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Merging and splitting eigenspace models

Peter Hall, David Marshall, Ralph Martin

Abstract—

We present new deterministic methods that given two
eigenspace models, each representing a setwofdimensional ob-
servations will: (1) merge the models to yield a representabin of
the union of the sets; (2) split one model from another to repesent
the difference between the sets; as this is done, we accuratéyep
track of the mean.

These methods are more efficient than computing new
eigenspace models directly from the observations when thegain-
models are dimensionally small compared to the total numbeof
observations.

Such methods are important because they provide a basis for
novel techniques in machine learning, using a dynamic sphand-
merge paradigm to optimally cluster observations.

Here we present a theoretical derivation of the methods, empi
cal results relating to the efficiency and accuracy of the tdmiques,
and three general applications, including the on-line cortsuction
of Gaussian mixture models.

Keywords: Eigenspace models, principal component analysi
model merging, model splitting, merge-and-split.

|. INTRODUCTION

The contributions of this paper are: (1) a method for mergin

eigenspace models; (2) a method for splitting eigenspaaelsioin
both of which we explicitly and accuratekgep track of the mean of
the observations. Methods for merging (updating) or $ptjt{down-
dating) eigenspace models exist [1], [2], [3], [4], [5] boey generally
fail to handle a change in the mean adequately. The methodsowe
vide do update the mean properly, which is of crucial imparéaim
classification problems — in such problems the mean reptesba
centre of a cluster of observations in a given class. Sudsifieation
problems were our original reason for investigating eiganspmodel
updating.

Eigenspace models have a wide variety of applications, famex
ple: classification for recognition systems [6], charasteg normal
modes of vibration for dynamic models, such as the heartrfig;
tion sequence analysis [8], and the temporal tracking afadgy[4].
Our motivation for this work arose in the context of buildingdels
of blood vessels for x-ray interpretation [9], and buildigigenspace

models for many images [10]. As an example, an image datalfas

employees may require frequent changes to its records: ethaus
permit both the addition and deletion of new images, withbatrieed
to recompute the eigenspace modeinitio.

We would also like to incrementally build Gaussian mixturedmo
els [11], [12], which use separate Gaussian distributionsegriibe
data falling into several clusters or classes. Updating thams is a
prerequisite in this case, as the mean represents the cértre dis-
tribution for each class; classification is based on the Néatdudois dis-
tance, which measures the distance from the mean in unitardaitd
deviation. Building such models dynamically is, perhaps,most sig-
nificant application of our methods. (Currently the EM Algbr [13]
is used for building such models.)

This paper is primarily concerned with deriving a new thdoedt
framework for merging and splitting eigenspaces, and anirézap
evaluation of these new techniques, rather than theirquaati applica-

tion in any area. However, we demonstrate our methods in threg: wa

building a database from many images; a security applicatind the
dynamic construction of Gaussian-mixture models.

All authors are with the Department of Computer Science, Uniyecf
Wales, Cardiff, PO Box 916, Cardiff CF2 3XF, Wales UK: peter@fcac.uk

An eigenspace model is a statistical description of a séY afb-
servations im-dimensional space; such a model may be regarded as
a multi-dimensional Gaussian distribution. From a georogigint
of view, an eigenspace model can be thought of as a hypeailtip
that characterises a set of observations: its centre is tanrof the
observations; its axes point in directions along which theaq of ob-
servations is maximised, subject to them being orthogahalsurface
of the hyperellipsoid is a contour that lies at one standadation
from the mean. Often, the hyperellipsoid is almost flat aloagain
directions, and thus can be modelled as having lower dimerkin
the space in which it is embedded.

Eigenspace models are computed using either eigenvaloengec
sition (EVD) (also called principal component analysis) orgsilar-
value decomposition (SVD). We wish to distinguish betwéatch
andincremental computation. In batch computation all observations
are used simultaneously to compute the eigenspace modah iim
cremental computation, an existing eigenspace model iataddising
new observations.

Previous research in incremental computation of eigerspaad-
els has only considered addiegactly one new observation at a time
to an eigenspace model [1], [2], [3], [4], [5], [14]. A commtmeme
of these methods is that none require the original obsemnatio be
retained. Rather, a description of the hyperellipsoid fideant in-

rmation for incremental computation of the new eigenspaodel.

Each of these previous approaches allows for a change in dioren
ality of the hyperellipsoid, so that a single additionalsaid added if
necessary. Only our previous work allows for a shift of the enf
F}he hyperellipsoid [14], other methods keep it fixed at thgior This
proves crucial if the eigenspace model is to be used forifilzeton,
as demonstrated in [14]: a set of observations whose meanfisfa
the origin is clearly not well modelled by a hyperellipsoichted at
the origin.

When using incremental methods previous observations neted
be kept — thus reducing storage requirements and making faap-
lems computationally feasible. Incremental methoust be used if
not all observations are available simultaneously. Fomgpte, a com-
puter may lack the memory resources required to store adrobs
tions. This is true even ifow-dimensional methods are used to com-
pute the eigenspace [5], [15]. (We will mention low-dimensiameth-
eo?s later, in Section 1I-B, but they give an advantage whemtimber
of observations is less than the dimensionality of the spaAce< n,
which is often true when observations are images.) Even iftaeo
vations are available, it is usually faster to compute a ngerspace
model by incrementally updating an existing one rather thansing
batch computation [3]. This is because the incremental oulstlypi-
cally computep eigenvectors, witly < min(n, N). The disadvantage
of incremental methods is their accuracy compared to battheds.
When only a few incremental updates are made the inaccusaoyall,
and is probably acceptable for the great majority of appibos [14].
When many thousands of updates are made, as when eigenspdce mo
els are incremented with a single observation at a time, thecira-
cies build up, although methods exist to circumvent thidfmm [4].
In contrast, our methods allow a whole negt of observations to be
added in a single step, thus reducing the total number oftapda an
existing model.

Section Il defines eigenspace models in detail, standardadefor
computing them, and how they are used for representing asgity-
ing observations. Section Il discusses merging of eigecspnod-
els, while Section IV addresses splitting. Section V presentpirical
results, and Section VI presents some applications of th&.w®ec-
tion VIl gives our conclusions.



Il. EIGENSPACE MODELS

In this section, we describe what we meanebgenspace models,
briefly discuss standard methods for their batch computasiod how
observations can be represented using them. Firstly, wblisstaur
notation for the rest of the paper.

Vectors are columns, and denoted by a single underline. idéatr

are denoted by a double underline. The size of a vector, orxnat
is often important, and where we wish to emphasise this sizs, it i

denoted by subscripts. Particular column vectors within &irmare
denoted by a superscript, and a superscript on a vectorefeaqtar-
ticular observation from a set of observations, so we tres¢iations
as column vectors of a matrix. As an examp¥, is theith column

vector in an(m x n) matrix. We denote matrices formed by concate-

nation using square brackets. ngsmng] is an(m x (n+1)) matrix,
with vectorb appended to;{mn as a last column.

A. Theoretical background

ConsiderN observations, each a column vectdre R". We com-
pute an eigenspace model as follows:
The mean of the observations is

x
¥ Z_jz €N
and their covariance is 7
c = %2@ -~ D - 2)
- <%Zz(£)T> — 5" @

Note thatgnn is real and symmetric.
The axes of the hyperellipsoid, and the spread of obsenatiger
each axis are the eigenvectors and eigenvalues of the egdem

¢.g., = U.A, ®3)
or, equivalently, the eigenvalue decompositiorgn is

C.=CL.A.L. )
where the columns o/ are eigenvectors, and is a diago-

nal matrix of eigenvalu_e? The eigenvectors are_onr?honbrmathat
U' U =1 ,the(n x n)identity matrix.

=nn=—/—nn

Theith eigenvectoU® andith eigenvalueA” are associated; the

eigenvalue is the length of the eigenvector,m\LNhich is dieaxis of
the hyperellipsoid. Typically, only < min(n, N) of the eigenvec-
tors have significant eigenvalues, and hence gnbf the n eigen-
vectors need be retained. This is because the observatiert®mae-
lated so that the covariance matrix is, to a good approxonatiank-
degenerate: small eigenvalues are presumed to be negligitius
an eigenspace model often spans-@dimensional subspace of the

dimensional space in which it is embedded.

Different criteria for discarding eigenvectors and eigdumes exist,
and these suit different applications and different meshafdcompu-
tation. Three common methods are: (1) stipulates a fixed integer,
and so keep thg largest eigenvectors [5]; (2) keep thgseigenvec-
tors whose size is larger than an absolute threshold [3];48p khep
eigenvectors such that a specified fraction of energy in ifenspec-
trum (computed as the sum of eigenvalues) is retained.

Having chosen to discard certain eigenvectors and eigezsaiue
can recast Equation 4 using block form matrices and vectdfish-
out loss of generality, we can permute the eigenvectors ayeheal-
ues such thaU:np are those eigenvectors that are kept, gr;gl their

eigenvalues. Il =n — p, thengnd
may rewrite Equation 4 as:

andédd are those discarded. We

A 0 T
- wu)l o ¥ |u,u
—np—n 2 4. —np—n
_ T T
o —np —pp — Q JF U Addg d (5)
Hence
cC ~ U A U (6)
=nn =np =pp =np
with errorU A UT which is small ifA  ~ 0

dd— d =dd
Thus, we 'define aalgenspace model, €2, as the mean, a (reduced)
set of eigenvectors, their eigenvalues, and the numbersgrehtions:

Q=(U A ™

7N)

PP

B. Low-dimensional computation of eigenspace models

Low-dimensional batch methods are often used to compute
eigenspace models, and are especially important when thendion-
ality of the observations is very large compared to their bemThus,
they may be used to compute eigenspace models that would othe
wise be infeasible. Incremental methods also use a low diiorals
approach.

In principle, computing an eigenspace model requires thatame
struct an(n x n) matrix, wheren is the dimension of each observation.
In practice, the model can be computed by usinginx N) matrix,
whereN is the number of observations. This is an advantage in appli-
cations like image processing where, typical\y,< n.

We show how this can be done by first considering the relatipns
between eigenvalue decomposition and singular value deasitign.
This leads to a simple derivation for a low-dimensional batethod
for computing the eigenspace model. The same results wea@ebt
at greater length, by [5], see also [15].

Let gnN be the set of observations shifted to the mean, so that
Y'=gz'—z ThenaSVD of is:
Yy =U ¥ VI ®)
—nN —nn=—nN=—NN

wheregnn are the left singular vectors, which are identical to the
eigenvectors previously giverf; is a matrix with singular values

on its leading diagonal, W|tbl\ =X Z:N/N; andgNN are

right singular vectors. Botb/ andV y are orthonormal matrices.
This can now be used 10 compute eigenspace models in a low-
dimensional way, as follows:
T _ T T
gnNgnN - ZNNénNénNZNN

v § v*¥

—NN=NN=NN

(©)

isan(N x N) eigenproblemsS is the same ad /N except for
the presence of extra trailing zeros on the main dlagonAI of If we

discard the small singular values, and their singular vecfollowmg
the above, then remaining eigenvectors vectors are

-1
Y .
:nN:Np:pp

U

—np

(10)

This result formed the basis of the incremental techniquweldped
by Murakami and Kumar [5] but they did not allow for a change in
origin, nor does their approach readily generalise to mergnd split-
ting. Chandrasekaragt. al. [3] observe that a solution based on the
matrix producty” TNX as above, is likely to lead to inaccurate re-

sults because of condlflfonlng problems, and they developtaad for



incrementally updating SVD solutions with a single obsepratiSVD
methods have proven more accurate (see [14]) and can beatiseér
for block updating, with a change of mean, provided all righgslar
vectors are maintained. We have not seen this publishedheytbu
do have a derivation which is too long to include in this paper.

We can also perform downdating of the SVD, but only via EVDg

in which a reduced set of left singular vectors is computed. fivée

allow for a shift of mean and block downdating. Again a derlvap

tion is too long for this paper, but here we provide a brief axpl

nation of the difficulty. Given SVD for three data sets such thdPr Z £, (N+M)

[APBT, CQDT]
APBT.
rated, which is difficult.

Our approach follows that of Buneh

al [2], who are the only authors we know to address the problem,

and multiply on the right by the transpose of the matriceacheak-
ing an inner product and converting the problem to EVD, as ¥to
[APBT, CQDT][APBT CQD"" = ERF"(ERFE")" leading

to AP’AT + CQ*CT = ERQET We conclude that general dy-

namic change of SVD is not possnble directly; this is not theectmr
EVD.

SVD methods were actually proposed quite early in the develop-

ment of incremental eigenproblem analysis [2]. This eartyknin-
cluded a proposal to delete single observations, but digxieind to
merging and splitting. SVD also formed the basis of a proptsal
incrementally update an eigenspace with several obsengatibone
step [8]. However, contrary to our method, a possible changeeini-
mension of the solution eigenspace was not consideredhérunbre,
none of these methods considered a change in origin.

Our incremental method is based on the matrix produict

YT —nn

a agnerallsation of our earlier work [14], which now appeatirally
as the special case of adding a single observation.

C. Representing and classifying observations

This requires that terms on the left hand side be sepa-

and specifically its approximation as in Equation 6. It is

We now turn our attention to one of the two main contributiohs

M ERGING EIGENSPACE MODELS

¢ this paper, merging eigenspace models.

We derive a solution to the following problem. Let and
v be two sets of observations. Let their elgenspace models be
(z, v, A N) and¥ = (y,V A , M) respectively. The
roblem is to compute the elgenspace moﬁet (z, W H P)
] using onlyQ and .

Q=

[XnN

ERFT, the problem is to compute the SVD  Clearly, the total number of new observationglis= N + M.

The combined mean is:

z = 1 (N@+Mg)

N+ D) (14)

The combined covariance matrix is:

.
N+M (Z (z-2)z _Z)T>

E

nn

N M
- N+ M) M <Z T EZ(QZ)T> —zz'
=1 =1
- (N+M) NC + + NzzT +MD +Myy Ty — 22T
N M
= _—_— 7D
NM o N-
m(&—y)(&—gf (15)
wheregm andgm are the covariance matrices tXr andY e
respectively.

We wish to compute the eigenvectors and eigenvalues that satisfy:

High-dimensional observations may be approximated by a low-

dimensional vector using an eigenspace model. Eigenspadels
may also be used for classification. We briefly discuss bathddere,
prior to using them in our results section.

An n-dimensional observationz,,
eigenspace modél = (z, gnp,épp,N) as ap-dimensional vector
g:

P

(11)

This shifts the observation to the mean, and then repregdaytsom-
ponents along each eigenvector. This is called the Karhuoéxe
transform [16].

Then-dimensionatesidue vector is defined by:

T zn

h g

—np=p

7g (QT (zn

np np

Ly

- 1))
andh,, is orthogonal to every vector ﬁ:jnp. Thus,|h,,| is the residue

error in the representation of, with respect.
The likelihood associated with the same observation is diyen

"z —z))

=nn

BE

(12)

exp(—3(z—2)"C"
(2m)n/2det(C,
exp(—3(z—2z)"U A'U" (z—12))

—nn=—/—nn=—nn

(@m)"/2det(d, )1/

P(z|)

(13)

Clearly, the above definition cannot be used directly in saggere
N < n, asan is then rank degenerate.
alternative definition due to Moghaddam and Pentland [6] fvtéc
beyond the scope of this paper.

is represented using an

In such cases we use an

T

—ns—ss—ns

E

= (16)

where some eigenvalues are subsequently discarded tor gies-
negligible eigenvectors and eigenvalues. The problem tedbeed
is of sizes, and this is necessarily bounded by

max(p,q) <s<p+gq+1 a7)

We explain the perhaps surprising additional 1 in the upipeit later
(Section 1lI-A.1), but briefly, it is needed to allow for theoter dif-
ference between the means;- g

A. Method of solution

This problem may be solved in three steps:
1) Construct an orthonormal basis séf, o that spans both
eigenspace models and— y. This basis differs from the re-

quired eigenvectorsL/V__ns, by a rotatlonéss so that:
ETLS = —ns=—ss (18)

2) UseT to derive anintermediate eigenproblem. The solution
of this | problem provides the elgenvalueﬁ,s, needed for the
merged eigenmodel. The elgenvectdis, , comprise the linear
transform that rotates the basis et .

3) Compute the eigenvectold” |, as above, and discard any

eigenvectors and elgenvaluesS using the chosen criteridigas
cussed above) to yle@m andgw

We now give details of each step.



1) Construct an orthonormal basis set: To construct an or-  The first term in Equation 24 is proportional to:
thonormal basis for the combined eigenmodels we must choest a
of orthonormal vectors that span three subspaces: (1) 1lbmpaue [ vt C U uT ¢ v }
=np—nn=—np —np—nn=nt ( 5)
T T

v
—nt—nn—/np —nt—nn=—nt

spanned by eigenvecto(cé - ; (2): the subspace spanned by eigenvec- [U N7 ]TC [ v] =
I I A (i, 4
tors V (3) the subspace spanned @ — ). The last of these is

nn —np:
a smgle vector. It is necessary because the vector jomneg:entre r "
of the two eigenspace models need not belong to either gigeas By Equation6U C U =~ A . Also,U =0, by con-

This accounts for the additional 1 in the upper limit of theubds struction, and agam using Equat|on 6 we conclude
of s in Equation 17. To see this consider a pair of two-dimendiona

eigenspaces which are embedded in a three-dimensional. spaee A 0
eigenvectors for each eigenspace could define paralletpldrat are U v t]TC U ,v t] ~ [ EPP —pt ] (26)
separated by a vector perpendicular to each of them. Cleamigrged —mp=ntt Znnnp’Sn Stp o =i

model should be a 3D ellipse, and the vector between the srigithe
models must contain a component perpendicular to both sigees. The second term in Equation 24 is proportional to:

A sufficient spanning set is:
_ T v,2,Y, LD,
=ns [gm”g"t] (19) [gnpgnt] an [:npgm] - ZT:)Q U ’ ZT:)— =nt .
Znt Znn'=np  Znt=mnZn
wherey s an orthonormal basis set for that component of the (27)
eigenspace o which is orthogonal to the eigenspace(af and in
addition accounts for that component (@ — g) orthogonal to both we haveD ~V A VT which on substitution gives the right

eigenspaces;= s — p. hand side as —na=—aa
To construcly . we start by computing the residues of each of the
eigenvectors ml with respect to the eigenspace(of UTv A VT U UTv A VT
—na :%p:nq:qq:nq:np —np—nq—qq—nq=nt
- ____T_ ZT___TZ
G — Q K (20) =nt=—ng=—qq—nq—p =nt=—ng=—qq—ng=—nt
—pq —np—nq
H =YX UG, (21) " From Equation 20 we hag = utv . Setl, = g:tlnq' We
obtain:
TheH areallorthogonal td/ | |nthe sense thdtd* N UJ = 0 for
all4, j. “In general, however, some oftlﬁé are zero vectors, because " quéqquq quéqqzz;
such vectors represent the mtersectlon of the two eigerspdl hese [gnpém] Q[gnpgm] = r A _51 I A 28)
zero vectors are removed to leake e . We also compute the residue —te—aa=pg —ta—aa=ta
h of y — z with respect to the elgenspace(amfusmg Equation 12. Now consider the final term in Equation 24:
v , can now be computed by finding an orthonormal basis for q ’
[ﬁ h], which is sufficient to ensure theif is orthonormal. T - -
=ngq’’ U v z—7)(x— U ,v |=
Gramm-Schmidt orthonormalisation [17] may be used to do this [:"P:”t] ( DE-y) [_"P "t]
vl @-p@E-9»'t, U @-9)E-7'v
v = Orthonormalis¢lH . h 22 =pp - U T TpTme o=pp o U T T =nt 29
=nt @[:nq/ —]) ( ) g:t(& _ Q)(l _ g)T gnp g:t (g _ y)(l _ E)T:m ( )

2) Forming aintermediateeigenproblem: We now form a new .
eigenproblem by substituting Equation 19 into Equationa®] the Settingg = UT (z —y),andy, = v" (z - p), this becomes:
result together with Equation 15 into Equation 16 to obtain:

T
N ¢ M p oy [ z gﬂ%] (30)

(N 4+ M)=nn (N + M)=nn 2.9, 0,
Yz pa-p)" = . .
(N+M)™ & = So, the new eigenproblem to be solved may be approximated by
U u v " 23
[: ]— s5— ss—ss[—np—nt] ( ) N |: A Q :|
e — —Pp =pt +
Multiplying both sides on the left byénp,gm]T, on the right by N+M)| 9, 9,
[U ,v ] and using the fact thay ,v | is a left inverse of M G A G G ATIT
=np’ =nt _- —np’ =nt —pP9—qq=—pgq —pq—qq—%q +
[U ,v ]we obtain: (N+M)| LA G L AT
=np’ =nt =tq—qq—pq —tq—qq—tq
T
N M NM g, g’ g~
U r C + D + —_— ==t | =R I R" 31
[:npgnt] ((N + M):nn (N + M):nn (]\] + M)2 l 7, gz}‘ ltlf —ss=ss—ss (31)
NM T
N A , = 4
(N + M) @-9E-p )[:"P = t] SS—SS—SS( ) Each matrix is of size x s, wheres = p+t < p+g+1 < min(n, M+

N). Thus we have eliminated the need for the original covariance
which is a new eigenproblem whose solution eigenvectors otest matrices. Note this also reduces the size of the central xnatrihe
the & we seek, and whose eigenvalues provide eigenvalues for {8 hand side. This is of crucial computational importabegause
combined eigenspace model. We do not know the covarianaécemat it makes the eigenproblem tractable in cases where the diamen$
¢ orD ., but these can be eliminated as follows: each datum is large, as is the case for image data.



3) Computing the eigenvectors. The matrixIL__is the eigen-
value matrix we set out to compute. The elgenvecR)rs comprise a
rotation forT
tors foers. However not all eigenvectors and eigenvalues need
kept, and somes(—
previously discussed in Section II. This discarding of sigestors and
eigenvalues will usually be carried out each time a pair ofespace
models is merged.

Notice that there are two sources of error. The first is rounein
ror introduced because of finite machine precision. Thersisource
of error is introduced by truncation of the eigenmodel, itee dis-
carding of eigenvectors and eigenvalues. This is the damhswurce,
and its precise behaviour deserves further investigalioth theoreti-
cally and empirically. However, our experience backs up owition:
discarding more eigenvectors and eigenvalues worsengfexama-
tion. (Furthermore, note that we require no lower bound on timelyer
of eigenvectors, which is in contrast to SVD methods where @litri
singular vectors must be kept to block update while shiftirggrhean.)

B. Discussion on the form of the solution

We now briefly justify that the solution obtained is of the remt
form by considering several special cases.
First, suppose that both eigenspace models are null, tlegicis is

. Hence, we use Equation 18 to compute the elgenvec—

Given that in this casE
form of A v’

=V, h]T . thenL, AqutT has the
, but with ¢ a row and column of zeros appended. Also,

[K" h)"(z — y). Substitution of these terms shows that in this

bése too, the solution reduces to the special case of addingla new
Bbservatlon Equation 33 is of the same form as Equation 82aa
readily be shown.

If the Q and ¥ models are identical, thed = y. In this case the
third term on the left of Equation 31 disappears._Furtheeerr is a
Zero matrix, ancG = U: U is the identity matrix, withp = q.
Hence, the first a and second matrlces on the left of Equationr@1 a
identical, withN = M, and they reduce to the matrices of eigenval-
ues. Hence, adding two identical eigenmodels yields a thiridiwis
identical in every respect, except for a change in the nurobebser-
vations.

Finally, notice that for fixed\/, asN — oo so the solution tends
to the2 model. Conversely, for fixed asM — oo so the solution
tends to thel model. If M and N tend toco simultaneously, then the
final term loses its significance.

C. Algorithm

Here, for completeness we now express the mathematicatgesul
obtained above, for merging models, in the form of an albarifor

specified by(0, 0, 0, 0). Then the system is clearly degenerate and nufiirect computer implementation; see Figure 1.

eigenvectors and zero eigenvalues are computed.
If exactly one eigenspace model is null,
eigenspace model is computed and returned by this processeel
this, suppose thak is null. Then, the second and third matrices on th
left-hand side of Equation 31 both disappear. The first magduces
to App exactly ¢ = 0), and hence the eigenvalues remain unchange

In this case, the rotatioR is the identity matrix, and the eigenvec-

tors are also unchange_dss If insteRdis a null model, then only the
second matrix will remain (a®&' = 0). Also v andV will be

related by a rotation (or else identical). The solutlon toeigenprob-
lem then computes the inverse of any such rotation, and ¢femspace
model remain unchanged.

Suppose¥ has exactly one observation, then it is specified b
(y,0,0,1). Hence, the middle term on the left of Equation 31 dig
appears, an@"t is the unit vector in the directiop — z. Hence

= |y — x| is a scalar, and the eigenproblem becomes

|

which is exactly the form obtained when one observation isiexpl
itly added, as we have proven elsewhere [14]. This special ltase
interesting properties too: if the new observation lies initihe sub-
space spanned @W, theny = 0 and any change in the eigenvec-
tors and eigenvalues can be explained by rotation and geeginsed
by QPQZ' Furthermore, in the unlikely event that = 7, then the
right matrix disappears altogether, in which case the emjarg are
scaled byN/(N + 1), but the eigenvectors are unchanged. Finally,
N — oo, thenN/(N + 1) — 1 andN/(N + 1)* — 0, indicating a
stable model in the limit.

If © has exactly one observation, then it is specifieddyo, 0, 1).

Thus the first matrix on the left of Equation 31 disappearsen'l@pq
is a zero matrix, ang = = [gnqé], whereh is the component gf — z

which is orthogonal to the eigenspacedf Hence the eigenproblem
is:

N

g
(N +1) 2

0 v

:lp

] (32

M [ 0 0 ]+
-_— T T
MmM+1) |0 LA L
M 0 0
1+ M)? [ 0 7,97 } (33)

then the non-nyf

as

Function Merge( z,U, A, N,y, V, A, M)
ereturns (z, W, 11, P)

dBEGIN

P=N+M

z=(Nz + My)IP

difforg=z - g

G=UTv

H=V -UG

for each column vector of H
discard this column,
if it is of small magnitude.

<

endfor

g = U™ difforg

h =difforg - Ug

v = orthonormalbasis for [H, h]
= vTdifforg

r=vTv

p = size of A

q = size of A

t = number of basis vectors in v

A = construct LHS of Equation 31

IT = eigenvalues of A

R = eigenvectors of A

W =[Uv|R

discard small eigensolutions, as appropriate
END

Fig. 1. Algorithm for merging two eigenspace models.

D. Complexity

Computing an eigenspace model of si¥eas a single batch may
incur a computational co€(N?). Our experimental results bear this
out, though there are faster methods available using SVD [E&}
amination of our merging algorithm shows that it also recgiaa in-
termediate eigenvalue problem to be solved, as well as otbps;s



again overall giving cubic computational requirements. éttheless,

let us suppose tha®, with NV observations, can be representedpby

V. RESULTS
This section describes various experiments that we cartikdoo

eigenvectors, and that, with M observations, can be represented byompare the computational efficiency of a batch method witmew

q eigenvectors. Typically andg are (much) less thatv and M, re-
spectively.

To compute an overall model with the batch method requires

O((N + M)?)
are already known, our merging method requires at rad$p + ¢ +

methods for merging and splitting, and to compare the ejime
models produced.
We compared models in terms of Euclidean distance between the

operations. Assuming that both models to be merggdeans, mean angular deviation of corresponding eigemgecmd

mearrelative absolute difference between corresponding eigenvalues.

1)*) operations; the problem to be solved becomes smaller tiaegre |n doing so, we took care that both models had the same number of

the amount of overlap between the eigenspace? and W. (In fact,

the number of operations requiredd$s*): see the end of Section IlI-

A1)

If one, or both, of the models to be merged are unknown injtiall

then we incur an extra cost @(N?), O(M?), or O(N* + M?®),
which reduces any advantage. Nevertheless, in one typicahsog
we might expect) to be known (an existing large database\obb-
servations), whilel is a relatively small batch o/ observations to
be added to it. In this case, the extra penaltyOQM?’), is of little
significance compared ©((N + M)?).

Overall, while an exact analysis is complicated and indeea diet
pendent, we expect efficiency gains in both time and memoouress
in practice.

Furthermore, if computer memory is limited, subdivisiorttug ini-
tial set may be unavoidable in order to reduce eigenspacelnoch-
putation to a tractable problem.

IV. SPLITTING EIGENSPACE MODELS

Here we show how to split two eigenspace models.
an eigenspace modefd (&, W, II..,P) we remove
U U, Vg Ayys M) from it to give a third modelQ
(z,U,,,A,,, N). We usegrr, bec:ausel;SS is not available in gen-
eral. We ask the reader to carefully note that splitting regamoving
a subset of observations; the method is the inverse of ngergithis
sense. However, it is impossible to regenerate informatiorchvwiias
discarded when the overall model was created (whether by beti
ods or otherwise). Thus, if we split one eigenspace model frtzmgar
one, the eigenvectors of the remnant must still form somspade of
the larger.

The derivation (and algorithm) for splitting follow in a yestraight-
forward way by analogy from those of merging. Therefore weedtze
results for splitting without proof. Clearlyy = P — M. The new
mean is:

P_ M_
= —Z — —

NET WY
As in the case of merging, new eigenvalues and eigenvecteran-
puted via an intermediate eigenproblem. In this case itis:

M T

N =rp~— PP=rp

WhereQ = wzrznq andgr =

151

(34)

- 599 =R AR (39)

s T

wt (y—z).

=rp .
The eigenvalues we seek are theon-zero elements on the diago-

nal ofA,,. Thus we can permut andA,.., and write without loss

of generality:

0
=pt

m)| 3 3]
=tp =tt

RT (36)

—rp=—pp—rp

R —pp

—rr

A

=rr

R

T
:rp:7't]

o =

RT

—rr

wherep = r — q.
Hence we need only identify the eigenvectorgdin with non-zero
eigenvalues, and compute tbe, | as:

u

np

In terms of complexity, splitting must always involve thdwgmn
of an eigenproblem of size. An algorithm for splitting may readily
be written out using a similar approach to that for merging.

@37

—nr=rp

dimensions.

As well as the simple measures above, other performance nesasur
may be more relevant when eigenspace models are used fauparti
lar applications, and thus other tests were also performiggtnEpace
models may be used for approximating high-dimensionaloatiens
with a low-dimensional vector; the error is the size of thedesivec-
tor. The sizes of such residue vectors can readily be comparé&oth
batch and incremental methods. Eigenspace models mayalssedl
for classifying observations, giving the likelihood that @bservation
belongs to a cluster. Different eigenspace models may be axad by
relative differences in likelihoods. We average theseediffices over
all corresponding observations.

We used a database of 400 face images (eatthdk 92 = 10304
pixels) available on-liné in the tests reported here ; similar results
were obtained in tests with randomly generated data. The grays|
in the images were scaled into the rarigel] by division only, but
no other preprocessing was done. We implemented all furmetising
commercially available software (Matlab) on a computer witindard

Givegpnfiguration (Sun Sparc Ultra 10, 300 Hz, 64 Mb RAM).

The results we present used up to 300 images, as the physical re
sources of our computer meant that heavy paging startedcta be-
yond this limit for the batch method, although such paging ibt
affect the incremental method.

For all tests, the experimental procedure used was to c@mput
eigenspace models using a batch method [15], and compae the
models produced by merging or splitting other models alsalypced
by the batch method. In each case, the largest of the threesdit
contained 300 images. These were partitioned into two détaeszch
containing a multiple of 50 images. We included the degererases
when one model contained zero images. Note that we tested both
smaller models merged with larger ones, and vice-versa.

The number of eigenvectors retained in any model, including
merged model, was set to be 100 as a maximum, for ease of cogpar
results. (Initial tests using other strategies indicatd the resulting
eigenspace model is little effected.)

A. Timing

When measuring CPU time we ran the same code several times and
chose the smallest value, to minimise the effect of othecaoently
running process.

Initially we measured time taken to compute a model using the
batch methods, for data sets of different sizes. Resultsrasented in
Figure 2 and show cubic complexity, as predicted.

1) Merging: We then measured the time taken to merge two
previously constructed models. The results are shown inr&igu
This shows that time complexity is approximately symmetiioust
the pointN = 150, half the number of input images. This result may
be surprising because the algorithm given for merging isgotmet-
ric with respect to its inputs, despite that fact that the reathtical
solution is independent of order. The approximate symmiattime-
complexity can be explained by assuming independent gigees
with a fixed upper-bound on the number of eigenvectors: sugppies
numbers of eigenvectors in the models Ar@and M. Then complexi-
ties of the main steps are approximately as follows: compgutimew
spanning sety is O(M?); solving an eigenproblem §(N? + M?);
rotating the new eigenvectors @(N? 4+ M?). Thus the time com-
plexity, under the stated conditions, is approxima@iN? + M?),
which is symmetric.

1The Olivetti database of facest t p: / / ww. cam or | . co. uk/ f acedat abase.
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Fig. 2. Time to compute an eigenspace model with a batch methsds the Fig. 4. Time to make a complete eigenspace model for a daatifa300

number of imageslV. The time is approximated by the cubie3 x 104N 4 images. The incremental time is the addition of the time tostict only the

8.6 x 1074 N2 +2.8 x 10~ 6 N3, eigenspace to be added. The joint time is the time to commitedigenspace
models and merge them.

100~

B < termediate eigenproblem to be solved depends on the sihe rger
8o 0 AN space, and therefore dominates the complexity. These &xtjoes
, . are borne out experimentally. We computed a large eigenhusitey
N 300 images, as before. We then removed smaller models of b&ze
60 / . tween 50 and 250 images inclusive, in steps of 50 images. At,most
, N 100 eigenvectors were kept in any model.The average tima take
, N approximately constant, and ranged between 9 and 12 seaowitls,
s ) o—o incremental ﬂmlg * a mean time of about 11.4 seconds. These figures are muctesmall
) _ "~ cubicapproximation N than those observed for merging because the large eigenspatains
)/ N only 100 eigenvectors. Thus the matrices involved in themdation
207 \ were of size(100 x 100), whereas in merging the size was at least
\ (150 x 150), and other computations were involved (such as comput-
| | | | | \l ing an orthonormal basis).
50 100 150 200 250 300
Number of images in the first model
Number of images in second model is 300 - number in first

cpu time in seconds

B. Smilarity and performance

The measures used for assessing similarity and performahce
batch and incremental methods were described above.
Fig. 3. Time to merge two eigenspace models of imaes mergé(, ¥), 1) Merging: We first compared the means of the models pro-
versus the number of imagey, in ©2. The number of images i is300— N.  duced by each method using Euclidean distance. This distanc
Hence, the total number of different images used to comtigeconstant 300. greatest when the models to be merged have the same numbpubf in
images (150 in this case), as fall smoothly to zero when eithéne
models to be merged is empty. The value at maximum is typivaly
Next, the times taken to compute an eigenspace model from 38@®all, and we measured it to Be&5 x 10~'* units of gray level. This
images in total, using the batch method and our merging rdetir@ compares favourably with the working precision of Matlab, ethis
compared in Figure 4. Thincremental time is the time needed to 2.2 x 1071,
compute the eigenspace model to be merged, and merge it with a p We next compared the directions of the eigenvectors pratibye
computed existing one. THeint time is the time to compute both each method. The error in eigenvector direction was meddayehe
smaller eigenmodels and then merge them. As might be expésted mean angular deviation, as shown in Figure 5. Ignoring theniegte
cremental time falls as the additional number of imagesireddalls. cases, when one of the models is empty, we see that angulatiolevia
The joint time is approximately constant, and very simitattte total has a single minimum when the eigenspace models were built with

batch time. about the same number of images. This may be because whenla smal
While the incremental method offers no time saving in theesasmodel is added to a large model its information tends to bergveal.
above, it does use much less memory. This could clearly bevgken These results show angular deviation to be very small orageer

a model was computed using 400 images: paging effects setén wh The sizes of eigenvalues from both methods were compared next
a batch method was used and the time taken rose to over 80@dsecoln general we observed that the smaller eigenvalues had langes,
The time to produce an equivalent model by merging two subleiso as might be expected as they contain relatively little infation and so
of size 200, however, took less than half that. are more susceptible to noise. In Figure 6 we give the meariuabso

2) Splitting:  Time complexity for splitting eigenspaces shoulddifference in eigenvalue. This rises to a single peak whemtimeber
depend principally on the size of the large eigenspace whiaim f of input images in both models is the same. Even so, the maxima
which the smaller space is being removed, and the size of thlesm value is small7 x 10~ units of gray level. The largest eigenvalue is
eigenspace should have little effect. This is because #eedfithe in-  typically about 100.
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We now turn to performance measures. The merged eigenspaces
represent the image data with little loss in accuracy, asuneddy the from the eigenspace built from 300 images.
mean difference in residue error, Figure 7. This perforreaneasure ~ The Euclidean distance between the means of the models pro-
is typically small, aboutl0=% units of gray level per pixel, clearly duced by each method grows monotonically as the size of theweuin

below any noticeable effect. eigenspace falls, and never exceeds abduk 102 gray-level units.
Finally we compared differences in likelihood values (Egurafi3)  Splitting is slightly less accurate in this respect thangire.
produced by the two methods. This difference is again styalically The mean angular deviation between corresponding eigeniet

of the order10~5%, as Figure 8 shows; this should be compared witrections rises in similar fashion, from about 0.6 degreesmhe size
a mean likelihood over all observations of the ordér®. Again of the removed eigenspace is 250, to about 1.1 when the removed
the differences in classifications that would be made byetimesdels eigenmodel is of size 100. This represented a maximum in ¢he d
would be very small. viation error, because an error of about 1 degree was obtaiten

2) Splitting:  Similar measures for splitting were computed usinghe removed model is of size 50. Again, these angular devstoe
exactly those conditions described for testing the timihgmitting, somewhat larger than those for merging.
and for exactly those characteristics described for mgrgin each The mean difference in eigenvalues shows the same generdl tre
case a model to be subtracted was computed by a batch metitbd, lts maximum is about 0.5 units of gray level, when the size ef th
removed from the overall model by our splitting proceduresdidla removed eigenspace is 50. This is a much larger error thahein t
batch model was made for purposes of comparison with theualsidcase of merging, but is still relatively small compared to aimum
data set. In all that follows the phrase “size of the removgdrespace” eigenvalue of about 100. As in the case of merging, the dewiati
means the number of images used to construct the eigenspaoged eigenvalue grows larger as the size (importance) of the esamfalls.



Difference in reconstruction error rises as the size of tineored
eigenspace falls. Its size is of the ordé* units of gray level per
pixel, which again is negligible.

The difference in likelihoods is significant, the relativfference in
some cases being factors of 10 or more. After conducting éurh-
periments, we found that this relative difference is seresitb the er-
rors introduced when eigenvectors and eigenvalues aredetarhis
is not a surprise, given that likelihood differences are miféed expo-
nentially. We found that changing the criteria for discagieigenvec-
tors very much reduced: relative difference in likelihoddhe order

We consider a security application based on identificafldre sce-
nario is that of a company wishing to efficiently store photqirs of
its thousands of employees for security reasons, such aitiadnen-
try to a given building or a laboratory. We chose to the stheedata
using an eigenmodel — the images can be projected into tlemeig
model and stored with tens rather than thousands of numberse@-
tional batch methods cannot be used to make the eigenmocklse
not all images can fit into memory at once. Additionally, théatfase
requires changing each year, as employees come and go.

Our methods allow the eigenspace to be constructed and main-

10~ were achieved in some cases. We conclude that should an tgired. An initial eigenmodel is constructed by building ese
plication require not only splitting, but also require déigation, then eigenspaces, each as large as possible, and merging therdattn
eigenvectors and eigenvalues must be discarded with caresugée is too large to do otherwise. Thereafter, the eigenmodel eamdin-
gest keeping eigenvectors whose corresponding eigenvaekeegd a tained by simply merging or splitting eigenmodels as rezplif(Note
threshold. that splitting means removal of images from the database.)
Overall the trend is clear; accuracy and performance greveayor We illustrate this with the data base of faces used previousky
against any measure we used, as the size of the eigenmodglrbein constructed an eigenmodel from a selection of 21 peopleg the-

moved falls.

V1. APPLICATIONS

ing 10 photographs for each person. To recognise an indivialnew
photograph was given a “weight of evidence” between 0 (not @& th
database) and 1 (in the database). To compute this weight wiehese
maximum Mahalanobis distance (using Moghaddam and Pelglan

We now turn to applications of our methods. We have experninethod [6]) of all photographs used to construct the eigetghdEach

mented with building point distribution models [19] of thrdenen-

sional blood vessels and texture classification, while sthawve used
similar methods for updating image motion parameters @gcing

salient views [3], and building large image databases [3ihispaper
we feel it is appropriate to discuss applications that areengeneral
in nature; the intention is to furnish the reader with a przdly use-

ful appreciation of the characteristics of our methods, awaid the

particular diversions of any specific application. We chakerefore,
building large databases of images, a security applicatiod the dy-
namic construction of Gaussian mixture models.

A. Building a large database
An obvious application of our methods is to build an eigensgdac

new photograph was then judgediagf its Mahalanobis distance was
less than this maximum. Since each person has 10 photogaaphs
ciated with them, we can then compute a weight for each persdreas t
fraction of their photographs classified as in.

We recognise this as a rather crude measure, but its megitsvar
fold: first it provides an economic alternative to extensivage pro-
cessing (aligning faces, segmenting shape from textum,saron);
second this measure is sufficient for use to demonstratenthatan
update image databases for classification usamge measure — and
this is our aim here.

We initialised the eigenmodel with the first twenty-one pedgk0
images). We then made a change by adding the twenty-secoswohper
and removing the first — arbitrary but convenient choicegjufé 9
show the “weight of evidence” measured after this change.upiper

many images, when there are too many to store in memory at ongft shows the measure for the images against a batch mode. Th
This might arise in the case of very large databases, andgeasfire- |ower plot shows the same measure for the same images. We notice
viously suggested [3]. Intuition suggests that images éndatabase that both models produce some false positives in the seassdme

will be better represented by the model is if all of them aredudts  people who should not be classified as in have a weight larger tha
construction; EVD (and SVD) fits a hyperplane to the data in thstle zero. We notice too that the incrementally computed eigatesgives

squares sense.

rise to more false positives than the eigenmodel computadaich

To test this we built eigenmodels using all images and a suifsetmethods — in line with earlier observations on subtractiomveier,

images, using both batch and incremental methods, usingt t&st
set to allow comparisons to the ideal case. As might be exgpéacien
the experiments above, the batch and incremental eigesspaced
out to be very similar, when comparing either the models broin
a subset of images, or else those models built from them ralhoth
cases, the models built from a subset of images represdrisd tm-

the weight-of-evidence factor is less than one in every casejatter
how the eigenmodel was computed, and this fact (or some othez
sophisticated test and pre-processing) could be usedninelie false
positives — but the point here is not to develop a fully opersl

and robust security application but to demonstrate thenpiedeof our

methods in classification.

ages used in construction very well — they had a very low residu e conclude thaadditiveincremental eigenanalysis is safe for clas-

error. However, those images not used in construction werey loeyH

resented — having a high residue error. When all images wegttas
make the eigenmodel the overall fit was much improved: thosgeées
in the previous subset were slightly less well represented +thinge
not in that subset were much better represented.

sification metrics, but thaubtractive incremental eigenanalysis needs
a greater degree of caution.

C. Dynamic Gaussian mixture models

This result confirms that EVD (and SVD) models do not generalise We are interested in using our methods to construct dynamis-Ga

well. Classification results follow a similar trend: each geds bet-
ter classified by an eigenspace that uses all images. Weuttentiiat
eigenmodels should always be constructed from as much datasa
sible, and in some cases incremental methods provide tlyeoptibn
for this.

We now turn our attention to applications of a more substanta-
ture.

B. A security application

sian mixture models (GMM's). Such models are increasinghmmmn
in the vision literature, and a method for their dynamic ¢argion
would be useful. The methods presented in this paper makedtis-
sible. We note that block updating and maintainance of thamaee
prerequisites for dynamic GMMs.

Here we focus on merging existing GMMs, and show how to con-
struct a dynamic GMM from a library of photographs. Our aim hisre
not to discuss the issues surrounding dynamic GMMs in futltHiet
would unduly extend this paper, but instead we seek to demadast
that dynamic GMMs are feasible using our methods.

Here we aim to show that our methods are useful in classificationWe partition data into sets, and for each set construct a GMM as

applications. This is because we update the mean, and maisyicth
computations that are commonly used in classification (@khe
Mahalanobis distance) require an accurate mean.

follows: first use all the data in a set to build an eigenmodsin@
incremental methods if necessary). Second project eacimdatthe
set into the eigenmodel. Thirdly, construct a GMM from thejgcted
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Fig. 9. Weight of evidence measures after a change: batph {tecremental
(below).

data, using the EM algorithm for this [13]. Finally, represeach
Gaussian in the mixture using an eigenmodel. Hence, each GM
a hierarchy of eigenspace models. In this regard they ariéasita a

hierarchy of models proposed to improve the specificity geemod-
els [11]. No two Gaussians need have the same dimension.

The photographs were input in four groups of thirty-six plyo&phs.

For each group we made an eigenmodel, projected the photegrap
into the eigenmodel, and used these projections to cotsrGviM

of eighteen clusters. The Gaussians making up the mixture rg@pre
resented by an eigenmodel. Hence we had four GMMs, which we
wanted to merge into a large GMM.

Fig. 10. Example images of each toy.

To merge the GMMs we first added added together the four
eigenspaces to make a complete eigenspace. Next we trandforme
each of the GMM clusters into this space, thus bringingetieemble
of clusters into a common space. Each Gaussian cluster iniktere
model in the new space was represented by an eigenmodel. e th
merged the cluster, pairwise, using our volume criterion. ddemne
were able to reduce the number of Gaussians in the mixture taywen
two.

These clusters tend to model different parts of the cyloadrtra-
jectories of the original data projected into the large esgpace. Ex-
amples of cluster centres are shown in Figure 11, where thedygo t
can be clearly seen in different positions. These clustexg Ine used
to identify the toy and its pose, for example. (Murase and NEB@,
and Borotschniget. al [21] recognise pose using eigenmodels.) In
addition, we found a few clusters occupying the space “in betwe
the two toys — an example of which is seen in Figure 11. This ar-
tifact of clustering appears to derive from the high dimenality of
the space that the clusters are in, rather than being a Sets-ef our
method. Notice that these clusters might in future be rembeeduse
no picture matches well against them.

We conclude from these experiments that dynamic GMMs are a
feasible proposition using our methods. We note that thEtyald
merge complete spaces while updating the mean are preteguisi

amic GMMs. Also, dynamic GMMs are likely to be an important
application and deserve further attention.

VIlI. CONCLUSION

To merge GMMs we first merged their base eigenspaces. Second

we transformed all dependent eigenmodels from each prewiode!

We have shown that merging and splitting eigenspace modedsis

into the new basis eigenspace. Finally we merged those neendepsible, allowing sets of new observations to be processed asoiewh

dent eigenspaces that were sufficiently close. We found thahple

The theoretical results are novel, and our experimentailteeshow

volume measure to be adequate for most cases. The volumeyef athat the methods are wholly practical, computation timeseasible
perellipse with semi-axed (each element the square root of an eigerand often advantageous compared to batch methods. Batcm-and

value), of dimension\/, and at characteristic radissquare root of
the Mahalanobis distance) is

8M|A|7T]M/2

L% +1)

cremental eigenspaces are very similar so performanceaaeaistics,
such as residue error, differ little. Our methods are usefuhany
applications, and we have illustrated a few of a general aatur

We have concluded that the merging of eigenspaces is stable a
reliable, but advise caution when splitting. Thus splittisghe prin-
ciple weakness of our methods and it is interesting to ask venéiie

We permanently merged a pair of eigenmodels in the GMM if therocess can be made more reliable.

sum of their individual volumes was greater than their vadwwhen
merged. We found this works well enough, dimensionality feots
notwithstanding.

We should point to several omissions from this work, eaclvigro
ing an avenue for further work. We have not performed armabior
analysis, relying instead on experiment. Most of the eraoise from

As an example, we used photographs of two distinct toys, eazh pliliscarding eigenvectors and eigenvalues. To the best dfrmuvledge
tographed ab degree angles on a turntable. Hence we had 144 phibe work in unique, and so we have been not compared our method
tographs. Examples of these photographs can be seen ireFigur to others. However, in a previous paper we considered the inolus
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These are arranged to show clusters for each toy, and the bpaween them. [20]

(19]

of a single new datum, and were able to make comparisons [14. 1121]
conclusion there was that SVD tends to be more accurate, &tutiph
dating the mean is crucial for classification applicatioki¢e note in

this paper we have demonstrated that adding one datum eaghistim
much less accurate than adding complete spaces. We havedoit
derivation for block update/downdate of SVD, with change of mean
for want of space. However, we have indicated that downdating SVD
seems to require an EVD step. We have presented generalajpic
rather than become embroiled in any particular applicatidmich al-

lows us to highlight important generic applications.

We would expect our methods to find much wider applicabilignth
those we have mentioned; updating image motion paramefersef8
lecting salient views [3], and building large image databd$g are
two applications that exist already. We now use our methodsirely
to construct eigenmodels that would be impossible by angratteans,
and this has allowed us to experiment with image compressidh-me
ods. Also, we have experimented with image segmentation,ibgild
models of three-dimensional blood vessels, and textussifieation.

We believe that dynamic Gaussian mixture models provide wiver
teresting future path.
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