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Three-dimensional simulations for the merger of binary neutron stars are performed in the framework
of full general relativity. We pay particular attention to the black hole formation case and to the resulting
mass of the surrounding disk for exploring the possibility for formation of the central engine of short-
duration gamma-ray bursts (SGRBs). Hybrid equations of state are adopted mimicking realistic, stiff
nuclear equations of state (EOSs), for which the maximum allowed gravitational mass of cold and
spherical neutron stars, Msph, is larger than 2M�. Such stiff EOSs are adopted motivated by the recent
possible discovery of a heavy neutron star of mass �2:1� 0:2M�. For the simulations, we focus on binary
neutron stars of the ADM mass M * 2:6M�. For an ADM mass larger than the threshold mass Mthr, the
merger results in prompt formation of a black hole irrespective of the mass ratio QM with 0:65 & QM � 1.
The value of Mthr depends on the EOSs and is approximately written as 1:3–1:35Msph for the chosen
EOSs. For the black hole formation case, we evolve the space-time using a black hole excision technique
and determine the mass of a quasistationary disk surrounding the black hole. The disk mass steeply
increases with decreasing the value ofQM for given ADM mass and EOS. This suggests that a merger with
small value of QM is a candidate for producing central engine of SGRBs. For M<Mthr, the outcome is a
hypermassive neutron star of a large ellipticity. Because of the nonaxisymmetry, angular momentum is
transported outward. If the hypermassive neutron star collapses to a black hole after the long-term angular
momentum transport, the disk mass may be * 0:01M� irrespective of QM. Gravitational waves are
computed in terms of a gauge-invariant wave extraction technique. In the formation of the hypermassive
neutron star, quasiperiodic gravitational waves of frequency between 3 and 3.5 kHz are emitted
irrespective of EOSs. The effective amplitude of gravitational waves can be * 5� 10�21 at a distance
of 50 Mpc, and hence, it may be detected by advanced laser-interferometers. For the black hole formation
case, the black hole excision technique enables a long-term computation and extraction of ring-down
gravitational waves associated with a black hole quasinormal mode. It is found that the frequency and
amplitude are � 6:5–7 kHz and �10�22 at a distance of 50 Mpc for the binary of mass M � 2:7–2:9M�.
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I. INTRODUCTION

Binary neutron stars in close orbits are strong emitters of
gravitational waves. A scenario based mainly on a recent
discovery of the binary system PSRJ0737-3039 [1] sug-
gests that the detection rate of gravitational waves by the
advanced laser-interferometric gravitational wave observ-
atory (LIGO) will be �40–600 yr�1 [2]; i.e., one event per
year is expected within the distance of � 35–90 Mpc since
the advanced LIGO is able to detect gravitational waves
from coalescing binary neutron stars within the distance of
about 300 Mpc. This indicates that a coalescing and merg-
ing binary neutron star is one of the most promising
sources for kilometer-size laser-interferometric detectors
[3,4].

Merger of binary neutron stars has been also proposed
for many years [5,6] as a possible formation scenario for a
central engine of short-hard gamma-ray bursts (SGRBs).
Associations between SGRBs and elliptical galaxies re-
ported recently [7] make it unlikely that SGRBs are related
to supernova stellar core collapse since elliptical galaxies
have not produced massive stars in the past �1010 yr. In
addition, recent observations of the afterglow of the SGRB

050709 rule out the presence of a supernova light curve and
point to a binary compact-object merger as the most likely
central engine [8,9]. The merger of compact-object bi-
naries (binary neutron stars or black hole-neutron star
binaries) is thus the most favored hypothesis for explaining
SGRBs. According to a standard scenario based on the
merger hypothesis, after the merger, a stellar-mass black
hole is formed with a surrounding accretion torus of mass
* 0:01M� [10]. Energy extracted from this system by
either magnetohydrodynamic processes or neutrino radia-
tion powers the fireball and high-Lorentz factor jets for
SGRBs, for which the typical burst energy is between 1048

and 1049 ergs (after a correction of a beaming factor) [8].
Hydrodynamic simulations in the framework of full

general relativity provide the best approach for studying
the merger of binary neutron stars. Over the last several
years, numerical methods for solving coupled equations of
the Einstein and hydrodynamic equations have been devel-
oped (e.g., [11–21]) and now such simulations are feasible
with an accuracy high enough for yielding scientific results
(e.g., [17,21]).

For many years, the fully general relativistic (GR) simu-
lations for the merger of binary neutron stars had been
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performed adopting an ideal equation of state (EOS) P �
	�� 1
�" where P, �, ", and � are pressure, rest-mass
density, specific internal energy, and adiabatic constant
[12,13,17–19]. However, simulations with realistic EOSs
are necessary for quantitative understanding for the
merger. From this motivation, in a previous paper, we
performed simulations taking into account realistic nuclear
EOSs [21] and clarified that properties of the outcomes and
gravitational waveforms are significantly different from
those obtained in the ideal EOS with � � 2. In particular,
we found that a hypermassive neutron star [22,23] of
elliptical shape is formed for a reasonable mass range of
the merger progenitor because of the stiffness of the real-
istic EOSs. As a consequence, hypermassive neutron stars
can be strong emitters of high-frequency, quasiperiodic
gravitational waves, which may be detected by the ad-
vanced laser-interferometric gravitational wave detectors
[24].

In this paper, we extend the previous work from the
following motivation. One is based on the recent possible
discovery of a high-mass neutron star with mass 2:1�
0:2M� (one � error) [25]. This measurement indicates
that the maximum mass of spherical neutron stars, Msph,

may be larger than �2M�, and hence, very stiff EOSs such
as those proposed in [26,27] are favored. In particular, if
Msph is larger than �2:1M�, the nuclear EOS is so stiff that

most of the EOSs proposed so far will be rejected, resulting
in that restricted EOSs such as those derived by Akmal,
Pandharipande, and Ravenhall (hereafter APR) [26] sur-
vive. However, fully GR simulations for the merger with
such stiff EOSs have not been performed to this time. This
paper is mainly devoted to presenting new numerical re-
sults obtained with the APR EOS.

The other motivation is to determine the final outcome
for the case that a black hole is formed promptly after the
merger. Clarifying the final state of the black hole system,
in particular, the surrounding disk mass, is an important
subject in exploring whether a remnant of the merger can
be a central engine of SGRBs. The previous simulations
[17,21] were performed only for a short time after the
formation of black hole because of the so-called grid
stretching around the black hole horizon. Under this situ-
ation, the geometry is so steep near the horizon that the
accuracy in the numerical computation is lost. The popular
approach for overcoming this difficulty is to adopt excision
techniques [28–30]. In the present simulation, the growth
of the black hole is followed until the system approxi-
mately reaches a relaxed state by employing a simple
excision technique [29,30]. With this technique, the disk
mass surrounding a black hole can be determined.
Simulations are performed for a wide variety of mass ratio
for the black hole formation case as well as in two EOSs.
We show that the disk mass surrounding a black hole
depends strongly on the mass ratio of the binary. In addi-
tion, the excision technique enables a simulation long

enough to extract gravitational waves emitted after the
formation of black holes. We show for the first time that
gravitational waves are determined by a quasinormal mode
of the formed black hole.

To determine the disk mass around a formed black hole,
Oechslin and Janka recently performed a series of interest-
ing simulations for merger of binary neutron stars [31]
using a realistic EOS (the so-called Shen’s EOS) [32],
which is also so stiff that the maximum mass of spherical
neutron stars is � 2:2M�. They employ an approximate
formulation of general relativity (the conformal flatness
approximation for the spatial three-geometry). In this ap-
proximation, gravitational radiation is neglected. They
follow the merger process only in the formation of hyper-
massive neutron stars. Assuming that the hypermassive
neutron stars eventually collapse to a black hole by a
dissipation mechanism, they estimate the disk mass (i.e.,
they compute the rest-mass of fluid elements with the
sufficiently large specific angular momentum which are
expected to escape falling into the black hole). They con-
clude that the disk mass around the formed black hole will
be always larger than 0:02M� because the angular momen-
tum transport during the merger process efficiently works.
As shown in Sec. IV, the angular momentum transport
indeed plays an important role in the formation of disks
around the hypermassive neutron stars, and hence, our
numerical results agree partly with theirs. However, for
the merger of high-mass binaries, our results do not agree
with theirs.

In their case, the merger results in a hypermassive
neutron star even for the total gravitational mass � 3M�.
This result disagrees with ours. The reason may be partly
due to a different choice of the EOS from ours, but is also
likely due to the fact that they do not take into account
radiation reaction of gravitational waves. As shown in
Sec. V as well as in [21], angular momentum is dissipated
by a factor of �15% in the first 3 ms from the last one orbit.
This significant dissipation induces prompt collapse to a
black hole for the high-mass case in our results. In this
case, a black hole is formed in much shorter than 1 ms after
the onset of the merger, and hence, the angular momentum
transport does not work efficiently before the black hole
formation, unless the mass difference of two stars is sig-
nificant. We find that the disk mass is much smaller than
0:01M� in the prompt formation of a black hole for the
nearly equal-mass case, as shown in Sec. IV.

The paper is organized as follows. In Secs. II A, II B,
II C, and II D, basic equations, gauge conditions, excision
scheme, methods for extracting gravitational waves, and
quantities used in the analysis for numerical results are
reviewed. Then, the hybrid EOSs adopted in this paper are
described in Sec. II E. In Sec. III, initial conditions and
setting for simulations are described. In Sec. IV, numerical
results are shown, paying attention to the merger process,
the formed outcome, and the disk mass surrounding a black
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hole. Implication of our results to formation of a central
engine of SGRBs is also discussed in Sec. IV D. In Sec. V,
gravitational waveforms are presented. Section VI is de-
voted to a summary. Throughout this paper, we adopt the
geometrical units in which G � c � 1 where G and c are
the gravitational constant and the speed of light. Latin and
Greek indices denote spatial components 	x; y; z
 and
space-time components 	t; x; y; z
, respectively: r �
���������������������������

x2 � y2 � z2
p

. �ij	� �ij
 denotes the Kronecker delta.

II. FORMULATION

A. Summary of formulation

Our formulation and numerical scheme for fully GR
simulations in three spatial dimensions are the same as in
[17,21], to which the reader may refer for details of basic
equations.

The fundamental variables for geometry are �: lapse
function, �k: shift vector, �ij: metric in three-dimensional

spatial hypersurface, and Kij: extrinsic curvature. In addi-

tion, we define the conformal factor  � e� � �1=12, con-
formal three-metric ~�ij � e�4��ij, three auxiliary

functions Fi � �jk@j ~�ik, the trace of the extrinsic curva-

tureK, and a trace-free part of the extrinsic curvature ~Aij �
e�4�	Kij � �ijK=3
. Here, � � det	�ij
.

The Einstein evolution equations are solved using a
version of the Baumgarte-Shapiro-Shibata-Nakamura for-
malism following previous papers [11,13,17,33]: We

evolve ~�ij, �, Fi, ~Aij, and K using an unconstrained free

evolution code. The latest version of our formulation and
numerical method is described in [17]. The point worthy to
note is that the equation for � is written to a conservative
form similar to the continuity equation, and solving this
improves the accuracy of the conservation of the ADM
(Arnowitt-Deser-Misner) mass and the total angular mo-
mentum significantly.

The fundamental variables for the hydrodynamics are �:
rest-mass density, ": specific internal energy, P: pressure,
u�: four-velocity, and

vi � dxi

dt
� ui

ut
: (1)

For our numerical implementation of the hydrodynamic
equations, we define a weighted density, a weighted four-
velocity, and a specific energy defined, respectively, by

�
 � ��ute6�; (2)

û i � hui; (3)

ê � h�ut � P

��ut
; (4)

where h � 1� "� P=� denotes the specific enthalpy. GR
hydrodynamic equations are written into the conservative

form for variables �
, �
ûi, and �
ê, and solved using a
high-resolution central (HRC) scheme [34,35]. In this ap-
proach, the transport terms such as @i	� � �
 are computed by
Kurganov-Tadmor scheme with a third-order (piecewise
parabolic) spatial interpolation. In [35], we illustrate that
the results obtained in this scheme approximately agree
with those in a high-resolution shock-capturing scheme
based on the Roe-type reconstruction for the fluxes
[15,16]. At each time step, �ut is determined by solving
an algebraic equation derived from the normalization
u�u� � �1, and then, the primitive variables such as �,

", and vi are updated.
A uniform atmosphere of small density � � 107 g=cm3

is added outside neutron stars at t � 0, since the vacuum is
not allowed in any shock-capturing scheme. However, in
the HRC scheme, the density can be chosen to be much
smaller than the previous values [17,21]. This is a benefit in
this scheme. The integrated baryon rest-mass of the atmo-
sphere is �10�4M� in the present simulation with the
largest grid size (see Sec. III). Hence, the effect of the
atmosphere for the evolution of binary neutron stars and its
contribution to the disk mass around a black hole even-
tually formed is negligible. (However, for the nearly equal-
mass merger, the disk mass surrounding a black hole is
small as several �10�4M�; see Sec. IV B 3. In such case,
we subtract the contribution of the atmosphere.)

As the time slicing condition, an approximate maximal
slice (AMS) condition K � 0 has been adopted following
previous papers [11,13,36] to this time. In this condition, �
is determined by approximately solving an elliptic-type
equation. This condition is also adopted in the case of
hypermassive neutron star formation in this paper. On the
other hand, for the formation of a black hole in which an
excision evolution is necessary to follow its growth, the
AMS condition is not advantageous since it is not easy to
find an appropriate boundary condition for � at the exci-
sion surface. Thus, for the black hole formation, we adopt a
dynamical time slicing in which the lapse function is
determined from

@t� � ��K: (5)

In this condition, we need to determine the initial value of
�. Here, we initially impose the maximal slicing condition
for �. A few simulations were performed in both slicing
conditions until formation of a black hole, and we con-
firmed that the results depend weakly on the slicing con-
ditions, indicating that Eq. (5) gives a similar slicing to the
maximal slicing.

As the spatial gauge condition, we adopt the following
hyperbolic gauge condition as in [17,37];

@t�
k � ~�kl	Fl � �t@tFl
: (6)

Here, �t denotes a time step of the simulation. Successful
numerical results for the merger of binary neutron stars in
this gauge condition are presented in [17,21].
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In the presence of a black hole, the location is deter-
mined using an apparent horizon finder for which our
method is described in [38]. The location of the apparent
horizons is used for determining an excision surface (see
the next subsection).

Following previous works, we adopt binary neutron stars
in close quasiequilibrium circular orbits as the initial con-
dition. In computing the quasiequilibrium state, we use the
so-called conformally flat formalism for the Einstein equa-
tion [39]. Solutions in this formalism satisfy the constraint
equations in general relativity, and hence, it can be used for
the initial condition. The irrotational velocity field is as-
sumed since it is considered to be a good approximation for
coalescing binary neutron stars in nature [40]. The coupled
equations of the field and hydrostatic equations [41] are
solved by a spectral method developed by Bonazzola,
Gourgoulhon, and Marck [42]. Detailed numerical calcu-
lations have been done by Taniguchi and part of the nu-
merical results are presented in [43].

B. Black hole excision

Whenever an apparent horizon is found during the simu-
lation, subsequent evolution is followed using an excision
technique [28]. We adopt the so-called simple excision
method originally proposed by Alcubierre and Brügmann
[29]. In this method, one first determines a two-surface
inside an apparent horizon which is used for the inner
boundary in the numerical simulation. And then, at the
boundary, we impose the so-called copying boundary con-
dition in which the time derivative of geometric variables

~�ij, �, ~Aij, K, and Fi is assumed to be spatially constant at

the boundary.
In our method, we choose a cube as the excision bound-

ary of which the length of each edge is 2‘ � 2n�x where
�x denotes the grid spacing. n is a positive integer deter-
mined from the equation

n � integer�min�rAH		;’
�=	
���

2
p

�x
� � 1; (7)

where rAH		; ’
 denotes the coordinate radii of the appar-
ent horizon. At the surface of the cube, we simply copy the
time derivative of each variable at the next cell along the
normal line of each surface. At the corners, we copy the
time derivative at the next cell along the line connecting the
corner and origin, and at the edges, at the next cell along a
perpendicular line connecting the edge and another edge in
the diagonal direction.

Since the computational resource is restricted, the radii
of the apparent horizon are covered only by 6–8 grid
zones. As a result, the value of n is small; typically n �
2. With such a small value, it is difficult to maintain the
accuracy for a long time. However, it is still possible to
continue the simulation for �0:5–0:7 ms after formation of
a black hole, which is sufficiently long for approximately
determining the disk mass around the black hole, and for

computing ring-down gravitational waveforms associated
with a black hole quasinormal mode.

C. Extracting gravitational waves

Gravitational waves are computed in terms of the gauge-
invariant Moncrief variables in a flat space-time [44] as in
our series of papers (e.g., [17,21,36,45]). The detailed
equations are described in [17,45] to which the reader
may refer. In this method, we split the metric in the wave
zone into the flat background and linear perturbation.
Then, the linear part is decomposed using the tensor
spherical harmonics and gauge-invariant variables are con-
structed for each mode of eigenvalues 	l;m
. The gauge-
invariant variables of l � 2 can be regarded as gravita-
tional waves in the wave zone, and hence, we focus on such
modes. In the merger of binary neutron stars of mass ratio
larger than �0:7, we have found that the even-parity mode
of 	l; jmj
 � 	2; 2
 is much larger than other modes. Thus,
in the following, we pay attention only to this mode.

Using the gauge-invariant variables, the luminosity and
the angular momentum flux of gravitational waves can be
defined by

dE

dt
� r2

32


X

l;m

j@tRlmj2; (8)

dJ

dt
� r2

32


X

l;m

jm	@tRlm
Rlmj; (9)

where Rlm is the gauge-invariant variable. In this paper, we
focus only on the even-parity mode with l � 2 for Rlm. The
total radiated energy and angular momentum are obtained
by the time integration of dE=dt and dJ=dt.

To search for the characteristic frequencies of gravita-
tional waves, the Fourier spectra are computed by

�R lm	f
 �
Z

e2
iftRlm	t
dt; (10)

where f denotes a frequency of gravitational waves. Using
the Fourier spectrum, the energy power spectrum is defined
by

dE

df
� 


4
r2

X

l�2;m�0

j �Rlm	f
fj2 	f > 0
; (11)

where for m � 0, we define

�R lm	f
 �
�����������������������������������������������

j �Rlm	f
j2 � j �Rl�m	f
j2
q

	m> 0
; (12)

and use j �Rlm	�f
j � j �Rlm	f
j for deriving Eq. (11).
Since we focus only on the l � 2 even-parity mode, the

gravitational waveforms are written as
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h��1

r

�
���������

5

64


s

fR22�	1�cos2	
cos	2’


�R22�	1�cos2	
sin	2’
g�
���������

15

64


s

R20rsin
2	

�

; (13)

h� � 2

r

���������

5

64


s

��R22� cos	 sin	2’
 � R22� cos	 cos	2’
�:

(14)

In Eqs. (13) and (14), the variables are defined by

R22� � R22 � R2�2
���

2
p r: (15)

In the following, we present

R� �
���������

5

16


s

R22�; R� �
���������

5

16


s

R22�: (16)

These have the unit of length and provide the amplitude of
a given mode measured by an observer located in the most
optimistic direction. The amplitude of gravitational waves
hgw observed at a distance of r along the optimistic direc-

tion (	 � 0) is written as

hgw � 10�22

�
��������������������

R2
� � R2

�
q

0:31 km

��
100 Mpc

r

�

: (17)

D. Definitions of quantities and methods for calibration

In numerical simulations, we refer to the total baryon
rest-mass, the ADM mass, and the angular momentum of
the system, which are given by

M
 �
Z

�
d
3x � const; (18)

M � � 1

2


I

r!1
@i dSi

�
Z �

�He
5� � e5�

16


�

~Aij ~A
ij � 2

3
K2 � ~Rk

ke�4�

��

d3x;

(19)

J� 1

8


I

r!1
’i ~Ai

je6�dSj

�
Z

e6�
�

Ji’
i� 1

8


�

~Ai
j@j’

i�1

2
~Aij’

k@k ~�
ij

�2

3
’j@jK

��

d3x; (20)

where dSj � r2@jrd	cos	
d’, ’j � �y	@x
j � x	@y
j,
�H � ��utê, Ji � �ûi, and ~Rk

k denotes the Ricci scalar
with respect to ~�ij. To derive the expressions forM and J in

the form of volume integral, the Gauss law is used.

The notationsM
1 andM
2 are used to denote the baryon
rest-mass of the primary and secondary neutron stars,
respectively. In terms of them, the baryon rest-mass ratio
is defined by QM � M
2=M
1	� 1
.

In numerical simulation, M and J are computed using
the volume integral shown in Eqs. (19) and (20). Since the
computational domain is finite, they are not constant and
decrease after gravitational waves propagate away from the
computational domain. Therefore, for t > 0, M and J are
not equal to the ADM mass and the total angular momen-
tum defined at spatial infinity, but quasilocal quantities.
However, in this paper, we refer to them simply as the
ADM mass and the total angular momentum.

The decrease rates of M and J should be equal to the
emission rates of the energy and the angular momentum by
gravitational radiation according to the conservation law.
Denoting the radiated energy and angular momentum from
the beginning of the simulation to the time t as �E	t
 and
�J	t
, the conservation relations are

M	t
 ��E	t
 � M0; (21)

J	t
 � �J	t
 � J0; (22)

where M0 and J0 are the initial values of M and J. We
check that these conservation laws approximately hold
during the simulation.

During merger of binary neutron stars (from the last one
orbit to a relaxed state formed after the merger), the
angular momentum is dissipated by 15%–30%
(cf. Sec. V). Obviously, the dissipation effect plays a
crucial role in determining the final outcome. Therefore,
checking that Eq. (22) holds in a simulation is one of the
most important procedures to confirm that the numerical
results are reliable.

In addition to checking the conservation of the mass and
the angular momentum, we monitor the violation of the
Hamiltonian constraint in the same manner as in [16,17,21]
in the absence of black hole. In its presence, the violation is
defined for a region outside the excision surface. As dem-
onstrated in [17,21], the typical magnitude of the violation
is of order 1% throughout the simulation in the absence of
black hole. In its presence, the violation is amplified.
However, the typical magnitude is still �10% in the early
phase of the excision run. The magnitude gradually in-
creases until the crash of computation.

E. Equations of state

Following [21], we adopt a hybrid EOS for modeling
neutron stars’ EOS; namely, we write the pressure and the
specific internal energy in the form

P � Pcold � Pth; (23)

" � "cold � "th: (24)

Here Pcold and "cold are the cold (zero-temperature) parts,
and are written as a function of �. For them, we assign
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realistic EOSs for zero-temperature nuclear matter. In this
paper, we adopt the APR [26] and SLy (Skyrme-Lyon)
EOSs [27]. These are tabulated as a function of the baryon
rest-mass density for a wide density range from
�10 g=cm3 to �1016 g=cm3. To simplify numerical im-
plementation for the simulation, we make fitting formulas
from the EOS tables as in [46].

In our approach, we first make a fitting formula for "cold
in the form

"cold	�
� �	1�p1�
p2 �p3�

p4
	1�p5�
p6
p7 �1�

�f	�p8��p10
�p12�
p13f	p8��p10


�f	�p9��p11
�p14�
p15f	p9��p11
; (25)

where f	x
 � 1=	ex � 1
, and the constant coefficients
pi	i � 1–15
 are listed in Table I. In making the formulas,
we focus only on the density for � � 1010 g=cm3, since the
matter of lower density does not play an important role in
the merger. Then, the pressure is computed from the ther-
modynamic relation in the zero-temperature limit

Pcold � �2 d"cold
d�

: (26)

With this approach, the accuracy of the fitting for the
pressure is not as good as that in [46], but the first law of
the thermodynamics is completely satisfied in contrast to
the work of [46].

In Fig. 1, we compare Pcold and "cold calculated by the
fitting formulas (solid curves) with the numerical data
tabulated (dotted curves) for the APR EOS [47]. The
same figures for the SLy EOS are shown in [21]. It is found
that the fitting formulas agree approximately with the

TABLE I. The values of pi in units of c � G � M� � 1.

i pi (SLy) pi (APR) i pi (SLy) pi (APR)

1 0.1037 0.0889 9 9� 105 9� 105

2 0.1956 0.1821 10 4 4

3 39264 5:945� 105 11 0.75 0.75

4 1.9503 2.4265 12 0.057 0.057

5 254.83 1600.0 13 0.138 0.138

6 1.3823 2.165 14 0.84 0.84

7 �1:234 �6:96 15 0.338 0.338

8 1:2� 105 1:2� 105

10
27

10
28

10
29

10
30

10
31

10
32

10
33

10
34

10
35

10
36

10
37

P
  
(d

y
n

 /
 c

m
2
)

10
10

10
11

10
12

10
13

10
14

10
15

 ρ  (g / cm
3
)

0.001

0.01

0.1

1

 ε
 /

 c
2

FIG. 1. Pressure and specific internal energy as a function of
baryon rest-mass density � for the APR EOS. The solid and
dotted curves denote the results by fitting formulas and numeri-
cal data tabulated, respectively.

FIG. 2 (color online). (a) ADM mass (solid curves) and total baryon rest-mass (dashed curves) as a function of central baryon rest-
mass density �c and (b) relation between the circumferential radius and the ADM mass for cold and spherical neutron stars in
equilibrium. ‘‘APR’’ and ‘‘SLy’’ denote the sequences for the APR and SLy EOSs, respectively.
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tabulated data sets. The relative error between two results
is within �10% for � > 1010 g=cm3 and less than 2% for
supranuclear density with � * 2� 1014 g=cm3.

In Fig. 2, we show the relations among the ADM mass
M, the total baryon rest-mass M
, the central density �c,
and the circumferential radius R for cold and spherical
neutron stars in the APR and SLy EOSs. The maximum
ADM mass (baryon rest-mass) for the APR and SLy EOSs
is about 2.18 and 2:04M�, respectively. It is worthy to note
that for the APR EOS, the radius is in a narrow range
(11.2–11.4 km) for the ADM mass from �0:5M� to
�1:7M�, while for the SLy EOS, it decreases with increas-
ing the ADM mass. This results in the difference on disk
formation in the merger of unequal-mass neutron stars.
Pth and "th in Eqs. (23) and (24) are the thermal (finite-

temperature) parts. During the simulation, � and " are
computed from hydrodynamic variables �
 and ê. Thus,
"th is determined by "� "cold. The thermal part of the
pressure Pth is related to the specific thermal energy "th �
"� "cold as

Pth � 	�th � 1
�"th; (27)

where �th is an adiabatic constant for which we set �th � 2
taking into account the fact that the EOSs for high-density
nuclear matter are stiff. Since �th � 5=3 for the ideal
nonrelativistic Fermi gas [48], it is reasonable to consider
that it is much larger than 5=3 for the nuclear matter. We
note that in [21], we also chose �th � 1:3 and 1.65 and
found that the numerical results depend only weakly on its
value.

III. INITIAL CONDITION AND SETTING FOR

SIMULATION

In Table II, we summarize several quantities that char-
acterize irrotational binary neutron stars in quasiequili-
brium circular orbits used as initial conditions for the
present simulations. Since the lifetime of binary neutron
stars from the birth to the merger is longer than �108 yr for
the observed systems [49], the temperature of each neutron
star will be very low ( & 105 K) [50] at the onset of
merger; i.e., the thermal energy per nucleon is much
smaller than the Fermi energy of neutrons. Hence, cold
nuclear EOSs are employed in giving the initial condition.

We choose binaries of an orbital separation which is
slightly larger than that for an innermost orbit. Here, the
innermost orbit is defined as a close orbit for which
Lagrange points appear at the inner edge of at least one
of two neutron stars [42,51]. If the orbital separation
becomes smaller than that of the innermost orbit, mass
transfer sets in and a dumbbell-like structure is formed.
Until the innermost orbit is reached, the circular orbit is
stable, and hence, the innermost stable circular orbit
(ISCO) does not exist outside the innermost orbit for the
present cases. However, the ISCO seems to be close to the
innermost orbit since the decrease rates of the energy and
the angular momentum as a function of the orbital separa-
tion along the quasiequilibrium sequences are close to zero
near the innermost orbit.

The ADM mass of each neutron star, when it is in
isolation (i.e., when the orbital separation is infinity), is
denoted by M1, and chosen in the range between 1:2M�
and 1:8M�. The labels APR and SLy denote the binary

TABLE II. List of several quantities for initial data (binary neutron stars in quasicircular orbits). The ADM mass of each star when
they are in isolation M1, the maximum density for each star, the baryon rest-mass ratio QM � M
2=M
1, the total baryon rest-mass,
the total ADM mass M0, nondimensional spin parameter q0 � J0=M

2
0 , orbital period P0, the orbital compactness [C0 � 	M0�
2=3],

and the ratio of the total baryon rest-mass to the maximum allowed mass for a spherical and cold neutron star (Q
 � M
=M
sph

max).

Model M1	M�
 �max	1014 g=cm3
 QM M
	M�
 M0	M�
 q0 P0 (ms) C0 Q


APR1313 1.30, 1.30 8.62, 8.62 1.00 2.858 2.568 0.918 2.064 0.114 1.075

APR1214 1.20, 1.40 8.28, 9.10 0.842 2.861 2.569 0.920 2.158 0.111 1.076

APR135135 1.35, 1.35 8.85, 8.85 1.00 2.981 2.665 0.906 1.992 0.120 1.125

APR1414 1.40, 1.40 9.09, 9.09 1.00 3.106 2.762 0.896 1.923 0.125 1.173

APR1515 1.50, 1.50 9.59, 9.56 1.00 3.360 2.957 0.879 1.838 0.135 1.269

APR145155 1.45, 1.55 9.34, 9.86 0.927 3.360 2.959 0.886 1.969 0.129 1.269

APR1416 1.40, 1.60 9.09, 10.14 0.862 3.363 2.960 0.892 1.969 0.129 1.270

APR135165 1.35, 1.65 8.85, 10.43 0.800 3.366 2.960 0.888 1.968 0.129 1.271

APR1317 1.30, 1.70 8.62, 10.74 0.743 3.370 2.960 0.883 2.057 0.126 1.272

APR125175 1.25, 1.75 8.40, 11.09 0.690 3.377 2.962 0.885 2.145 0.122 1.275

APR1218 1.20, 1.80 8.17, 11.44 0.639 3.378 2.957 0.861 2.189 0.120 1.275

SLy1313 1.30, 1.30 8.57, 8.57 1.00 2.847 2.568 0.922 2.110 0.112 1.175

SLy1414 1.40, 1.40 9.16, 9.16 1.00 3.093 2.763 0.902 2.012 0.122 1.277

SLy135145 1.35, 1.45 8.85, 9.48 0.923 3.094 2.763 0.901 2.013 0.122 1.277

SLy1315 1.30, 1.50 8.56, 9.80 0.851 3.096 2.764 0.904 2.104 0.118 1.278

SLy125155 1.25, 1.55 8.42, 10.15 0.786 3.099 2.765 0.904 2.150 0.117 1.278

SLy1216 1.20, 1.60 8.02, 10.54 0.726 3.103 2.765 0.903 2.242 0.113 1.279
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models constructed in the APR and SLy EOSs, respec-
tively. We select the models for a wide range of rest-mass
ratio, 0:6 & QM � 1, to find the dependence of the disk
mass around a black hole on QM for the high-mass case
with M� 2:76–2:96M�.

The simulations are performed using a fixed uniform
grid in the reflection symmetry with respect to the equato-
rial plane (the orbital plane). In this paper, the typical grid
size is (633, 633, 317) or (665, 665, 333) for 	x; y; z
. The
grid covers the region �L � x � L, �L � y � L, and
0 � z � L where L is a constant. The grid spacing �x is
� 0:4 km with which the major diameter of each star is
covered with about 45 grid points initially. We have shown
that with this grid spacing, a convergent numerical result is
obtained in the merger simulations [17].

Accuracy in the computation of gravitational waveforms
(in particular amplitude) and the radiation reaction de-
pends on the location of the outer boundaries if the wave-
length, �, is larger than L [17]. For L & 0:4�, the
amplitude and the radiation reaction of gravitational waves
are significantly overestimated [17,52]. Because of the

restriction of the computational power, it is difficult to
take a huge grid size in which L is much larger than �.
As a consequence of the present restricted computational
resources, L has to be chosen as �0:4–0:45�0 where �0
denotes the value of � at t � 0. Hence, the error associated
with the small value of L is inevitable; the amplitude and
radiation reaction of gravitational waves are overestimated
in the early phase of the simulation. The overestimation of
the radiation reaction leads to slight spurious shortening of
the late inspiraling phase.

However, the typical wavelength of gravitational waves
just before the merger quickly becomes shorter due to a
short radiation-reaction time scale, and hence, the accuracy
of the wave extraction is improved with the evolution of the
system. In particular, the wavelength of quasiperiodic
gravitational waves emitted from the formed hypermassive
neutron star and of ring-down gravitational waves associ-
ated with a quasinormal mode of the formed black hole
(denoted by �merger) is much shorter than �0 and satisfies

the condition �merger < L for the grid size (633, 633, 317)

(see Table III). Therefore, the waveforms in the merger

TABLE III. List of setting for simulation and summary of the outcome. L, �0, and fmerger denote the location of outer boundaries
along each axis, the wave length of gravitational waves at t � 0, and the frequency of gravitational waves from the formed
hypermassive neutron stars or of ring-down gravitational waves of a quasinormal mode of black holes, respectively. �merger denotes the

wave length of gravitational waves �merger � c=fmerger, which is shown to be & L for the large grid sizes. In the last two columns, the

product at t � 10 ms and disk mass for the black hole formation case are shown. ‘‘NS’’ implies that a hypermassive neutron star is the
outcome at t � 10 ms, and ‘‘BH’’ implies that a black hole is promptly formed. The disk mass is evaluated at t� tAH � 0:5 ms where
tAH is the time at apparent horizon formation. Note that we do not compute gravitational waves for the small grid size (377, 377, 189)
in the case of prompt black hole formation.

Model Grid size L (km) �0 (km) fmerger (kHz) �merger (km) Product Disk mass 	M�

APR1313 (665, 665, 333) 139 309 3.20 94 NS � � �
APR1313b (377, 377, 189) 78.7 309 3.18 94 NS � � �
APR1214 (377, 377, 189) 74.5 323 3.23 93 NS � � �
APR135135 (377, 377, 189) 77.8 299 3.35 89 NS � � �
APR1414 (665, 665, 333) 135 288 3.79 79 NS � � �
APR1515 (633, 633, 317) 125 276 6.5 46 BH 4� 10�4

APR1515b (377, 377, 189) 74.5 276 � � � � � � BH 2� 10�4

APR145155 (633, 633, 317) 125 295 6.5 46 BH 5� 10�4

APR1416 (633, 633, 317) 125 295 6.5 46 BH 1:0� 10�3

APR1416b (377, 377, 189) 74.5 295 � � � � � � BH 7� 10�4

APR135165 (633, 633, 317) 125 295 6.5 46 BH 2:7� 10�3

APR135165b (377, 377, 189) 74.5 295 � � � � � � BH 1:9� 10�3

APR1317 (633, 633, 317) 125 308 6.5 46 BH 6:9� 10�3

APR1317b (377, 377, 189) 74.5 308 � � � � � � BH 5:0� 10�3

APR125175 (377, 377, 189) 74.5 276 � � � � � � BH 1:2� 10�2

APR1218 (377, 377, 189) 74.5 276 � � � � � � BH 1:5� 10�2

SLy1313 (633, 633, 317) 131 316 3.20 94 NS � � �
SLy1414 (633, 633, 317) 131 302 6.7 45 BH 4� 10�3

SLy1414b (377, 377, 189) 77.8 302 � � � � � � BH 3� 10�3

SLy135145 (377, 377, 189) 77.8 302 � � � � � � BH 5� 10�3

SLy1315 (377, 377, 189) 77.8 315 � � � � � � BH 1:4� 10�2

SLy125155 (633, 633, 317) 131 322 6.7 45 BH 4:9� 10�2

SLy125155b (377, 377, 189) 77.8 322 � � � � � � BH 3:6� 10�2

SLy1216 (377, 377, 189) 77.8 336 � � � � � � BH 5:7� 10�2
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stage are computed accurately (within �10% error) as
confirmed in [17].

For some models, the simulations are performed for a
smaller grid size (377, 377, 189) but with the same grid
spacing �x. In this case, gravitational waveforms cannot
be accurately computed for the inspiraling phase because
of the small value of L=�0. However, if we pay attention
only to the outcome after the merger, such small value for
L may be allowed since the properties of the outcome
depend weakly on L. This fact is indeed confirmed in the
simulations for several models (cf. Table III; about the
reason for the systematic underestimation of the disk
mass, see IV C 1). Thus, we perform simulations for mod-
els APR135135, APR1214, APR125175, APR1218,
SLy135145, SLy1315, and SLy1216 only with the small
grid size. In this case, the focus is only on the outcome, not
on computing gravitational waveforms.

With the (633, 633, 317) grid size, about 240 GBytes
computational memory is required. For the case of the
hypermassive neutron star formation, the simulations are
performed for about 30 000 time steps (until t� 10 ms)
and then stopped to save the computational time. The
computational time for one model in such a simulation is
about 180 CPU hours using 32 processors on FACOM
VPP5000 in the data processing center of National
Astronomical Observatory of Japan (NAOJ). For the case
of the black hole formation, the simulations are continued
until mass accretion rate from the surrounding disk to a
formed black hole relaxes approximately to a constant. In
this case, the computational time is about 60 CPU hours for
about 12 000 time steps.

IV. NUMERICAL RESULTS: MERGER PROCESS

A. Summary of the outcome

For all the cases, the binary orbit is stable at t � 0, but
after slight decrease of the orbital separation due to gravi-
tational radiation reaction, merger sets in. In the present
simulations, the merger starts in one orbit (in t� 2 ms)
irrespective of the models. If the total ADM mass of the
system is high enough, a black hole is formed within
�1 ms after two stars come into contact. On the other
hand, for models with the ADM mass smaller than a
threshold massMthr, a hypermassive neutron star is formed
and survives for more than 10 ms. However, it will collapse
to a black hole eventually due to gravitational radiation
reaction or angular momentum transport by other effects
(see discussion in Sec. IV B 3). In the case of black hole
formation (models APR1515, APR1416, APR135165,
APR1317, APR125175, APR1218, SLy1414,
SLy135145, SLy1315, SLy125155, and SLy1216), the evo-
lution of the black holes is followed using a black hole
excision technique [29] until the mass accretion rate from
the disk to the formed black hole becomes approximately
constant.

In Fig. 3, we show the evolution of the central value of
the lapse function �c and the maximum of the baryon rest-
mass density �max for models APR1313, APR135135,
APR1414, and APR1515. For model APR1515, �c collap-
ses to zero and �max quickly increases at t� 1:5 ms,
implying that a black hole is formed promptly soon after
the onset of the merger (at t � 2:04 ms). For other cases,
�c and �max settle down to relaxed values, implying that a
quasistationary neutron star is formed. Since the mass is
larger than the maximum allowed limit of rigidly rotating
neutron stars, these neutron stars are hypermassive [23].

For model APR1414, �c and �max oscillate with an
amplitude larger than that for models APR1313 and
APR135135. This behavior results from the fact that the
self-gravity is large enough for the merged object to deeply
shrink surmounting the centrifugal force. This indicates
that the total ADM mass of this model (M � 2:76M�) is
slightly smaller than the threshold value for the prompt
black hole formation. Since a black hole is formed forM �
2:96M�, the threshold mass for black hole formation is
Mthr � 2:8–2:9M�. In a previous paper [21], we adopted
the SLy and FPS (Friedman-Pandharipande-Skyrme) EOSs
and found thatMthr � 2:7M� and 2:5M�, respectively. The
high value ofMthr for the APR EOS is reasonable since it is
stiffer than the SLy and FPS EOSs, and the maximum
allowed mass for spherical, cold neutron star Msph is also

larger. The present result combined with the previous one

FIG. 3 (color online). Evolution of the central value of the
lapse function �c and the maximum values of the rest-mass
density �max for models APR1313 (solid curves), APR135135
(long-dashed curves), APR1414 (dashed curves), and APR1515
(dot-dashed curves). The dotted horizontal lines denote the
central values of the lapse and rest-mass density for the margin-
ally stable, spherical neutron star in equilibrium with the cold
APR EOS.
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[21] suggests an empirical relation Mthr=Msph � 1:30–1:35

for these stiff nuclear EOSs.
We note that this relation is highly different from that for

the �-law EOS with � � 2 [17] for which Mthr=Msph �
1:7. As discussed in [21], the compactness of each neutron
star in the stiff nuclear EOSs is larger than that with the
� � 2 EOS for a given mass. Accordingly, for a given total
mass, the binary system at the onset of the merger is more
compact. This implies that the angular momentum is dis-
sipated more before the merger sets in with the stiff nuclear
EOSs. The dissipation of the angular momentum by
�0:1J0 before the merger helps the prompt black hole
formation, since the hypermassive neutron star formation
requires a substantial centrifugal force to sustain the self-
gravity.

In recent papers [53], the ratio of the maximum mass of
hypermassive neutron stars in equilibrium toMsph has been

investigated in detail. These works coincidently show a
similar dependence of the ratio Mthr=Msph on the EOSs.

Hence, the small value of Mthr=Msph may be partly due to

the absence of high-mass differentially rotating neutron
stars in equilibrium.

In Figs. 4–8, we display the snapshots of the density
contour curves and the velocity vectors in the equatorial
plane at selected time slices for models APR1313,
APR1414, APR1515, APR1416, and APR1317, respec-
tively. In the first two cases, a hypermassive neutron star
is formed, while a black hole is a prompt outcome in other
three cases. For models APR1515, APR1416, and
APR1317, the ADM mass of the system is approximately
identical while the mass ratio is different. The structure and
density of disk surrounding the formed black hole depend
significantly on the mass ratio as found from Figs. 6–8.
Figure 9 displays the density contour curves and the ve-

FIG. 4 (color online). Snapshots of the density contour curves for � in the equatorial plane for model APR1313. The solid contour
curves are drawn for � � 2� 1014 � i g=cm3	i � 1; 2; 3; � � �
 and for 1� 1014�0:5i g=cm3	i � 1� 6
. The (blue) thick dotted and
solid curves denote 1� 1014 g=cm3 and 1� 1012 g=cm3, respectively. The number in the upper left-hand side denotes the elapsed
time from the beginning of the simulation in units of ms. Vectors indicate the local velocity field 	vx; vy
, and the scale is shown in the
upper right-hand corner.
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locity vectors in the y � 0 plane for models APR1313,
APR1414, APR1515, APR1416, APR135165, and
APR1317 at a late time when the mass accretion rate
relaxes approximately to a constant. This shows that
(i) the hypermassive neutron stars have a highly flattened

structure and (ii) the disk surrounding the black hole is
geometrically thin for the mass ratio close to unity but can
be thick for the smaller-mass ratios with QM & 0:8.

Figure 10 shows the angular velocity along the x and y
axes (a) of relaxed hypermassive neutron stars for models

FIG. 6 (color online). The same as Fig. 4 but for model APR1515. The outermost (green) dotted curves denote 1� 1010 g=cm3. The
thick circles around the origin in the last three panels denote the location of the apparent horizon.

FIG. 5 (color online). The same as Fig. 4 but for model APR1414.
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APR1313 and APR1414 and (b) of the disk surrounding
the black hole for model APR135165. This illustrates that
the hypermassive neutron stars, in particular, in their outer
region, are differentially rotating and the central part is
rapidly rotating with the rotational period shorter than
1 ms. The disk surrounding the black hole has approxi-
mately a Kepler orbit outside the ISCO (for which the
estimated coordinate radius is �10 km).

In the following two subsections, details about the for-
mation process of hypermassive neutron stars and black
holes are discussed separately. Implication of the results to
the formation of a central engine of SGRBs is also dis-
cussed in the subsequent section IV D.

B. Formation of hypermassive neutron star

1. Models APR1313 and APR135135

In the formation of the hypermassive neutron stars from
equal-mass neutron stars with relatively low total mass
�2:6–2:7M� (models APR1313 and APR135135), a
double-core structure is first formed (see the snapshot at
t � 3:218 ms of Fig. 4), and then, it relaxes to a highly
nonaxisymmetric ellipsoid [see the snapshots for t > 4 ms
of Fig. 4 and 9(a)]. The contour plots, drawn for a high-
density region with the rest-mass density larger than the
nuclear density �2� 1014 g=cm3, show that the axial ratio
of the ellipsoid measured in the equatorial plane is & 0:8

FIG. 7 (color online). The same as Fig. 6 but for model APR1416.

FIG. 8 (color online). The same as Fig. 6 but for model APR1317.
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FIG. 10 (color online). (a) The angular velocity � of hypermassive neutron stars along x (solid curves) and y axes (dashed curves)
for model APR1313 (blue) at t � 10:668 ms and for APR1414 (black) at t � 10:319 ms. (b) � of accretion disk around a central black
hole for model APR135165 along x (solid curve) and y (dashed curve) axes at t � 2:959 ms. The apparent horizon is located at
r � 3 km. For both figures, the horizontal axis denote the coordinate radius.

FIG. 9 (color online). The density contour curves for � and the local velocity field 	vx; vz
 in the y � 0 plane (a) at t � 10:668 ms
for model APR1313, (b) at t � 10:319 ms for APR1414, (c) at t � 2:523 ms for APR1515, (d) at t � 2:911 ms for APR1416, (e) at
t � 2:959 ms for APR135165, and (f) at t � 3:038 ms for APR1317. The contour curves and the velocity vectors are drawn in the
same way as in Fig. 6.
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for t * 4 ms. Figure 9(a) also shows that the axial length
along the z axis for � � 2� 1014 g=cm3 is about 7 km,
which is �70% of the major axis. Namely, a rotating
ellipsoid of a large ellipticity is the outcome. This result
is essentially the same as that found in [21] for models
SLy1313 and SLy125135. This large ellipticity is achieved
due to the rapid rotation and the high stiffness of the chosen
EOS.

The rapid rotation is found from Fig. 10(a); it shows that
the rotational period of the central region is shorter than
1 ms at t� 10 ms, at which the hypermassive neutron star
relaxes approximately to a stationary state. This indicates
that the rotational centrifugal force plays an important role
for sustaining the large self-gravity of the hypermassive
neutron stars [23,54].

For the unequal-mass case with QM � 0:85 (model
APR1214), the smaller-mass neutron star is tidally elon-
gated at the merger. As a result, the double-core structure is
not formed in contrast to model APR1313. However, the
formed hypermassive neutron star relaxes to an ellipsoid in
the similar way to model APR1313. Subsequent evolution
proceeds in essentially the same manner to that in the
equal-mass case.

The merger for model APR135135 proceeds in qualita-
tively the same way as that for model APR1313.
Quantitatively, the results such as the ellipticity and the
rotational period of the hypermassive neutron star are
slightly different reflecting the difference in the mass;
ellipticity is slightly smaller and the rotational period is
slightly shorter because of its larger compactness.

Because of the nonaxisymmetric structure, the hyper-
massive neutron stars found for models APR1313,
APR1214, and APR135135 emit quasiperiodic gravita-
tional waves and the angular momentum is dissipated
substantially. However, the dissipation time scale is much
longer than 10 ms, implying that they remain the ellipsoi-
dal star for longer than 10 ms (cf. Sec. V). These ellipsoids
are also differentially rotating (cf. Fig 10). Thus, they are
subject to angular momentum transport by magnetic ef-
fects [23,55–57]. However, note that the time scale of the
angular momentum transport is shorter than �100 ms only
when very strong magnetic fields greater than �1015 G are
present [23].

Assume that the dissipation time scale by gravitational
waves is shortest among other processes. Then, there are
two possible fates after a long-term emission of gravita-
tional waves. One fate is that after the angular momentum
dissipation, the centrifugal force becomes weak enough to
induce gravitational collapse to a black hole. The other is
that the angular momentum (i.e., rotational kinetic energy)
is dissipated to be too small to maintain the nonaxisym-
metric structure and, consequently, a spheroidal star in a
stationary state is formed. (It is well known that an ellip-
tical structure can be achieved only in the case that the ratio
of the rotational kinetic energy to the gravitational binding

energy is large enough [58].) If the time scale for the
decrease of the angular momentum is shorter (longer)
than that for the decrease of the ellipticity, a black hole
(a spheroidal hypermassive neutron star) is the outcome. In
the formation of a spheroid, subsequent evolution will be
determined by other processes such as angular momentum
transport by the magnetic braking [23] or the magnetorota-
tional instability (MRI) [55]. In the previous paper [21] in
which the SLy and FPS EOSs are adopted, we have found
that a black hole is the outcome (see the results for models
SLy135135b and FPS125125b in [21]). As the merger
process depends weakly on the EOSs, the black hole for-
mation may be also the fate in the APR EOS. However, this
may not hold as illustrated in the next section for high-
mass model APR1414. To answer this question, an ex-
tremely long-term simulation up to t� 100 ms is neces-
sary. This problem is left as the future issue.

2. Model APR1414

In the formation of the hypermassive neutron stars with
high-mass �2:8M� (model APR1414), the evolution pro-
ceeds in a different manner from that for models APR1313
and APR135135. Since the mass is larger, a more compact
merged object is formed soon after the onset of the merger
(second panel of Fig. 5). Then, it bounces back to a state
with a large radius (or a small density; cf. Fig. 3) and
repeats quasiradial oscillations with a large amplitude
before relaxing to a hypermassive neutron star in a quasi-
stationary state. At the state of the large radius, the angular
momentum is efficiently transported from the inner region
to the outer envelop (see discussion below). On the other
hand, the compact state achieved at maximum compres-
sions (cf. second and fourth panels of Fig. 5) results in a
large amount of angular momentum dissipation via gravi-
tational radiation (cf. Sec. V). These effects subsequently
lead the hypermassive neutron star to a state with relatively
small angular momentum.

The decrease of the angular momentum in a shorter time
results in a state of small rotational kinetic energy. On the
other hand, the gravitational binding energy is larger than
in models APR1313 and APR135135, because of its larger
compactness. As mentioned in the last part of Sec. IV B 1,
an elliptical structure can be achieved only in the case that
the ratio of the rotational kinetic energy to the gravitational
binding energy is large enough [58]. For the hypermassive
neutron star formed in model APR1414, this ratio should
be smaller than those in models APR1313 and
APR135135. Consequently, a spheroid of small ellipticity
is formed [cf. the last three panels of Figs. 5 and 9(b)]. This
results in the facts that luminosity of gravitational waves is
much smaller than for model APR1313 for t * 5 ms
(cf. Sec. V), and the dissipation time scale of the angular
momentum by gravitational radiation is much longer. In
model APR1414, probably, dissipation by gravitational
radiation will not induce gravitational collapse.
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As in the hypermassive neutron star for model
APR1313, the outer region with the coordinate radius R *

8 km is differentially rotating [see Fig. 10(a)]. Such differ-
entially rotating region is subject to the magnetic braking
and the MRI in the presence of magnetic fields [55–57]. If
the instabilities turn on, the magnetic fields play an im-
portant role for transporting angular momentum outward,
subtracting the angular momentum of the central part.
Hence, a plausible scenario for the hypermassive neutron
star of model APR1414 is the collapse to a black hole by
the magnetic effects.

Finally, we note that in the previous paper [21] in which
the SLy and FPS EOSs are used, we have not found the
formation of spheroids, but rather, gravitational radiation
triggers the collapse of hypermassive neutron stars to a
black hole. The likely reason in this difference is that the
APR EOS is stiffer than others. Namely, the hypermassive
neutron stars can be more compact with this EOS
[cf. Fig. 2(b)] escaping the collapse. In such extremely
compact state, the gravitational binding energy would be
large enough to reduce the ratio of the rotational kinetic
energy to the binding energy below the threshold value of
the formation of an ellipsoid.

3. Angular momentum transport and disk mass

Because of a torque by the nonaxisymmetric structure of
the merged object, angular momentum is transported from
the inner region to the outer one. As a result, the rotational
angular velocity � � v’ near the center decreases and its
profile is modified. Figure 10 shows the angular velocity �
of the hypermassive neutron stars along x and y axes at t *

10 ms. The hypermassive neutron stars are differentially
and rapidly rotating at the birth [21]; the rotational period
around the central region is � 0:2–0:3 ms at the birth. (The
rotational period of the double core found in Figs. 4 and 5,
which is formed soon after the merger, is �0:2–0:3 ms.
This is found from the frequency of gravitational waves;
cf. Sec. V). The angular momentum is then redistributed by
the torque, resulting in a fairly uniform profile of � near
the rotational axis with R & 8 km.

The significance of the angular momentum transport is
also found from the evolution of the mass spectrum as a
function of the specific angular momentum, M
	j
. Here,
the specific angular momentum j is defined by hu’ and the

mass spectrum M
	j0
 is given by an integrated baryon
rest-mass of fluid elements with j � j0;

M
	j0
 �
Z

j<j0

�
d
3x: (28)

In Fig. 11, we show this mass spectrum at selected time
slices for models APR1313 and APR1414. This illustrates
that the fraction of baryon rest-mass with j * 1:4M0 is
absent at t � 0 but increases with time. This is due to the
angular momentum transport from the central hypermas-

sive neutron star of ellipsoidal shape to fluid elements in
the outer envelop by the torque associated with the non-
axisymmetric structure. However, the fraction of the rest-
mass with j > 2M0 is still �1% of the total mass because
such fluid elements are absent initially, and also probably
because of gravitational radiation which carries away the
angular momentum by �30% in 10 ms (cf. Sec. V).

Assume a hypothetical case in which the central region
collapses to form a black hole at t � 10 ms. Then, the
ADM mass and the angular momentum of the black hole
will be � 0:97M0 and � 0:7J0, respectively, implying that
the spin parameter is q� 0:7 (cf. Sec. V). The specific
angular momentum at the ISCO, jisco, around a black hole
with q � 0:7 is � 2:58M [59] as plotted by the dotted
vertical line in Fig. 11. The mass of the fluid elements
with j � 2:5M is � 0:01M� at t � 10 ms for model
APR1313. Namely, a disk of mass �0:01M� will be
formed in this hypothesis. The value for the disk mass is
approximately identical with that presented in [31] in
which a similar nuclear EOS [32] is adopted.

We note that the lifetime of the hypermassive neutron
star is in reality much longer than 10 ms (assuming no
other strong dissipation process than gravitational radia-
tion), and hence, the angular momentum will be dissipated
much more by gravitational radiation before formation of a
black hole. Therefore, the value of q will be smaller and
jisco could be larger (e.g., for q � 0:5, jisco � 2:90M). This
effect will slightly reduce the disk mass. On the other hand,
the angular momentum will be gradually transported in the
outer region with time due to the torque from the central
region of a nonaxisymmetric shape. This effect will
slightly increase the disk mass.

For model APR1414, the fraction of the rest-mass with
j � 2:5M is slightly larger as � 0:02M� at t � 10 ms. The
reason is that in this case, the merged object quasiradially
oscillates with a larger amplitude soon after the onset of the
merger (cf. Fig. 3). During the high-amplitude oscillation,
matter in the outer region expands to a large radius and can
gain a torque from the ellipsoidal hypermassive neutron
star for a longer time. Actually, the fraction of the rest-
mass with j � 2:5M steeply increases for 4 ms & t &

6 ms during which the hypermassive neutron star repeats
quasiradial oscillations of the high amplitude. The high-
amplitude oscillation results from the fact that the ADM
mass of the system is close to Mthr. Hence, for the system
of M & Mthr, the angular momentum transport efficiently
works.

The outcome for model APR1414 at t � 10 ms is a
hypermassive neutron star of nearly spheroidal shape.
This implies that the angular momentum will not be sig-
nificantly dissipated any longer and also outward angular
momentum transport will not work efficiently for t >
10 ms. Therefore, in this case, the disk of mass at least �
0:02M� will be formed if the hypermassive neutron star
collapses to a black hole by other mechanisms.
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For model APR1214, for which the ADM mass is ap-
proximately identical with that for model APR1313, the
less massive star is tidally elongated by the primary at the
merger and subsequently forms an accretion disk around a
formed hypermassive neutron star (evolution of the con-
tour curves is similar to those of model APR1416 for t &

2 ms; cf. Fig. 7). Because of the nonaxisymmetric density
profile, the angular momentum is transported outward
more efficiently than in model APR1313. However, the
baryon rest-mass with j > 2:5M for model APR1214 at
t � 10 ms is � 0:025M� which is only slightly larger than
that for model APR1313, and hence, the degree of the
increase is not as drastic as that reported in [31] for QM �
0:85. The likely reasons for our small mass are (i) the
radius of neutron stars depends very weakly on each
ADM mass in the APR EOS (cf. Fig. 2) and
(ii) gravitational radiation carries a large amount of angular
momentum (cf. Sec. V) which is not taken into account in
the work of [31]. Because of the weak dependence of the
stellar radius on the mass, the tidal deformation becomes
important only for close orbits. At such small orbital
radius, the angular momentum is already dissipated by
gravitational radiation to be small, and hence, the angular
momentum transport by a torque associated with the non-
axisymmetric structure does not help sufficiently increas-
ing the mass with a large value of j.

Formation of hypermassive neutron stars from binaries
of small values ofQM & 0:8 is unlikely since the low-mass
binary neutron star with such small value of QM would be
absent; i.e., the mass of neutron stars should be larger than
�1:2M� while the total mass has to be smaller than Mthr,
implying that QM should be larger than �0:8. Therefore,
the fraction of the mass with j * 2:5M will be at most

�0:03M� � 0:01M
 for the hypermassive neutron star
formation case in the APR EOS.

For model SLy1313 in which a hypermassive neutron
star is also formed, the merger process and subsequent
evolution of the hypermassive neutron star is quite similar
to those for models APR1313 and APR135135 [21]. As a
consequence, the rest-mass with j > 2:5M at t � 10 ms is
the similar value �0:02M�. This suggests that the value of
the disk mass depends weakly on the EOS. However, we
note that the disk mass could be larger if we employ EOSs
with which the neutron star radius is larger than that of the
APR and SLy EOSs, and hence, the gravitational radiation
reaction at the merger is less important.

Before closing this section, we note that the discussion
about the disk mass here is based on the assumption that
angular momentum is transported only by a torque in the
hypermassive neutron stars. In the presence of magnetic
fields with a sufficient strength, the angular momentum
could be transported efficiently in a short time scale
[56,57], and as a result, the hypermassive neutron stars
such as formed for models APR1313, APR1414,
APR1214, and SLy1313 may collapse ejecting a large
amount of the mass to form a disk. The system eventually
formed could be composed of a black hole and a massive
disk of * 0:05M� as illustrated in the recent magneto-
hydrodynamic simulations [56,57].

C. Formation of black hole

For binary neutron stars with M � 2:96M� in the APR
EOS and M � 2:76M� in the SLy EOS, a black hole is
formed soon after the onset of the merger irrespective of
the mass ratio QM. Until two stars come into contact,
evolution proceeds in the similar manner to that in the

FIG. 11. Evolution of M
	j
 for models APR1313 (left) and APR1414 (right). The dotted vertical lines labeled q � 0:9 and 0.7
denote the values of j=M at ISCOs around a Kerr black hole of the spin parameter q.
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formation of hypermassive neutron stars. However, after
the contact, the merged objects quickly collapse to a black
hole. For the unequal-mass case, a less massive star is
tidally deformed just before the merger. The degree of
the deformation as well as lag angle, which is defined to
be the angle in the equatorial plane between the major axis
of each star and the axis connecting the centers of mass of
two stars, are larger for smaller values of QM. Because of
the nonzero lag angle, angular momentum is transported
outward by a torque from the nonaxisymmetric merged
object, increasing the specific angular momentum of the
matter located in the outer region. Only in the case that the
angular momentum transport works efficiently, an accre-
tion disk may be formed around the central black hole
since the specific angular momentum before the onset of
the merger is too small as illustrated in Sec. IV B 3 (see also
a discussion below).

1. Disk mass around the central black hole

In Fig. 12(a), we plot the total baryon rest-mass located
outside the apparent horizon for models APR1515,
APR145155, APR1416, APR135165, APR1317, and
SLy125155 as a function of t� tAH where tAH denotes
the time at the first formation of an apparent horizon. In
Fig. 13, the baryon rest-mass at t� tAH � 0:5 ms as a
function of QM is also plotted for all the models in which
a black hole is formed. These figures show that the final
state is composed of a central black hole and a disk of a
small mass. A rapid accretion proceeds in the first �0:2 ms
after formation of apparent horizon. In particular, for
QM * 0:9, most of the fluid elements are swallowed into
the black hole in such a short time. With decreasing the
value of QM, the fraction of the fluid elements which
escape falling into the black hole steeply increases.

We note that for the smaller grid size, the disk mass is
smaller even for the same model (cf. Table III). As men-
tioned in Sec. III, the inspiral time is spuriously shorten
with the smaller grid size since the radiation reaction is
overestimated due to the situation with L� �0. As a
result, the time for transporting angular momentum out-
ward is shorten, resulting in the decrease of the disk mass.

ForQM * 0:9, the baryon rest-mass of the disk becomes
smaller than 0:01M� within �0:3 ms after formation of
apparent horizon ( � 5� 10�4M� for models APR1515
and APR145155, and � 5� 10�3M� for models SLy1414
and SLy135145). The fundamental reason is that the spe-
cific angular momentum j for all the fluid elements before
the merger is too small. In the present case, the maximum
value of j in the initial conditions is �1:3M, which is much
smaller than the value of j at the ISCO of a Kerr black hole
of mass M and spin parameter 0.7–0.9. Moreover, the
specific angular momentum decreases due to emission of
gravitational waves. Hence, a disk can be formed only in
the case (i) an efficient mechanism for angular momentum
transport which works within �1 ms after the onset of the

FIG. 12 (color online). (a) Evolution of the baryon rest-mass
of disks surrounding black holes and (b) the evolution of
irreducible mass of black holes for models APR1515 (solid
curve), APR145155 (dashed curve), APR1416 (long-dashed
curve), APR135165 (dot-dashed curve), APR1317 (dot-long-
dashed curve), and SLy125155 (dotted curve). tAH denotes the
time at the first formation of an apparent horizon.

FIG. 13. Baryon rest-mass of disks around a black hole as a
function of QM � M
2=M
1 for the black hole formation cases.
The disk mass is evaluated at t� tAH � 0:5 ms. The open circles
and squares denote the results with (633, 633, 317) grid size in
the APR and SLy EOSs, respectively. The filled circles and
squares denote the results with (377, 377, 189) grid size in the
APR and SLy EOSs. The dashed curves denote the fitting
formulas (29). The results for the APR and SLy EOSs are derived
for M � 2:96M� and 2:76M�, respectively.
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merger (before collapsing to a black hole) is present and
(ii) the transport mechanism works efficiently enough for
overcoming the dissipation by gravitational radiation in the
outer region. For QM � 1, angular momentum transport
due to a torque by the nonaxisymmetric central object does
not work efficiently, resulting in the small disk mass.

We note that in the prompt formation of a black hole, the
time for the angular momentum transport is much shorter
than in the formation of a hypermassive neutron star. This
is the main reason that the disk mass is much smaller than
that in Sec. IV B 3 for nearly equal-mass binaries.

For QM & 0:9, the disk mass increases with decreasing
the value of QM because the less massive neutron star is
tidally elongated at the merger, and hence, efficiency of the
angular momentum transport is enhanced. However, the
disk mass does not exceed 0:01M� even forQM � 0:75 for
the APR EOS. The likely reason is that the stellar radius is
small irrespective of the mass of each star in this EOS.
Because of this property, the merged object is compact at
the onset of merger enough to promptly produce a black
hole without transporting angular momentum efficiently.

The disk mass is much larger in the SLy EOS for a given
value of QM than in the APR EOS. The reasons are (i) the
mass (M � 2:76M�) is smaller than for the APR EOS case
(M � 2:96M�) and (ii) with the SLy EOS, the stellar
radius of relatively small mass M & 1:3M� is larger
(cf. Fig. 2). With the smaller mass, the gravitational radia-
tion reaction time scale is longer. Consequently, the less
massive star in the binary is tidally elongated by a larger
degree, slightly postponing the collapse of the merged
object to a black hole and enhancing efficiency of the
angular momentum transport.

It is interesting to note that the disk mass decreases
during the growth of a black hole in the following mecha-
nism: In the merger of unequal-mass binary, the less mas-
sive neutron star is always tidally elongated. The inner part
first collides the companion, but slips through the compan-
ion’s surface to form a small spiral arm around a black hole
which is subsequently born. Outer part of larger angular
momentum also forms a large spiral arm. The phase dif-
ference between these two spiral arms is about 180� at
their formation (cf. Figs. 6–8). However, since the smaller
spiral arm rotates faster than the larger one, the two spiral
arms collide each other to generate shocks in one rotational
period, which convert a large fraction of the kinetic energy
to the thermal energy. As a result, an amount of matter is
swallowed into the black hole quickly. The collision of the
spiral arms also leads to geometrical thickening of the disk
[cf. Fig. 9(e) and 9(f)] as well as to the heat-up.

For M � 2:96M� in the APR EOS and M � 2:76M� in
the SLy EOS, the numerical results of the disk mass Md as
a function of QM for 0:75 & QM � 1 is approximately
fitted by

Md � Md0 �Md1	1�QM
p; (29)

where Md0 � 0:0004M�, Md1 � 1:44M�, and p � 4 for

M � 2:96M� in the APR EOS with (633, 633, 317) grid
size, and Md0 � 0:003M�, Md1 � 3:33M�, and p � 3 for
M � 2:76M� in the SLy EOS with (377, 377, 189) grid
size. Since Md0 is small, Md is approximately proportional
to 	1�QM
p for QM & 0:8, and hence, the value of Md1

essentially determines the relation. As mentioned previ-
ously, the value of Md varies by �30% depending on the
grid size by which the radiation reaction time scale and
resulting transport time of the angular momentum spuri-
ously change.

As indicated by this fitting formulas (29), the disk mass
steeply increases with decreasing the value of QM

(cf. Fig. 13) , although for QM * 0:9, the disk mass is
much smaller than 0:01M�. For QM & 0:7, the increase
rate of Md with decreasing value of QM is not as steep as
Eq. (29), but it is still positive.

We note that the disk mass obtained here for the prompt
black hole formation case gives an approximate upper limit
for both the APR and SLy EOSs, since the ADM mass
adopted is close toMthr. For more massive case, the system
at the merger becomes more compact and has a shorter
dynamical time scale. Therefore, outward transport of
angular momentum works for a shorter time scale, result-
ing in smaller disk mass.

Figure 10(b) shows the angular velocity of the disk for
model APR135165 and illustrates that the disk approxi-
mately has the Kepler angular velocity for the radius larger
than �10 km which is approximately the radius of the
ISCO around the black hole. The angular velocity of the
inner part with R & 10 km is not as large as the Kepler
one, indicating that matter in such region gradually falls
into the central black hole. This is also seen from the
velocity fields in Fig. 9(d)–9(f). In reality, the matter in
the accretion disk of the Kepler angular velocity will
subsequently evolve in a dissipation time scale, which is
determined either by viscosity or by magnetic fields.

For QM * 0:9, not only the disk mass is small but also
the disk is geometrically thin. These properties are com-
pletely unfavored for producing high-Lorentz factor jets of
GRBs [6]. Therefore, prompt formation of a black hole in
the merger of binary neutron stars of the mass ratio QM *

0:9 is unlikely to be a scenario for producing a central
engine of SGRBs. On the other hand, for a sufficiently
small value of QM (QM & 0:75 for the APR EOS and
QM & 0:85 for the SLy EOS), the disk mass will be larger
than �0:01M�. In addition, the disk is geometrically thick
as indicated in Fig. 9(f) for model APR1317; i.e., a torus is
formed. Furthermore, the thermal energy, which is gener-
ated in the shock heating between spiral arms in the disk
and is evaluated from "� "cold [21], is high enough (typi-
cally �1–2� 1011 K) for generating a large amount of
thermal neutrinos [10,60]. Viscous heating will also play a
role for subsequently keeping such high temperature.
Implication of such hot torus with mass * 0:01M� will
be given in Sec. IV D.
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2. Properties of black hole

The area of the apparent horizon AAH is determined in
the black hole formation cases. From the area AAH, the
irreducible mass may be approximately defined by

Mirr �
���������

AAH

16


s

; (30)

which varies from 0:9M0 to 0:97M0 for all the models in
the APR EOS as shown in Fig. 12(b). Since most of the
fluid elements are swallowed into the black hole and, also,
the energy carried out by gravitational radiation is �
0:01M0 (see Sec. V), the mass of the formed black hole
should be approximately �0:99M0. Assuming that the area
of the apparent horizon is equal to that of the event horizon,
the nondimensional spin parameter of the black hole is
defined by q � JBH=M

2
BH where JBH and MBH are the

angular momentum and the ADM mass of the black hole.
Then the irreducible mass is defined in terms of q andMBH

by

Mirr �
��������������������������������

1� 	1� q2
1=2
2

s

MBH: (31)

Equation (31) implies that for Mirr=M0 � 0:9–0:97, q �
0:8–0:4. This indicates that the small error in the estimation
forMirr leads to a large error in q estimated from the area of
the apparent horizon. To reduce the error, the simulation
should be performed with a better grid resolution. For this
purpose, an adaptive mesh refinement technique will be
helpful [61], but the simulation with such technique is
beyond the scope of this paper.

The value of q is also approximately determined from
the following manner. As shown in Sec. V, the angular
momentum is dissipated by �15% by gravitational radia-
tion, while the ADM mass decreases by �1% throughout
the simulation. As listed in Table II, the initial value of q is
� 0:9. Therefore, the value of q in the final stage should be
� 0:75 for which Mirr � 0:91MBH. Assuming that this is
the correct value, the error in the irreducible mass of the
black hole determined from the area of the apparent hori-
zon is within �5%.

Given the spin parameter q � 0:7–0:8 and the ADM
mass MBH � 2:8M�, the frequency of the fundamental
quasinormal mode is about 6:5–7	2:8M�=MBH
 kHz [62].
We will show the ring-down gravitational waves with this
frequency in Sec. V.

D. Implication to SGRBs

As shown in Secs. IV B and IV C (also illustrated in
previous papers [21,57]), merger of binary neutron stars
can produce a system composed of a Kerr black hole and a
hot torus of mass * 0:01M� if certain condition is satis-
fied. To summarize, there are following two scenarios to
achieve the formation of a massive disk with Md �
0:01M�: (i) In the first scenario, a hypermassive neutron

star is required to be formed first. Then, by some mecha-
nisms, the angular momentum is transported from the inner
region to the outer envelop which subsequently forms a hot
disk (torus), while the hypermassive neutron star eventu-
ally collapses to a black hole either by angular momentum
dissipation due to gravitational radiation or by angular
momentum transport probably due to magnetic effects
[23]. In this scenario, the estimated torus mass will be
�0:01–0:03M� in the absence of strong magnetic effects,
while in its presence, the mass can be * 0:05M� [56,57].
(ii) In the second scenario, a black hole is promptly formed
after the onset of merger in an unequal-mass binary of
sufficiently small mass ratio QM. Then, a torus is formed
from the less massive neutron star which is tidally elon-
gated at the merger and subsequently constitutes a hot and
geometrically thick torus. In this case, the torus mass
depends strongly on the value of QM and nuclear EOSs.

In [57], a scenario through formation of a hypermassive
neutron star with strong magnetic fields is described. In this
case, a large accretion rate from the torus to the black hole
with _M * 5M�=s is expected. In the rest of this section, we
focus mainly on other scenarios with no strong magnetic
fields; in particular, we focus on scenario (ii).

In the following, we assume that the disk mass is Md �
0:01–0:1M� and mass accretion rate is _M� 0:1–1M�=s.
These are plausible values for a central engine of SGRBs
since the life time of torus becomes tdur � 10–1000 ms
with such choice. The transport time of the angular mo-
mentum used here for _M is assumed to be determined by an
appropriate value of the viscosity or moderately strong
magnetic fields as in the �-viscosity model [63].

The gravitational binding energy W of disk with mass
�0:01–0:1M� in the black hole space-time is

W �MBHMd

rd
� 2� 1051 ergs

�
10MBH

rd

��
Md

0:01M�

�

; (32)

where rd denotes an averaged disk radius. Because of
viscous dissipation in the accretion disk, the kinetic energy
is converted to the thermal energy. Equation (32) indicates
that the total thermal energy produced during the accretion
will be �1051–1052 ergs, which is 102–105 times larger
than the total radiated energy in SGRBs (for the value after
correction of a beaming factor) [8]. Therefore, a relativistic
fireball of sufficient energy may be formed if there is a
mechanism by which a fraction of the thermal energy is
converted to the fireball. In the past several years, scenarios
for producing such fireball have been indeed proposed
[10,60,64–69]. We describe a scenario following a semi-
analytic calculation [67]. More detailed numerical simula-
tions have been performed recently [68,69]. According to
these numerical works, the neutrino luminosity can be by a
factor of �10 larger than that in [67] if the mass of disk is
sufficiently large * 0:05M� . Thus, the luminosity de-
scribed below may be considered as a conservative value.
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Because of its high temperature (typically �1011 K) and
density [ � 1011 g=cm3; cf. Figs. 7, 8, and 9(d)–9(f)], the
torus radiates strongly in thermal neutrinos. The opacity
inside the torus (considering only neutrino absorption and
scattering interactions with nucleons) is �� 7�
10�17	T=1011 K
2 cm2 g�1 [64,67] where T is the tem-
perature. To estimate the optical depth, we define the
surface density of torus by

�	x; y
 �
Z

z�0
�ut

��������gp
dz; (33)

where the integral is carried out along lines of x � y �
constant. For Md * 0:01M� (e.g., for models APR1317,
APR127175, APR1218, SLy1315, SLy125155, SLy1216),
� * 1017 g=cm2, so that the optical depth of the neutrinos
��� is * 1 for r & 20 km � 5MBH. This optical depth is
in approximate agreement with the model presented in
[67]. (Note that in a high viscosity case, the significant
increase of the thermal pressure by the viscous dissipation
may enforce the torus to expand and to decrease the optical
depth below unity [68]).

In the optically thick case, approximate neutrino lumi-
nosity may be estimated in the diffusion limit [70] as L
 �

r2dF where F is the neutrino flux from the torus surface,

approximately estimated by

F� 7N

3

�T4

��
: (34)

Here, � denotes the Stefan-Boltzmann constant and N
 is
the number of neutrino species, taken as 3. Then, the
neutrino luminosity is expressed as

L
 � 2� 1052 ergs=s

�
rd

10 km

�
2
�

T

1011 K

�
2

�
�

�

1017 g=cm2

��1
; (35)

which is only slightly smaller than the neutrino Eddington
luminosity [67]. Hence, our numerical results suggest for-
mation of a hot, hyperaccreting torus which is optically
thick to neutrinos. A model for the neutrino emission in a
similar flow environment with comparable L
 is provided
in [67] as a neutrino-dominated accretion flow (NDAF).

According to the model of [67], the luminosity due to
neutrino-antineutrino 	
 �

 annihilation is [67]

L
 �
 � 1049–1050 ergs=s; (36)

for _M� 0:1–1M�=s. (The work in [64,67] also indicates
that for _M< 0:1M�=s, the luminosity steeply decreases far
below L
 �
 � 1049 ergs=s.) In our model, the black hole is
rapidly rotating with q� 0:75, and hence, the luminosity
may be enhanced by a factor of several due to a GR effect
[64,71]. Also, in a more careful estimation for the neutrino
annihilation and for the neutrino opacity than those in [67],
the value of L
 �
 could be increased by a factor of �10
[68,71].

Because of the thick geometry of the torus, pair 
 �

annihilation will be most efficient near the z-axis and just
above the surface of the inner region of the torus [68,71]
for which the density is much smaller than that of the torus.
Consequently, the baryon-loading problem [6] will be
escaped, and hence, a strongly relativistic fireball is likely
to be produced.

Aloy et al. [72] simulate the propagation of jets powered
by energy input along the rotation axis (as would be
supplied by the 
 �
 annihilation). They find that if the
half-opening angle of the energy injection region is mod-
erately small ( & 45�) and the baryon density around the
black hole is sufficiently low, jets with the Lorentz factors
in the hundreds can be produced given an energy input
L
 �
 � 1049–1050 ergs=s lasting �100 ms. In such case,
the conversion rate from the pair annihilation luminosity
to the jet energy is a few �10% in their results. They also
indicate that the duration of SGRBs may be �10 times
longer than the duration of the energy input because of the
differing propagation speeds of the jet head and tail;
namely, duration of the energy supply with �10 ms may
be sufficient for explaining a SGRB with duration
�100 ms.

Our numerical results, along with the accretion flow
(NDAF) [67] and jet propagation models of [72], thus
suggest that the system composed of a black hole and hot
torus with Md * 0:01M� and accretion rate _M�
0:1–1M�=s is a possible candidate for the central engine
of SGRBs. Since the lifetime of the torus is * 10–100 ms
in our model, the total energy of the 
 �
 annihilation is
E
 �
 � 1048 ergs	Md=0:01M�
. Typical total energy of
SGRBs are several �1048 ergs [8], and hence, a system
of the disk mass � several �0:01M� is likely to be
appropriate for powering SGRBs as long as the emission
is beamed. Probably, beaming is encouraged by the thick
geometrical structure of the torus [72].

The above discussion suggests that if the mass ratio is
sufficiently small, prompt formation of a black hole may be
a possible scenario for producing the central engine of
SGRBs. In particular, for a small value of QM & 0:8 with
the SLy EOS, a large SGRB energy is expected.
Unfortunately, binary neutron stars of small mass ratio
with QM < 0:9 have not been found so far [49]. Hence, it
is not clear at present whether the formation rate of such
unequal-mass binary is large enough for explaining the
event rate of SGRBs. This is a weak point in this scenario.

Through formation of a hypermassive neutron star with
moderately strong magnetic fields, a system composed of a
black hole and a disk of mass �0:01–0:03M� may be
formed as discussed in Sec. IV B. The estimation described
in this section is also applied for such system, and indicates
that a central engine of SGRBs of relatively low total
energy � several �1047–1048 ergs could be formed. If
the time scale of the angular momentum transport by the
magnetic effects (or viscosity) is longer than emission time
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scale of gravitational waves, a black hole is formed (i.e., a
SGRB should be generated) after a long-term emission of
quasiperiodic gravitational waves from the hypermassive
neutron star. As we will discuss in Sec. V, such gravita-
tional waves may be detected by advanced laser-
interferometric detectors. If quasiperiodic gravitational
waves and subsequent SGRB are detected coincidently in
the same direction with a small time lag, thus, this scenario
may be confirmed.

The results for the disk mass in this paper suggest that a
merger between a black hole and a neutron star could form
a system composing a black hole and surrounding massive
disk by tidal disruption [73]. Indeed, if the mass of the

black hole is small enough [MBH & 4M�	R0=10 km
3=2
for q � 0 and MBH & 20M�	R0=10 km
3=2 for q � 0:9
where q and R0 are a spin parameter of the black hole
and a neutron star radius [74]], the neutron star will be
tidally disrupted before reaching the ISCO. If the event rate
(though it is not clear at present because black hole-neutron
star binary has not been observed so far) is large enough,
such a merger could be a promising source for producing a
central engine of SGRBs. However, a detailed simulation
in full general relativity is necessary to confirm this sce-
nario since the disk mass depends crucially on the location
of the ISCO.

V. GRAVITATIONAL WAVEFORMS

A. Gravitational waves from hypermassive neutron

stars

1. Waveform and luminosity

In Fig. 14, we present gravitational waveforms in the
formation of hypermassive neutron stars (models
APR1313 and APR1414) as a function of a retarded
time. Throughout this paper, the retarded time tret is de-

fined by t� robs where robs is the coordinate radius of the
wave extraction. In the early phase (tret & 2 ms), gravita-
tional waves associated with the inspiral motion are emit-
ted, while for tret * 2 ms, those by the rotating and
oscillating hypermassive neutron star are emitted. In the
following, we focus only on the waveforms for tret * 2 ms.

For model APR1313, a hypermassive neutron star of
ellipsoidal shape is formed after the merger sets in. As a
result, quasiperiodic gravitational waves with an approxi-
mately constant frequency � 3:2 kHz are emitted. Also,

FIG. 14. Gravitational waveforms, R� and R�, (a) for model APR1313 at robs � 36M0 and (b) for model APR1414 at robs � 32M0.

FIG. 15 (color online). Energy and angular momentum emis-
sion rates, dE=dt and dJ=dt, of gravitational waves for models
APR1313 (solid curves) and APR1414 (dashed curves). The
units are erg=s and g cm2=s2, respectively.
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the amplitude remains approximately constant for t *

5 ms. These properties are essentially the same as those
found in [21] for models SLy1313 and SLy125135.

For model APR1414, on the other hand, the amplitude
decreases with time, in particular, for t > 6 ms. This re-
flects the fact that the ellipticity of the formed hypermas-
sive neutron star steeply decreases for t * 6 ms. This
indicates that only less massive binaries can produce a
long-term emitter of quasiperiodic gravitational waves.
For model APR1414, the frequency is not constant either,
but modulates with time as in model SLy135135 [21]. The
reason is that the formed hypermassive neutron star qua-
siradially oscillates with a large amplitude and the charac-
teristic frequency varies with the change of the
characteristic radius. Because of this, the shape of the
Fourier spectra for models APR1313 and APR1414 are
different even qualitatively (cf. Fig. 17). Namely, for M &

Mthr, a slight difference in the total ADM mass results in a
significant difference in gravitational waveforms.

In Fig. 15, the emission rates of the energy and the
angular momentum by gravitational radiation are shown
for models APR1313 (solid curves) and APR1414 (dashed
curves). In the inspiral phase for tret & 2 ms, the emission
rates increase with time (besides initial unphysical bump
associated with the conformal flat initial condition in
which gravitational waves are neglected), since the ampli-
tude and the frequency of the chirp signal increase. Then
the peak is reached at tret � 2 ms. The height of the peak is
larger for model APR1414 since the compactness of each
star is larger. After the peak is reached, the emission rates

once quickly decrease since the merged object becomes a
spheroidal transient object. However, because of its large
angular momentum and stiff EOS, the formed hypermas-
sive neutron star soon changes to a highly ellipsoidal object
which emits gravitational waves of a large amplitude. The
luminosity from the ellipsoidal neutron star is as high as
the first peak at tret � 2:5 ms for model APR1414 and at
tret � 3:5 ms for model APR1313.

After the second peak, the emission rates of the energy
and the angular momentum via gravitational waves gradu-
ally decrease with time, since the degree of the nonaxial
symmetry decreases. However, for model APR1313, the
decrease rates are small and the emission rates at tret �
10 ms remain to be as high as that in the late inspiral phase
as dE=dt� 6� 1054 erg=s and dJ=dt� 6�
1050 g cm2=s2 reflecting the high ellipticity of the hyper-
massive neutron star. The angular momentum at t� 10 ms
is J� 0:7J0 � 4� 1049 g cm2=s. Assuming that the emis-
sion rate of the angular momentum remains �5�
1050 g cm2=s and that emission stops when about half of
J is dissipated, the emission time scale is approximately
evaluated as J=	2dJ=dt
 � 40 ms. If the nonaxisymmetric
structure is maintained and dJ=dt does not vary much,
thus, the hypermassive neutron star will collapse to a black
hole within �50 ms even in the absence of other dissipa-

FIG. 16. The solid curves denote the evolution of angular
momentum for models (a) APR1313 and (b) APR1414. The
dashed curves denote J0 ��J where J0 denotes the angular
momentum at t � 0.

FIG. 17 (color online). Fourier power spectrum of gravita-
tional waves dE=df for models APR1313 (solid curve) and
APR1414 (dashed curve). Since the simulations are started
when the characteristic frequency of gravitational waves is
�1 kHz, the spectrum for f < 1 kHz cannot be presented. The
dotted curve in the panel denotes the analytical result of dE=df
in the second post-Newtonian and point-particle approximation
by which the real spectrum for f & 1 kHz is approximated.
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tion processes (cf. the discussion in the last paragraph of
IV B 1).

For model APR1414, on the other hand, the emission
rates decrease quickly since the hypermassive neutron star
relaxes to an approximately axisymmetric spheroid for t *

6 ms. For this model, the dissipation time scale of the
angular momentum is much longer than 50 ms at t �
10 ms. Therefore, other dissipation processes such as mag-
netically induced angular momentum transport will trigger
the collapse to a black hole.

By the time integral of dE=dt and dJ=dt, the total
energy and angular momentum radiated are computed
and found to be about 0:03M0 and 0:30J0 for model
APR1313 and 0:03M0 and 0:26J0 for model APR1414,
respectively. This indicates that the angular momentum is
significantly dissipated, illustrating that the angular mo-
mentum dissipation plays an important role in the evolu-
tion of the system. To confirm that the radiation reaction is
followed in the simulation, we display J	t
 and J0 � �	t

as a function of time for models APR1313 and APR1414 in
Fig. 16. This shows that the angular momentum computed
from Eq. (20) agrees approximately with J0 ��J (within
�2% error), proving that radiation reaction is computed
with a good accuracy.

2. Fourier spectrum

In the real data analysis of gravitational waves, a
matched filtering technique [3] is employed. In this
method, the signal of the identical frequency can be accu-

mulated using appropriate templates. As a result, the ef-

fective amplitude increases by a factor of N1=2 where N
denotes an approximate number of the cycle of gravita-
tional waves for a given frequency.

To determine the characteristic frequency of gravita-
tional waves, we carry out a Fourier analysis. In Fig. 17,
the power spectrum dE=df is presented for models
APR1313 and APR1414. Since the simulations were
started with the initial condition of the orbital period
�2 ms (i.e., frequency of gravitational waves is
�1 kHz), the spectrum of inspiraling binary neutron stars
for f < 1 kHz cannot be correctly computed. Thus, only
the spectrum for f * 1 kHz should be paid attention. As a
plausible spectrum for f & 1 kHz, we plot the Fourier
power spectrum of two point particles in circular orbits
in the second post Newtonian approximation (the dotted
curve) [75] (the third post Newtonian terms does not sig-
nificantly modify the spectrum since their magnitude is
�0:01 of the leading-order term).

Figure 17 shows that a sharp characteristic peak is
present at f � 3:2 and 3.8 kHz for models APR1313 and
APR1414, respectively. This is associated with quasiperi-
odic gravitational waves emitted by the formed hypermas-
sive neutron stars. Two side-band peaks are present at
f � 3:2 and 4.7 kHz for model APR1414. Thus, the spec-
tral shape is qualitatively different from that for model
APR1313. The reason is that the amplitude of the quasir-
adial oscillation of the hypermassive neutron star is out-
standing and the characteristic radius varies for a wide
range for model APR1414, inducing the modulation of
the wave frequency.

An effective amplitude of gravitational waves observed
from the most optimistic direction (which is parallel to the

axis of the angular momentum) is proportional to
���������������

dE=df
p

in the manner

heff �
������������������������������

j �R�j2 � j �R�j2
q

f

� 1:8� 10�21

�
dE=df

1051 erg=Hz

�
1=2

�
100 Mpc

r

�

; (37)

where r denotes the distance from the source, and �R�;� are

the Fourier spectrum of R�;�. In Fig. 18, we show heff as a

function of f for a hypothetical distance of 50 Mpc. This
shows that the effective amplitude of the peak is �3 times
larger than that at �1:3–1:5 kHz which corresponds to the
frequency of the last inspiral motion.

For model APR1313, furthermore, the amplitude of the
peak in reality should be larger than that presented here,
since we stopped simulations at t� 10 ms to save the
computational time, and hence, the integration time ( �
10 ms) is much shorter than the realistic value.
Extrapolating the decrease rate of the angular momentum,
the hypermassive neutron star will dissipate sufficient an-
gular momentum by gravitational radiation until a black
hole or a spheroidal star is formed. As indicated in

FIG. 18 (color online). Nondimensional effective amplitude of
gravitational waves from hypermassive neutron stars for models
APR1313 (solid curve) and APR1414 (dashed curve). The
assumed distance is 50 Mpc. The dotted line denotes the planned
noise level of the advanced LIGO.
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Sec. VA 1, the duration of the angular momentum dissipa-
tion would be �50 ms. Thus, we may expect that the
emission will continue for such time scale and the effective
amplitude of the peak would be in reality amplified by a

factor of �51=2 � 2 to be �6� 10�21 at a distance of
50 Mpc. Although the sensitivity of laser-interferometric
gravitational wave detectors for f > 1 kHz is limited by

the shot noise of the laser, this value is by a factor of 3–4
larger than the planned noise level of the advanced LIGO

� 10�21:5	f=1 kHz
3=2 [3]. It will be interesting to search
for such quasiperiodic signal of high frequency if the chirp
signal of gravitational waves from inspiraling binary neu-
tron stars of distance r & 50 Mpc are detected in the near
future. As discussed in [24], the detection of such quasi-
periodic signal leads to constraining nuclear EOSs for
neutron star matter. Furthermore, as mentioned in
Sec. IV D, the detection may also lead to confirming a
scenario for producing the central engine of SGRBs.

On the other hand, for model APR1414, the quasiperi-
odic gravitational waves damp at t� 6 ms, and hence, the
expected amplitude is heff � 2� 10�21 at a distance of
50 Mpc with f� 4 kHz. If the required signal to noise
ratio of gravitational waves for confirming the detection is
�5 in the advanced LIGO, such signal will be detected
only for an event within the distance �10 Mpc. Since the
predicted event rate of the merger for such distance is &

0:01 per year [2], frequent detection is not expected.
However, the fortunate detection may lead to confirming
a scenario for producing the central engine of SGRBs.

B. Gravitational waves in the black hole formation

In the prompt formation of a black hole, ring-down
gravitational waveforms associated with a quasinormal
mode is emitted. Figure 19 shows R� for model
APR135165 and R� for model SLy125155 as a function
of retarded time. In the early time (tret & 2 ms for model
APR135165 and tret & 2:3 ms for model SLy125155),
gravitational waveforms are determined by the inspiraling

FIG. 19 (color online). The same as Fig. 14, but for models APR135165 (left) at robs � 27M0 and model SLy125155 at robs � 29M0

(right). The lower panel is the enlargement of the upper panel for ring-down gravitational waves associated with a quasinormal mode
of the formed black hole. The formation time of the apparent horizon tAH is 2.38 ms for model APR135165 and 3.04 ms for model
SLy125155, and hence, the quasinormal mode is excited for t� robs * tAH. The thick dotted (blue) curves denote the fitting formulas
described by Eq. (38).

FIG. 20. Evolution of the total radiated energy �E and angular
momentum �J for models APR1416 (solid curves), APR135165
(dashed curves), and APR1317 (long-dashed curves)
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motion. After this, a merger waveform, which is emitted
due to hydrodynamic interaction between two stars, is seen
for a short time scale �0:5 ms. The merger waveform is
emitted for a longer time for model SLy125155 simply
because the time from the onset of the merger to formation
of a black hole is longer. Finally, a black hole is formed and
the waveforms are determined by the fundamental quasi-
normal mode. The formation time of the apparent horizon
tAH is 2.38 ms for model APR135165 and 3.04 ms for
model SLy125155. Assuming that the formation time of
the event horizon is approximately the same, ring-down
waveforms associated with the quasinormal mode should
be induced only for tret * tAH. In our numerical results,
this condition indeed holds, and therefore, we have con-
firmed that the quasinormal mode is extracted [76].

For models APR1416, APR135165, APR1317, and
SLy125155, the initial values of the nondimensional angu-
lar momentum parameter q0 is � 0:9. The energy and the
angular momentum are dissipated by gravitational waves
by �0:01M0 and 0:15J0 until formation of the black holes
(cf. Fig. 20). Taking into account the fact that a tiny
fraction of mass and angular momentum is distributed to
the surrounding disk, the spin parameter of the formed
black hole should be �0:75. The dotted curve in Fig. 19
denotes a model of ring-down gravitational waveforms

Ae�	t�tAH
=td cos	2
fqnmt� �
; (38)

where A denotes the maximum amplitude and � a phase
constant. fqnm and td are the frequency and damping rate of

ring-down gravitational waves of l � m � 2 mode, which
are approximately given by [62]

fqnm � 10:8

�
M

3M�

��1
�1� 0:63	1� q
0:3� kHz; (39)

td �
2	1� q
�0:45


fqnm
: (40)

For M � 2:9M� and q � 0:75, fqnm � 6:5 kHz and td �
0:183 ms which are used for the fitting to the waveform of
model APR135165. For model SLy125155, we plot the
curve with M � 2:7M� and q � 0:7, and hence, fqnm �
6:7 kHz and td � 0:163 ms. This illustrates that withM �
2:7–2:9M�, the frequency will be in a small range between
6.5 and 7 kHz.

In Fig. 19, the fitting formulas are plotted together. It
shows that the computed waveforms agree approximately
with the fitting curves. This implies that gravitational
waves numerically extracted carry the information of the
formed black hole correctly. The maximum value of R�;�
in the ring-down phase is �0:15 km for model
APR135165 and �0:25 km for model SLy125155, imply-
ing that the maximum amplitude is �1–2� 10�22 at a
distance of 50 Mpc [cf. Eq. (17)]. These values depend

weakly on the mass ratio. The amplitude in model
SLy125155 is slightly larger than that in the APR EOS.
This is probably because the accretion rate of the matter
which can excite the quasinormal mode is larger in the SLy
EOS.

Since the frequency is too high and the amplitude is too
small, it will be difficult to detect ring-down gravitational
waves even by advanced laser-interferometric gravitational
wave detector. Only in the case that a merger happens in
our local group, it may be detected. However, the expected
event rate is less than 0:001=yr [2].

Figure 20 shows the evolution of radiated energy and
angular momentum by gravitational waves for models
APR1416, APR135165, and APR1317. It is found that
�1% of the total mass energy and �15% of the angular
momentum are dissipated by gravitational waves. These
gravitational waves are mostly emitted in the last one
inspiral orbits and the contribution from the ring-down
phase is negligible. (For model SLy125155, the results
are quantitatively the same as those of APR models.) The
significance of the dissipation of the angular momentum in
the last orbit should be emphasized since it affects the mass
of disks surrounding the formed black hole. Another im-
portant property found from Fig. 20 is that for smaller-
mass ratios, the radiated energy and angular momentum
are smaller. This results from the fact that with the smaller-
mass ratios, the tidal elongation sets in at a larger orbital
separation, and hence, the inspiral waveform shuts off
earlier [17,79,80].

FIG. 21 (color online). Summary about the outcome after the
merger. ‘‘HMNS,’’ ‘‘GW,’’ ‘‘B-field,’’ and ‘‘J-transport’’ are
hypermassive neutron star, gravitational wave emission, mag-
netic field, and angular momentum transport, respectively.
‘‘Small disk,’’ ‘‘massive disk,’’ and ‘‘heavy disk’’ imply that
the disk mass is Md � 0:01M�, 0:01M� & Md & 0:03M�, and
Md * 0:05M�, respectively. The solid arrow denotes the route
found in this paper and the dashed arrow is the possible route
based on the results of [57] and the speculation. There are three
possible fates of the ellipsoidal hypermassive neutron star de-
pending on the EOS and the time scale of dissipation and angular
momentum transport processes. We note that a spheroid is
formed probably only for the APR EOS. See Secs. VI A, VI B,
VI C, and VI D for details.
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VI. SUMMARY

As an extension of our previous work [21], we per-
formed fully general relativistic simulations for the merger
of binary neutron stars adopting stiff nuclear EOSs. We
focus particularly on the formation of a black hole and
surrounding disk in this paper. The following is the sum-
mary of the new results described in this paper. The sum-
mary about the outcome after the merger is also described
in Fig. 21.

A. Threshold mass for black hole formation

In the APR EOS which is mainly adopted in this paper,
the threshold mass for prompt formation of a black hole is
Mthr � 2:8–2:9M� which is about 30%–35% larger than
the maximum mass for spherical neutron stars with iden-
tical EOS, Msph. Collecting the results obtained in [21], we

conclude that the following relation holds for stiff nuclear
EOSs such as FPS, SLy, and APR EOSs: Mthr �
1:3–1:35Msph.

B. Formation of hypermassive neutron star (M<Mthr)

IfM<Mthr, a hypermassive neutron star is formed as an
outcome of the merger. If the mass is not close to Mthr, the
outcome has an ellipsoidal shape, and hence, is a strong
emitter of quasiperiodic gravitational waves. Because of
angular momentum dissipation by gravitational waves, the
ellipsoidal hypermassive neutron star may collapse to a
black hole within �50 ms, as found in [21], even in the
absence of any other transport mechanism. On the other
hand, if the ellipticity reduces to zero within �50 ms, the
hypermassive neutron star will settle to a spheroid in a
stationary state. Then, the collapse to a black hole will be
triggered by other mechanisms such as the magnetic brak-
ing and the MRI [55–57].

Since a torque works from the ellipsoidal hypermassive
neutron star, matter in the outer envelop receives angular
momentum from the central part. This process helps pro-
ducing disk, which may be an accretion disk around a black
hole eventually formed. If gravitational radiation triggers
the collapse, the expected disk mass is �0:01–0:03M� for
merger of equal-mass as well as unequal-mass binaries for
QM * 0:85 with the black hole mass �2:6–2:8M� and spin
q < 0:7. Such a system may be a central engine of SGRBs
of relatively small burst energy [64,67].

Alternatively, collapse to a black hole may be triggered
by other mechanisms such as the magnetic braking and the
MRI [55–57]. In the collapse by these magnetic effects, the
mass of a torus surrounding the black hole will be larger
than 0:05M� because an efficient angular momentum
transport works, as illustrated in [56,57]. Furthermore,
the MRI generates shocks in the torus, heating up the
material to �1011 K [57]. Therefore, this scenario is
more favorable for producing a central engine of SGRBs.

If the time scale of the angular momentum transport in
the hypermassive neutron stars is longer than �50 ms, a
black hole or a spheroidal hypermassive neutron star is
formed after a long-term emission of quasiperiodic gravi-
tational waves. Such gravitational waves may be detected
by advance laser-interferometric detectors (see Sec. VI F).
If a black hole is subsequently formed, it may also produce
a SGRB. Thus, if quasiperiodic gravitational waves and
subsequent SGRBs are detected coincidently in the same
direction with small time lag, the merger scenario through
formation of a hypermassive neutron star for the central
engine of SGRBs may be confirmed. (However, for detect-
ing gravitational waves, the event should be within
�50 Mpc; see Sec. VI F).

In the presence of strong magnetic fields with * 1016 G,
a black hole may be formed before a long-term emission of
quasiperiodic gravitational waves from the hypermassive
neutron star [56,57]. In this case, a smaller value of heff for
the quasiperiodic gravitational waves is expected, and
hence, a smaller-distance event is required for confirmation
of this scenario by gravitational wave detection.

C. Formation of hypermassive neutron star

(M & Mthr)

For M only slightly smaller than Mthr, the hypermassive
neutron star relaxes to a spheroidal state in �10 ms since
its small angular momentum and compact structure lead to
a too small ratio of the rotational kinetic energy to the
gravitational binding energy to form an ellipsoid [58].
Here, the small angular momentum is a result from the
effects that the angular momentum is significantly dissi-
pated by gravitational waves soon after the onset of the
merger and that the angular momentum transport works
efficiently during an early quasiradial oscillation with a
large amplitude in the hypermassive neutron star. Since the
emissivity of gravitational waves by the hypermassive
neutron stars of small ellipticity is not high, it may survive
for more than 50 ms in contrast to the smaller-mass case.
Collapse to a black hole will be triggered by other mecha-
nism such as the magnetic braking and the MRI [55–57].
After the collapse, disk of mass * 0:05M� could be
formed [56,57], and hence, such a system is also a candi-
date for the central engine of SGRBs. In this scenario, the
amplitude of quasiperiodic gravitational waves is not as
high as that for the smaller-mass case, and hence, frequent
detection of this signal is not expected (see Sec. VI D).

The formation of a spheroid is found only for the APR
EOS (in [21] in which the SLy and FPS EOSs are used, we
have not found the formation of spheroids). The likely
reason in this difference is that the APR EOS is stiffer
than others. Namely, the hypermassive neutron stars can be
more compact with this EOS [cf. Fig. 2(b)] escaping the
collapse to a black hole. In such a compact state, the
gravitational binding energy could be large enough to
reduce the ratio of the rotational kinetic energy to the
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binding energy below the threshold value of the formation
of an ellipsoid.

D. Prompt formation of black hole (M>Mthr)

In the black hole formation from the nearly equal-mass
merger, most mass elements are swallowed into the hori-
zon, and hence, the disk mass around the black hole is
much smaller than 0:01M�. However, the disk mass
steeply increases with decreasing the value of QM; we
find an empirical relation in which the disk mass is written
approximately by Md0 �Md1	1�QM
p with p � 3–4 for
given EOS and mass for a range 0:7 & QM � 1.

For QM � 1, the disk not only has small mass but also is
geometrically thin. Therefore, the merger will not produce
a central engine of SGRBs for nearly equal-mass case. On
the other hand, for a sufficiently small value of QM (QM &

0:75 for the APR EOS and QM & 0:85 for the SLy EOS),
the disk mass is larger than 0:01M�. Furthermore, the disk
is geometrically thick and the thermal energy is large
enough (typically �1–2� 1011 K) for producing the large
amount of thermal neutrinos. In addition, the black hole
spin is large q� 0:75. Therefore, prompt formation of a
black hole in the merger of unequal-mass binary neutron
stars with a small value ofQM is a scenario for formation of
a central engine of SGRBs. Unfortunately, binary neutron
stars of small mass ratio with QM < 0:9 have not been
found so far [49]. Hence, it is not clear at present whether
the merger rate of such unequal-mass binary is large
enough for explaining the event rate of SGRBs. The
present results also indicate that the merger between a
neutron star and a black hole with small mass will be a
possible candidate for producing central engine of SGRBs.

E. Gravitational waves from black hole

The nondimensional angular momentum parameter
(J=M2) of the formed Kerr black hole is �0:75 in the
prompt formation case. Then, for the system of mass

2:7–2:9M�, the frequency of ring-down gravitational
waves associated with the fundamental quasinormal
mode of l � m � 2 is �6:5–7 kHz. We extract the ring-
down gravitational waveform and confirm this frequency.
The amplitude of gravitational waves is �1–2� 10�22 at a
distance of 50 Mpc which is too small to be detected even
by advanced laser-interferometric detectors unless the
merger event happens within the local group of galaxies.

F. Gravitational waves from hypermassive neutron star

The effective amplitude of quasiperiodic gravitational
waves from hypermassive neutron stars of ellipsoidal
shape can be * 5� 10�21 at a distance of 50 Mpc with
the frequency 3–3.5 kHz. This property agrees with that
found in [21,24], and hence, we conclude that this fact
holds irrespective of stiff nuclear EOSs with Msph * 2M�.

Quasiperiodic gravitational waves may be detected by
advanced laser-interferometric detectors. Detection will
lead to constraining the nuclear EOS as discussed in
[24]. On the other hand, for M only slightly smaller than
Mthr, the expected effective amplitude is heff � 2� 10�21

at a distance of 50 Mpc with frequency f� 4 kHz; only for
an event with a distance within �10 Mpc, detection of
such signal will be possible by the advanced laser-
interferometric detectors.
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K. Uryū, Phys. Rev. D 62, 087501 (2000).
[39] J. R. Wilson and G. J. Mathews, Phys. Rev. Lett. 75, 4161

(1995).
[40] C. S. Kochanek, Astrophys. J. 398, 234 (1992); L. Bildsten

and C. Cutler, Astrophys. J. 400, 175 (1992).
[41] M. Shibata, Phys. Rev. D 58, 024012 (1998); S. A.

Teukolsky, Astrophys. J. 504, 442 (1998).
[42] E. Gourgoulhon et al., Phys. Rev. D 63, 064029 (2001).
[43] K. Taniguchi and E. Gourgoulhon, Phys. Rev. D 66,

104019 (2002); 68, 124025 (2003).
[44] V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974); The

Moncrief formalism was originally derived for the

Schwarzschild space-time. We here apply his formalism
in a flat space-time.

[45] M. Shibata and Y. I. Sekiguchi, Phys. Rev. D 71, 024014
(2005).

[46] P. Haensel and A. Y. Potekhin, Astron. Astrophys. 428,
191 (2004).

[47] The tables for the SLy and APR EOSs, which were
involved in the LORENE library in Meudon group
(http://www.lorene.obspm.fr), were implemented by
Haensel and Zdunik. (See [81] for quasiequilibrium se-
quences of binary neutron stars using these tables.)

[48] S. Chandrasekhar, Stellar Structure (Dover, New York,
1967), Chap. 10.

[49] I. H. Stairs, Science 304, 547 (2004).
[50] S. Tsuruta, Phys. Rep. 292, 1 (1998).
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