers at a

given-time ill defined.

3 C O M PA R I S O N W I T H SI M U L AT I O N S

In this section, we compare the statistical properties of our

merger history trees with expectations from the excursion-set the-

ory which they are supposed to reproduce, and with measure-

ments in the GIF2 (German Israel Fund 2) N-body simulation

(Gao et al. 2004b). The simulation followed the evolution of

4003 particles in a periodic cubic box 110 h−1 Mpc on a side

in a flat 
 cold dark matter (
CDM) background cosmology

with parameters (�m, σ 8, h, �b h2, n) = (0.3, 0.9, 0.7, 0.0196,

1). Fifty simulation snapshots were output, equally spaced in

log(1 + z). At each snapshot, haloes were identified using the

spherical overdensity criterion, adopting for virial mass the defini-

tion of Eke, Cole & Frenk (1996) (i.e. with virial density at ∼324ρ̄

at redshift zero). The particle mass is mp = 1.73 × 109 h−1 M⊙
and only objects with at least ten particles are considered. M⋆(z),

defined by δ2
c(z) = S[M⋆(z)], is the typical mass scale at redshift

z. It is common practice to express halo masses in terms of M⋆

= M⋆(z = 0) (the z-dependence is suppressed for the present

time). For this cosmology and initial power spectrum, M⋆ = 8.7

× 1012 h−1 M⊙ ≃ 5030 mp. The simulation data and halo cata-

logues are available at http://www.mpa-garching.mpg.de/Virgo. See

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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1732 J. Moreno, C. Giocoli and R. K. Sheth

Giocoli, Tormen & van den Bosch (2008a) for more details regard-

ing the post-processing of the simulation.

To compare our merger histories with those in the GIF2 simula-

tion, we generated 2000 realizations of our tree for each final halo

mass bin M of interest. In all cases, the minimum mass consid-

ered was mdust = M/1000, and the merger histories of haloes with

mass below this were not followed (we call this minimum mass the

‘branching-mass resolution’). We used random walks with 105 steps

in between SM and Sdust to ensure that the mass change between the

steps was less that mdust. Having a small step size is essential to faith-

fully reproduce random walks in a computer. Moreover, if the step

size is too large, we run the risk of missing branches. Numerical tests

showed that the outputs converged to our results for small step sizes.

See the Appendix, for more details on the implementation of our

Monte Carlo tree. Recall that our tree does not take discrete steps in

time. Nevertheless, for fair comparison with the measurements from

the GIF2 simulation, the tree data were stored in the same discrete

redshift bins as were output from the simulation. We use ‘Cont’

to denote the original tree data and ‘Snap’ for the data stored in

redshift snapshots. Sections 3.3 and 3.4 study some merger-related

quantities which are sensitive to the differences between these two

ways of storing trees (Figs 8, 9 and 10).

3.1 The progenitor mass function

Figs (3)–(5) show the progenitor mass fractions and mass functions

at five different redshifts (z = 0.5, 1, 2, 3, 5), for haloes identified

at z = 0 with final masses given by M/M⋆ = 0.06, 0.6 and 6. The

Figure 3. The progenitor mass fraction (left-hand side) and mass function (right-hand side) at redshifts z = (0.5, 1, 2, 3, 5), for haloes of mass M/M ⋆ = 0.06

at z = 0. Filled circles show measurements in the GIF2 simulation, and open circles are from our square-root trees. The smooth solid and dashed curves show

the exact square-root barrier solution, and the series approximation, respectively. The long-dashed curve shows the ellipsoidal collapse model with γ > 1/2,

and the short-dashed curve is the constant barrier prediction. Values of the scaling parameter η (equation 6) are also shown (see Fig. 6).

corresponding values of η (equation 6) are shown in each panel. In

all three figures, filled circles show measurements in the GIF2 sim-

ulation, and open circles show results from our square-root trees.

We probe the m < mp regime with our trees to verify consistency

with analytic excursion-set predictions (the smooth curves in all the

panels). The expressions we use are given explicitly in Appendix

A of Giocoli et al. (2007). The short-dashed curve shows the con-

stant barrier (β, q) = (0, 1) prediction associated with spherical

collapse (Lacey & Cole 1993). The solid curves show the exact

square-root barrier solution with (β, q, γ ) = (0.5, 0.55, 0.5); this

is a complicated affair, involving sums of Parabolic Cylinder func-

tions (Breiman 1967). Dashed curves show the considerably sim-

pler approximation to the solution which is due to Sheth & Tormen

(2002); this approximation is excellent over the entire range of in-

terest. The long-dashed curves show this same approximation for

the ellipsoidal collapse barrier: (β, q, γ ) = (0.707, 0.47, 0.615).

The square-root barrier prediction agrees well with the γ = 0.615

curve, except in the high-mass regime. This discrepancy becomes

evident when η > 1 and it is amplified with increasing η (see

below).

Before we ask how our merger tree algorithm compares with

simulations, we note that it produces progenitor mass functions that

are well described by the theory curves over a wide range of masses

and redshifts. At high redshifts, our tree data lie slightly below

the theory curves at both high and low m/M, and slightly above in

between, although where the crossover points occur depends on z

and M. In all other regimes, our Monte Carlo trees match the square-

root barrier predictions. Any additional disagreement with the GIF2

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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Moving barrier merger trees 1733

Figure 4. Same as Fig. 3, but with M/M⋆ = 0.6.

Figure 5. Same as Fig. 3, but with M/M⋆ = 6.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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1734 J. Moreno, C. Giocoli and R. K. Sheth

Table 1. The η-symmetry (equation 6)

used for the comparisons shown in

Fig. 6.

M/M⋆ z η – M/M⋆ z η

0.06 1 0.3 – 6 0.5 0.31

0.06 2 0.65 – 6 1 0.66

0.6 3 1.45 – 6 2 1.44

simulation measurements (compare open and filled circles) is due

to limitations of the γ = 1/2 model.

Finally, recall that the square-root and constant barrier models

make specific predictions for how the conditional mass functions

should scale with final halo mass and time. Table 1 lists pairs with

similar η, yet quite distinct values of M and z. Fig. 6 compares the

associated conditional mass functions. The black squares and long-

dashed lines refer to the left-hand side of Table 1 (low final masses),

whereas the gray triangles and short-dashed lines refer to the right-

hand side (high final masses). Notice that the curves are remarkably

similar to one another, as are the symbols. This is true despite the

fact that the values of η are not perfectly identical, and that f (m, z|M,

Z) dm = f (Sm/SM |η) d(Sm/SM ) ≃ f (m/M|η) d(m/M). The results for

low-mass haloes (black squares) are truncated at higher m/M than

they are for larger M (gray triangles), simply because only haloes

with at least ten particles are considered. Evidently, the conditional

mass functions are indeed functions of η and Sm/SM separately,

rather than of the combination ν.

Figure 6. The η-symmetry. Different combinations of M and z with similar η (equation 6 and Table 1). N-body simulation measurements and the Sheth &

Tormen (2002) result with γ > 1/2 are shown.

3.2 The distribution of formation redshifts

Following Lacey & Cole (1993), a halo is said to have ‘formed’

when it first acquires half of its final mass. For a given halo mass,

there is a distribution of formation redshifts. This distribution is ex-

pected to peak at earlier times for lower mass haloes. The excursion-

set model with constant barriers provides a simple expression for

this distribution of formation times:

p(ωF) dωF = 2ωF erfc(ωF/
√

2) dωF, (7)

where

ωF ≡
δc(zF) − δc(z0)

√
S(M/2) − S(M)

=
η

√
S(M/2)/S(M) − 1

, (8)

with η given by equation (6).

The filled circles in Fig. 7 show the formation redshift distri-

butions for haloes with masses in the range 0.9M ≤ M ≤ 1.1M

with log 10(M/M∗) = {1, . . . , −1.5} in steps of −0.5 in the GIF2

simulation. We use the first snapshot when at least half the mass is

in a single progenitor as the formation time, and make no attempt

to interpolate our simulation formation redshifts between these dis-

cretely spaced output times (Harker et al. 2006; Giocoli et al. 2007).

The open circles and triangles show the corresponding formation

time distributions from our square-root and constant barrier trees.

Recall that we do not discretise redshift in our tree, so the question

of interpolation does not arise.

For the ellipsoidal collapse model, Giocoli et al. (2007) showed

that the formation redshift is well described by equation (7) if one re-

places ωF → √
qωF. The smooth curves show this with q = 1, 0.707

and 0.55 (short dashed, long dashed and dashed), which represent

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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Moving barrier merger trees 1735

Figure 7. Distribution of formation redshifts. Filled circles show simulation data, open circles and triangles show results from the square root and constant

barrier trees. Smooth curves show equation (7) with q = 1, 0.707 and 0.55 (short dashed, long dashed, and dashed), corresponding to the predicted distribution

for constant barriers (spherical collapse), moving (ellipsoidal collapse) and square-root barriers.

the (constant, γ = 0.615, and square-root) barrier predictions. For

higher values of q, the peaks are located at lower redshifts and the

widths of the curves decrease. Strictly speaking, equation (7) only

holds for white-noise initial conditions. Nevertheless, as pointed

out Lacey & Cole (1993), it remains a reasonable approximation

to CDM case. Furthermore, note that it provides an excellent de-

scription of the formation times generated by our trees. However,

no choice of q provides particularly good agreement with the GIF2

simulation, a discrepancy noted by previous authors (Lin, Jing &

Lin 2003; Hiotelis & Del Popolo 2006; Giocoli et al. 2007). This is

likely a consequence of the excursion-set assumption that different

steps in the walk are uncorrelated (Sheth & Tormen 2002). See Pan

et al. (2008) and references therein for how one might improve on

this.

3.3 The mass distribution at formation

The previous subsection studied halo formation, where formation

was defined as the first time that the mass of one of the progeni-

tors exceeds half the total. Therefore, this mass can have any value

between 1/2 and 1 times the final mass, and one can study the dis-

tribution of masses at, and just prior to, formation. The excursion-

set constant barrier model makes a prediction for this distribution

(Nusser & Sheth 1999). The mass distribution at formation is ex-

pected to be

p(μ) dμ =
2

π

√

1 − μ

2μ − 1

dμ

μ2
, where 1/2 ≤ μ ≤ 1, (9)

and μ ≡ m/M, and the distribution just before formation is

q(μ) dμ =
1

π(1 − μ)

(

√

μ/(1 − 2μ) −
√

1 − 2μ

)

dμ

μ2
, (10)

where 1/4 ≤ μ ≤ 1/2. We have found that, to a very good approx-

imation, μ p(μ) → μ q(μ) if one replaces μ → 1/4μ (solid and

dashed curves in Fig. 8, respectively). Let mB and mA denote the

masses before and after formation, respectively. Roughly speaking,

the symmetry about M/2 indicates that having a specific ratio of mB

to M/2 before formation is equally likely to having the same ratio

of M/2 to mA after formation.

Although these expressions were derived assuming a white-noise

power spectrum, they are expected to be relatively independent of

P(k). Sheth & Tormen (2004) showed that they did indeed match

numerical simulations well for different cosmologies and initial

power spectra. Fig. 8 shows that they also work well for square-root

barriers.

The agreement between the theory curves (smooth curves) and

our Monte Carlo trees (jagged lines, labelled ‘Cont’) is excellent.

All panels show that agreement with simulation data is also quite

good. However, there is a systematic discrepancy: the cusp at μ =
1/2 appears to be less pronounced in the simulation, with corre-

spondingly lower tails. A similar discrepancy was seen by Sheth &

Tormen (2004), who suggested that the fact that the simulations only

provide discrete snapshots in time may be smoothing out the peak.

By sampling our trees at the simulation snapshots (open symbols,

labelled ‘Snap’), we have attempted to model the magnitude of this

effect. Fig. 9 illustrates that the cusp has indeed been smoothed,

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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1736 J. Moreno, C. Giocoli and R. K. Sheth

Figure 8. Distribution of the mass at formation for several final masses. The left half of each panel shows the mass just prior to formation, whereas the right

half shows the mass just after formation. Filled circles show simulation data, open circles and triangles are from the square-root and constant barrier trees. The

solid curve shows μ q(μ) (right half) and μ p(μ) (left half) (equations 10 and 9, respectively). The dashed curve shows these same expressions with μ → 1/4μ.

but this is a dramatic effect only around 0.49 ≤ μ ≤ 0.51. The

discrepancies further from the peak remain (Fig. 8).

3.4 The redshift distribution of the last major merger

Mergers of galaxies with similar masses are expected to produce

strong short-lived periods of star formation: starbursts (Hernquist &

Mihos 1995). Recent numerical studies suggest that the mass ratio

of the galaxies involved plays an important role: merger-induced

bursts occur when the galaxies have similar masses (Gao et al.

2004a; Springel & Hernquist 2005; Cox et al. 2008). Moreover, as

suggested by Maller et al. (2006), a galaxy’s Hubble-type is strongly

correlated with its last major merger.

Understanding such mergers requires understanding the mergers

their host haloes undergo. Consider a merger (m′, m′ − m) → m,

with m′ > m − m′. For ease of comparison with Parkinson et al.

(2008), we will define a ‘major’ merger as one in which (m − m′)/

m′ ≥ 1/3. The filled circles in Fig. 10 show the redshift distribution

of the last major merger on to the main branch. (The last major

merger does not necessarily happen on the main branch. However,

fig. 3 of Parkinson et al. (2008) suggests that, in most cases, it

does. Presumably, this is because the assembly of haloes in recent

times is dominated by mergers.) Curves show measurements in

our full trees (‘Cont’), and open symbols show the result of only

sampling the trees at the GIF2 simulation outputs (‘Snap’). For

the discretely sampled data, only mergers involving haloes with

at least ten particles are considered. Note that the anomalously

low data point that is second from the left-hand side in all panels

appears to be an effect of seeing the tree at discrete snapshots –

the smooth curves show no such dip. This feature is also present in

the simulation analysed by Parkinson et al. (2008); we expect it to

disappear if more finely spaced snapshots are analysed.

For high masses, the data from the square-root trees peak at about

the same redshifts as the simulations; the constant barrier, spherical

collapse trees peak at lower redshifts. This improvement relative

to the spherical collapse case is similar to that in the modified

GALFORM trees of Parkinson et al. (2008). However, our square-

root trees tend to lie above the simulation at low redshifts, and

below at higher redshifts. The discrepancy with simulation becomes

increasingly worse at small masses, although it is possible that the

GIF2 results for our two smallest mass bins are not reliable – the

high redshift mergers involve haloes with few particles. Because we

require haloes to have more than 10 particles, we are likely to miss

major mergers once the typical mass becomes of this order.

4 D ISCUSSION

We presented an algorithm for generating merger histories of dark

matter haloes. This algorithm is based on the excursion-set ap-

proach (Figs 1 and 2, and related discussion), and can handle mov-

ing barriers of the sort that are associated with ellipsoidal collapse

(equation 1). We illustrated its use by generating the forest of trees

associated with a square-root barrier (equation 3). The halo mass

function associated with this barrier is known to provide a reason-

able description of halo abundances in the GIF2 simulation against

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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Moving barrier merger trees 1737

Figure 9. Same as Fig. 8, but showing only the region around m/M = 1/2. The peak in the simulations (filled symbols) is less pronounced than in the merger

trees (jagged lines). Open circles show the result of sampling the merger trees at the same redshifts as the simulation snapshots: this makes a dramatic difference

around 0.49 ≤ μ ≤ 0.51, suggesting that the sharp cusp predicted by the theory will also be present in simulations with sufficiently closely spaced outputs.

The smaller discrepancies further from the peak remain.

which we test our model (Mahmood & Rajesh 2005; Moreno et al.

2008).

Our algorithm produces merger histories which yield the pro-

genitor mass functions which are commonly computed using

excursion-set theory – demonstrating that our approach is nearly

self-consistent – over a broad range of masses and redshifts (Figs 3–

5). These progenitor mass functions are also in reasonable agree-

ment with measurements in simulations; they are a significant im-

provement on trees based on the constant barrier, spherical collapse

model.

Our algorithm is different from others in the literature because

it is based on taking discrete steps in mass, whereas all others (full

N-body simulations included) take discrete steps in time. We also

used our algorithm to show that while the distribution of times at

which haloes assemble half their mass depends quite strongly on

the barrier shape (Fig. 7), the distribution of masses at formation

does not (Fig. 8). Excursion-set related formulae for this ‘universal’

distribution (equations 9 and 10) provide an excellent description

of our merger trees; the agreement with simulations is good, but not

perfect.

The algorithm is described in detail in Appendix A. In essence, it

requires that one be able to generate one-dimensional random walks

quickly. Since this reduces to being able to generate long strings of

Gaussian variables, and fast routines for this exist, it is reasonably

fast. Significant speed-ups can be obtained if one exploits known

properties of random walks. For example, in the present context,

all steps in the walk which lie below the current threshold value

are not interesting (e.g. gray-jagged portions of the random walks

during the Sm → Sm′ jump in Figs 1 and 2). If the distribution of the

number of steps it takes to first exceed the current value is known,

then one need not generate all these steps, one can instead draw

a number from this distribution, and simply jump this number of

steps. Incorporating such changes into our algorithm is the subject

of ongoing work.

The excursion-set approach successfully describes many proper-

ties of the hierarchical growth of dark matter haloes. However, with

the exception of white-noise initial conditions, the progenitor dis-

tributions it predicts cannot be made consistent with the intuitively

attractive notion that, in sufficiently small time-steps, mergers are

binary (Sheth & Pitman 1997; Benson, Kamionkowski & Hassani

2005; Benson 2008; Neistein & Dekel 2008; Zhang, Ma & Fakhouri

2008a). This accounts for some of the discrepancy between our

trees and the excursion-set based theory curves. A number of au-

thors have attempted to alleviate this by relaxing the assumption of

binary mergers in their merger tree algorithms. For example, one

of the two algorithms in Sheth & Lemson (1999) reproduces the

spherical collapse based results exactly, for arbitrary power spectra.

In this algorithm, mergers occur between groups of objects rather

than just two but, as they pointed out, this was a rather contrived

solution. Somerville & Kolatt (1999), Neistein & Dekel (2008) and

Zhang et al. (2008b) discuss other possibilities. We make no attempt

to address this issue with our algorithm.

The appendix also shows that building the main branch is straight-

forward (Fig. A2). We expect our approach to facilitate studies

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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1738 J. Moreno, C. Giocoli and R. K. Sheth

Figure 10. The redshift distribution of the most recent major merger, for several final masses. A major merger is defined as one in which the minor component

has at least 1/3 of the mass of the major component. Filled circles show the GIF2 simulation data, open symbols show the corresponding measurements in the

same ‘snapshot’ versions of our trees, and smooth curves show the ‘continuous’ distributions which would be seen with arbitrarily closely spaced output times.

involving the mass-accretion history of a halo (Avila-Reese,

Firmani & Hernández 1998; Nusser & Sheth 1999; van den Bosch

2002; Wechsler et al. 2002; Gao et al. 2005; Maulbetsch et al. 2007;

Stewart et al. 2008; Giocoli et al. 2008a; Giocoli, Pieri & Tormen

2008b). This is the subject of work in progress.

We mentioned in the introduction that halo merger histories play

an important role in galaxy formation models. Models of the merg-

ers of supermassive black holes (Menou, Haiman & Narayanan

2001; Volonteri, Haardt & Madau 2003; Yoo et al. 2007; Volonteri,

Haardt & Gultekin 2008), merger-induced starbursts (Hernquist &

Mihos 1995) and quasars (Kauffmann & Haehnelt 2000) also have

the assembly of haloes as their backbone. Halo assembly histories

also play a key role in studies of the brightest cluster galaxies (De

Lucia & Blaizot 2007), luminous red galaxies (Almeida et al. 2008;

Conroy, Ho & White 2007; Masjedi, Hogg & Blanton 2008; Wake

et al. 2008), satellites and the intracluster light (Conroy, Wechsler

& Kravtsov 2007; Skibba, Sheth & Martino 2007), and the na-

ture of substructure in galaxy clusters. This last is important for

interpreting the Sunyaev-Zel’dovich (Holder, McCarthy & Babul

2007), and strong lensing (Natarajan, De Lucia & Springel 2007)

signals.

One of the advantages of using Monte Carlo merger trees is that

one may easily change the underlying cosmology and initial power

spectrum. Recently, there have been attempts to describe spherical

collapse and non-linear growth in modified-gravity theories (Laszlo

& Bean 2008; Schäfer & Koyama 2008). In principle, such modifi-

cations can easily be incorporated into our algorithm. We hope that

our algorithm will prove useful in some of these studies.
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A P P E N D I X A : TH E A L G O R I T H M

Consider a dark matter halo of mass M0 at redshift Z0 (Fig. A1).

Realisations of its merger history may be constructed with our tree

Figure A1. A sample merger history tree of a halo with mass M0 at Z0.

The mass history (black branch) is constructed with a random walk. Mass

jumps larger than mdust are identified, and branches are connected there

(medium-gray). This process is repeated for each branch, and new branches

are connected (light-gray) until the tree is complete.

algorithm. Below we explain how each branch is built and how

these branches are connected.

A1 The branch: from random walks to mass histories

The mass growth history of a halo is contained in a random walk

(Section 2.3). First we discuss the constant-barrier (spherical col-

lapse) model and then the square-root barrier (ellipsoidal collapse)

case.

A random walk is essentially a collection of steps and heights:

{s0, . . . , si , . . .} and {h0, . . . , hi , . . .} (e.g., the jagged line in

Fig. 1). Consider a horizontal barrier of height δc(z). This line may

intersect the walk at several values of S. The smallest of such of

values, Sm, indicates what mass the halo had at redshift z. As z

increases, so does δc – and m decreases accordingly, as expected in

any hierarchical model of halo assembly.

As we increase the height of the barrier, a subset {(S0, H0), . . .,

(Sj , Hj ), . . .} of the walk is chosen. These points contain the mass

history (e.g. the dark-filled circles in Fig. 1). Every point in this

subset has the following property: they are higher than all their

predecessors. This is illustrated by the point at [Sm, δc(z)] Fig. 1: it

has the maximum height in the range SM ≤ S ≤ Sm. In other words,

for any point (si , hi) on the walk to be selected as part of the history,

it must satisfy the following condition:

hi > hk, ∀ k < i. (A1)

Now we discuss what modifications are necessary when the square-

root barrier model of ellipsoidal collapse is used (Fig. 2). Consider

a barrier (equation 3) with δ-intercept
√

qδc(z). This curve may

intersect the random walk at several places. We pick the smallest of

these to find the mass at that redshift. As z increases, the δ-intercept

increases, but the overall shape of the barrier remains unchanged.

This is how the mass history {(S0, H0), . . ., (Sj , Hj ), . . .} is selected.

From this subset we can construct a string {√qD0, . . . ,
√

qDi, . . .}

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1729–1740
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1740 J. Moreno, C. Giocoli and R. K. Sheth

Figure A2. Main branch algorithm. The symbols and styles are the same as

in Fig. 2. The dotted vertical line denotes S = Sm/2. The main branch is built

by following the most massive piece at each split: Sm′ > Sm/2 indicates that

m′ < m/2, implying that m − m′ > m′, whose mass history we must follow.

of ‘δ-intercepts’, where

Di =
1

√
q

(Hi − β
√

Si).
1 (A2)

1 Every point on the history has the following property: its δ-

intercept is higher than that of its predecessors. In other words, for

a point (si , hi) on the walk to belong to the mass history, condition

(A1) is replaced by

di > dk, ∀ k < i, (A3)

where

di =
1

√
q

(hi − β
√

si). (A4)

For a given cosmology and initial power spectrum one may map

excursion-set variables into physical ones: [S(m), δc(z)] ↔ (m, z).

With this prescription, the mass accretion history is obtained: {(M0,

Z0), . . ., (Mj , Zj ) . . .}. The masses in the history are such that

S(Mj ) = Sj and the redshifts are given by δc(Zj ) = Dj . When

barriers are constant, Dj = Hj .

A2 The tree: connecting the branches

Consider a halo of mass M0 at redshift Z0. We are interested in

constructing its merger history tree. The first step is to draw a

1 Note that this mapping is ill-defined when γ > 1/2, because these barriers

cross.

random walk with origin at

s0 = S(M0), h0 = B[S(M0), δc(Z0)], (A5)

where B(S, δc) is given by equation (3). The mass history is then

collected: {(M0, Z0), . . . , (Mj , Zj ), . . .} (see section A1). In Fig. A1,

this is represented by the black branch.

The mass history can also be seen as a series of jumps in mass:

{(M0 ← M′
0, Z0), . . . , (Mj ← M′

j , Zj ), . . .}, with M′
j = Mj+1.

Such jumps are interpreted as binary mergers: M′
j + (Mj − M′

j )

→ Mj. In practice, we only care about the mass jumps above the

branching-mass resolution. Denote this subset of jumps as {. . .,
(mJ arrowm′

J , zJ ), . . .}, where

mJ − m′
J > mdust. (A6)

These jumps are shown in Fig. A1. The next step is to construct the

history of each halo with mass (mJ − m′
J ) that falls on to the mass

history of the M0-halo. This is done by generating random walks

originating from

s0 = S(mJ − m′
J ), h0 = B[S(mJ − m′

J ), δc(zJ )], (A7)

Such mass histories correspond to the medium-gray branches in

Fig. A1. The above process is repeated for each of these branches:

retrieve their mass history, identify large enough mass jumps, and

attach new branches there (light-gray in Fig. A1). Eventually, all

the new branches will only involve mass jumps that do not satisfy

condition (A6). At this point the tree is complete and the algorithm

stops.

A3 The main branch: a simple modification

In a merger history tree, the ‘main’ branch of a halo is obtained

by following the most massive progenitor at each mass split. In

this section, we show that the mass history algorithm described in

section A1 can be easily modified to construct the main branch.

This process requires continuous monitoring of the walk and its

associated history, and is illustrated in Fig. A2 (compare to Fig. 2).

Recall that mass decreases with increasing S. For the portions in

the mass history consisting of jumps where the mass loss is less

than half, the algorithm is unchanged (e.g. the portion with SM ≤
S ≤ Sm in Fig. A2). Occasionally, there are jumps where more than

half the mass is lost. Such is the case for the Sm → Sm′ jump

illustrated in Fig. A2, with Sm′ > Sm/2 [i.e. m′ < m/2 and (m −
m′) > m/2]. To construct the main branch in that situation, one

must simply follows (m − m′), not m′. In other words, instead of

continuing the walk at (Sm′ ,
√

qδc(z) + β
√

Sm′ ), one must continue

from (Sm−m′ ,
√

qδc(z) + β
√

Sm−m′ ) (i.e., the dark filled circles in

Fig. A2).
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