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Abstract—We present a joint message passing approach that
combines belief propagation and the mean field approxima-
tion. Our analysis is based on the region-based free energy
approximation method proposed by Yedidia et al. We show that
the message passing fixed-point equations obtained with this
combination correspond to stationary points of a constrained
region-based free energy approximation. Moreover, we present
a convergent implementation of these message passing fixed-
point equations provided that the underlying factor graph fulfills
certain technical conditions. In addition, we show how to include
hard constraints in the part of the factor graph corresponding
to belief propagation. Finally, we demonstrate an application of
our method to iterative channel estimation and decoding in an
OFDM system.

I. INTRODUCTION

Variational techniques have been used for decades in quan-
tum and statistical physics, where they are referred to as the
mean field (MF) approximation [2]. Later, they found their
way to the area of machine learning or statistical inference,
see, e.g., [3]-[6]. The basic idea of variational inference is
to derive the statistics of “hidden” random variables given
the knowledge of “visible” random variables of a certain
probability density function (pdf). In the MF approximation,
this pdf is approximated by some “simpler,” e.g., (fully)
factorized pdf and minimizing the Kullback-Leibler divergence
between the approximating and the true pdf, which can be
done in an iterative, i.e., message passing like way. Apart
from being fully factorized, the approximating pdf typically
fulfills additional constraints that allow for messages with a
simple structure, which can be updated in a simple way. For
example, additional exponential conjugacy constraints result
in messages propagating along the edges of the underlying
Bayesian network that are described by a small number of
parameters [5]. Variational inference methods were recently
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applied in [7] to the channel state estimation/interference
cancellation part of a class of MIMO-OFDM receivers that
iterate between detection, channel estimation, and decoding.

An approach different from the MF approximation is be-
lief propagation (BP) [8]. Roughly speaking, with BP one
tries to find local approximations, which are—exactly or
approximately—the marginals of a certain pdf'. This can also
be done in an iterative way, where messages are passed along
the edges of a factor graph [10]. A typical application of BP is
decoding of turbo or low density parity check (LDPC) codes.
Based on the excellent performance of BP, a lot of variations
have been derived in order to improve the performance of
this algorithm even further. For example, minimizing an upper
bound on the log partition function of a pdf leads to the
powerful tree reweighted BP algorithm [11]. An offspring of
this idea is the recently developed uniformly tree reweighted
BP algorithm [12]. Another example is [13] where methods
from information geometry are used to compute correction
terms for the beliefs obtained by loopy BP. An alternative
approach for turbo decoding that uses projections (that are
dual in the sense of [14, Ch. 3] to the one used in [13]) on
constraint subsets can be found in [15]. A combination of the
approaches used in [13] and in [15] can be found in [16].

Both methods, BP and the MF approximation, have their
own virtues and disadvantages. For example, the MF approx-
imation

+ always admits a convergent implementation;

+ has simple message passing update rules, in particular

for conjugate-exponential models;
— is not compatible with hard constraints,

and BP

+ yields a good approximation of the marginal
distributions if the factor graph has no short cycles;

+ is compatible with hard constraints like, e.g.,
code constraints;

— may have a high complexity, especially when applied
to probabilistic models involving both, discrete and
continuous random variables.

lFollowing the notation used in [9], we use the name BP also for loopy
BP.



Hence, it is of great benefit to apply BP and the MF approx-
imation on the same factor graph in such a combination that
their respective virtues can be exploited while circumventing
their drawbacks. To this end a unified message passing algo-
rithm is needed that allows for combining both approaches.

The fixed-point equations of both—BP and the MF
approximation—can be obtained by minimizing an approx-
imation of the Kullback-Leibler divergence, called region-
based free energy approximation. This approach differs from
other methods, see, e.g., [17]%, because the starting point for
the derivation of the corresponding message passing fixed-
point equations is the same objective function for both, BP
and the MF approximation. The main technical result of
this work is Theorem 2, where we show that the message
passing fixed-point equations for such a combination of BP
and the MF approximation correspond to stationary points of
one single constrained region-based free energy approximation
and provide a clear rule stating how to couple the messages
propagating in the BP and MF part. In fact, based on the
factor graph corresponding to a factorization of a probability
mass function (pmf) and a choice for a separation of this
factorization into BP and MF factors, Theorem 2 gives the
message passing fixed-point equations for the factor graph
representing the whole factorization of the pmf. One example
of an application of Theorem 2 is joint channel estimation,
interference cancellation, and decoding. Typically these tasks
are considered separately and the coupling between them is
described in a heuristic way. As an example of this problem-
atic, there has been a debate in the research community on
whether a posteriori probabilities (APP) or extrinsic values
should be fed back from the decoder to the rest of the
receiver components; several authors coincide in proposing
the use of extrinsic values for MIMO detection [18]-[20]
while using APP values for channel estimation [19], [20],
but no thorough justification for this choice is given apart
from its superior performance shown by simulation results.
Despite having a clear rule to update the messages for the
whole factor graph representing a factorization of a pmf, an
additional advantage is the fact that solutions of fixed-point
equations for the messages are related to the stationary points
of the corresponding constrained region-based free energy
approximation. This correspondence is important because it
yields an interpretation of the computed beliefs for arbitrary
factor graphs similar to the case of solely BP, where solutions
of the message passing fixed-point equations do in general not
correspond to the true marginals if the factor graph has cycles
but always correspond to stationary points of the constrained
Bethe free energy [9]. Moreover, this observation allows us to
present a systematic way of updating the messages, namely,
Algorithm 1, that is guaranteed to converge provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions.

The paper is organized as follows. In the remainder of
this section we fix our notation. Section II is devoted to the
introduction of the region-based free energy approximations

2 An information geometric interpretation of the different objective functions
used in [17] can be found in [14, Ch. 2].

proposed by [9] and to recall how BP, the MF approximation,
and the EM algorithm [21] can be obtained by this method.
Since the MF approximation is typically used for parameter
estimation, we briefly show how to extend it to the case
of continuous random variables using an approach presented
already in [22, pp. 36-38] that avoids complicated methods
from variational calculus. Section III is the main part of this
work. There we state our main result, namely, Theorem 2,
and show how the message passing fixed-point equations of a
combination of BP and the MF approximation can be related to
the stationary points of the corresponding constrained region-
based free energy approximation. We then (i) prove Lemma 2,
which generalizes Theorem 2 to the case where the factors of
the pmf in the BP part are no longer restricted to be strictly
positive real-valued functions, and (ii) present Algorithm 1
that is a convergent implementation of the message passing
update equations presented in Theorem 2 provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions. As a byproduct, (i) gives insights
for solely BP (which is a special case of the combination of
BP and the MF approximation) with hard constraints, where
only conjectures are formulated in [9]. In Section IV we
apply Algorithm 1 to joint channel estimation and decoding
in an OFDM system. More advanced receiver architectures
together with numerical simulations and a comparison with
other state of the art receivers can be found in [23]. Finally,
we conclude in Section V and present an outlook for further
research directions.

A. Notation

Capital calligraphic letters A, Z, N denote finite sets. The
cardinality of a set Z is denoted by |Z|. If < € Z we write Z\ i
for Z \ {i}. We use the convention that [](...) = 1 where

() denotes the empty set. For any finite setQI, Iz denotes the
indicator function on Z, i.e., Iz(i) =1ifi € Z and Iz(¢) = 0
else. We denote by capital letters X discrete random variables
with a finite number of realizations and pmf px. For a random
variable X we use the convention that x is a representative
for all possible realizations of X, i.e., x serves as a running
variable, and denote a particular realization by z. For example,
>7(...) runs through all possible realizations = of X and for

two functions f and g depending on all realizations x of X,
f(z) = g(x) means that f(Z) = g(Z) for each particular real-
ization Z of X. If F' is a functional of a pmf px of a random
variable X and g is a function depending on all realizations
x of X, then 8?;) = g(z) means that 82{;) = g(z) is well
defined and holds for each particular realization £ of X. We
write x = (x; | @ € )" for the realizations of the vector
of random variables X = (X; | i € Z)T. If i € T then

>~ (...) runs through all possible realizations of X but Xj.
x\x;

FE)r any nonnegative real valued function f with argument
x=(z; |ie€I)T and i € Z, f |z, denotes f with fixed
argument z; = T;. If a function f is identically zero we
write f = 0 and f # 0 means that it is not identically zero.
For two real valued functions f and g with the same domain
and argument z, we write f(z) x g(z) if f = cg for some




real positive constant ¢ € Ry. We use the convention that
0In(0) = 0, aln() = oo if a > 0, and 0In(3) = 0 [24,
p.31]. For x € R, §(z) = 1 if # = 0 and zero else. Matrices
A € C™*™ are denoted by capital boldface Greek letters. The
superscripts © and ! stand for transposition and Hermitian
transposition, respectively. For a matrix A € C™*", the entry
in the ith row and jth column is denoted by A, ; = [A]; ;.
For two vectors x = (z; | i € Z)T and y = (y; | i € 7)7,
x©y = (z;y; | i € )T denotes the Hadamard product of
x and y. Finally, CN(x; p, 33) stands for the pdf of a jointly
proper complex Gaussian random vector X ~ CN (p, ) with
mean g and covariance matrix 3.

II. KNOWN RESULTS

A. Region-based free energy approximations [9]

Let px be a certain positive pmf of a vector X of random
variables X; (i € 7) that factorizes as

= 1 fa(xa) )

acA

where x £ (z; | i € 7)T and x, £ (2; | i € N(a))T with
N(a) C T forall a € A. Without loss of generality we assume
that A NZ = (, which can always be achieved by renaming
indices.> Since px is a strictly positive pmf, we can assume
without loss of generality that all the factors f, of px in (1)
are real-valued positive functions. Later in Section III, we shall
show how to relax the positivity constraint for some of these
factors. The factorization in (1) can be visualized in a factor
graph [10]*. In a factor graph, N(a) is the set of all variable
nodes connected to a factor node a € A and N (i) represents
the set of all factor nodes connected to a variable node i € 7.
An example of a factor graph is depicted in Figure 1.

A region R = (Ig, AR) consists of subsets of indices Zr C
7 and Agr C A with the restriction that @ € Ag implies that
N (a) C Zg. To each region R we associate a counting number
cr € Z. A set R = {(R,cgr)} of regions and associated
counting numbers is called valid if

> crlagla)= > crlg,(i) =1,

(R,cr)ER (R,cr)ER
VaeAiel.
3For example, we can write
T={1,2,...,[7}}
A={1,3,....JA]}

This implies that any function that is defined pointwise on A and Z is well
defined. For example, if in addition to the definition of the sets N (a) (a € A)
we set N'(i) = {a € A|i € N(a)} for all i € Z, the function

N:TUA—I(TUA)
a— N(a), Vae A
i N(G), VYiel
with II(ZU.A) denoting the collection of all subsets of ZU A is well defined
because i # a Vi € Z,a € A.

4Throughout the paper we work with Tanner factor graphs as opposed to
Forney factor graphs.

For a positive function b approximating px, we define the
variational free energy [9]°

F(b)—Zb (i)
—Zb Inb(x) — Y b(x) Inpx(x (2)

£_H(b) £-U(b)

In (2), H(b) denotes the entropy [24, p.5] of b and U(b) is
called average energy of b. Note that F'(b) is the Kullback-
Leibler divergence [24, p. 19] between b and px, i.e., F(b) =
D(b || px). For a set R of regions and associated counting
numbers, the region-based free energy approximation is de-
fined as [9] Fr £ Ur — Hr with

Z CR Z ZbR(xR)lnfa(xa)

(R,cr)ER a€AR XR

Hp £ — Z CRZbR(XR)lan(XR)-

(R,CR)ER XR

Ur & —

Here, each bgr is defined locally on a region R. Instead of
minimizing F’ with respect to b, we minimize F’r with respect
to all bg ((R,cr) € R) where the br have to fulfill certain
constraints. The quantities by are called beliefs. We give two
examples of valid sets of regions and associated counting
numbers.

Example 2.1: The trivial example Ryr £ {((Z,A),1)}. It
leads to the MF fixed-point equations, as will be shown in
Subsection II-C.

Example 2.2: We define two types of regions:

1) large regions: R, = (N(a),{a}) with cg, =1V a €
A;

2) small regions: R;
7.

Note that this definition is well defined due to our assumption
that AN Z = (). The region-based free energy approximation
corresponding to the valid set of regions and associated
counting numbers

£ ({i},0) with cg, = 1—|N(i)| Vi €

Rep e {(Ri;CRi) | 1€ I} @] {(RmcRa) ‘ a € A}

is called the Bethe free energy [9], [25]. It leads to the BP
fixed-point equations, as will be shown in Subsection II-B.
The Bethe free energy is equal to the variational free energy
when the factor graph has no cycles [9].

B. BP fixed-point equations

The fixed-point equations for BP can be obtained from
the Bethe free energy by imposing additional marginalization
constraints and computing the stationary points of the corre-
sponding Lagrangian function [9], [26]. The Bethe free energy

SIf p is not normalized to one, the definition of the variational free energy
contains an additional normalization constant, called Helmholtz free energy
[9, pp. 4-5].



reads

Xa)
FBP*ZZZ} fa Xa)

a€A Xq

A,ZE:|Af ) —1) j{:b x;) Inb;(2;) 3

i€L

with b, =2 br, Va € A, b; =2 bg, Vi€ Z, and Fgp = Fr,,.
The normalization constraints for the beliefs b; (i € Z) and
the marginalization constraints for the beliefs b, (a € A) can
be included in the Lagrangian [27, Sec.3.1.3]

Lpp £Fgp — Z Z Z/\a,i(xi)<bi($z) - Z ba(xa))

aCAieN(a) i Xa \Ti

=3 (S balxa) - 1). “

acA Xq

The stationary points of the Lagrangian in (4) are then related

to the BP fixed-point equations by the following theorem.
Theorem 1: [9, Th.2] Stationary points of the Lagrangian

in (4) must be BP fixed-points with positive beliefs fulfilling

ba(xa) = Za fa(xa) H ni—)a(xi)v Vaec A

ieN(a) ‘ 5)
H ma%i(xi)v Viel
aeN (i)
with

Ma—i(Ti) = Za Z fa(%a) H Nj—a(T;)

Xa\Ti JEN (a)\i (6)
Nisa(@) =[] mesi(zi)
ceN(i)\a

for all a € A,7 € N'(a) and vice versa. Here, z, (a € A) are
positive constants that ensure that the beliefs b, (a € A) are
normalized to one.
Often, the following alternative system of fixed-point equa-
tions is solved instead of (6).
H Nj—a(Z5)

Ma—i(Ti) = Wa,i Z Jfa(xa)

Xa\Ti JEN(a)\i

H ﬁlc—)i (xz)

ceN(i)\a
for all a € A,i € N(a) where w,; (a € A,i € N(a)) are
arbitrary positive constants. The reason for this is that for a
fixed scheduling the messages computed in (6) differ from the
messages computed in (7) only by positive constants, which
drop out when the beliefs are normalized. See also [9, Eq.
(68) and Eq. (69)], where the “ o ” symbol is used in the
update equations indicating that the normalization constants
are irrelevant. A solution of (7) can be obtained, e.g., by
updating corresponding likelihood ratios of the messages in (6)
or by updating the messages according to (6) but ignoring the
normalization constants z, (a € A). The algorithm converges
if the normalized beliefs do not change any more. Therefore,
a rescaling of the messages is irrelevant and a solution of
(7) is obtained. However, we note that rescaling a solution
of (7) has not necessarily to be a solution of (6). Hence, the
beliefs obtained by solving (7) need not be stationary points

(7

ﬁi—)a(xi) -

of the Lagrangian in (4). To the best of our knowledge, this
elementary insight is not published yet in the literature and
we state a necessary and sufficient condition when a solution
of (7) can be rescaled to a solution of (6) in the following
lemma.
Lemma 1: Suppose that {mg_;(x;),Mina(z))} (¢ €
A, i € N(a)) is a solution of (7) and set
1
~ A
S T ey S ®

i€N(a)

Then this solution can be rescaled to a solution of (6) if and
only if there exist positive constants g; (¢ € Z) such that

VaeAieN(a). 9)

Wa,i = GiZas

Proof: See Appendix A. [ ]
Remark 2.1: Note that for factor graphs that have a tree-
structure the messages obtained by running the forward-
backward algorithm [10] always fulfill (9) because we have
wei=1(a€ AieN(a))and Z, =1 (a € A) in this case.

C. Fixed point equations for the MF approximation

A message passing interpretation of the MF approximation
was derived in [5], [28]. In this section, we briefly show how
the corresponding fixed-point equations can be obtained by the
free energy approach. To this end we use Ryp from Example
2.1 together with the factorization constraint®

X) = H bz(l‘l)

i€l

(10)

Plugging (10) into the expression for the region-based free en-
ergy approximation corresponding to the trivial approximation

Rwmr we get
Fae =YY bi(w)Inbi(w) =YY J[ bi@i)In fa(xa)
€L T a€A Xa i€N(a)

Y
with Fyp £ Fg,,. Assuming that all the beliefs b; (i € T)
have to fulfill a normalization constraint, the stationary points
of the corresponding Lagrangian for the MF approximation
can easily be evaluated to be

> > Il v

a€N (i) xa\zi JEN (a)\i

bi(xi) = zi exp( j () In fo (Xa)>

12)
for all 4 € 7 where the positive constants z; (¢ € Z) are such
that b; is normalized to one for all s € Z.”

For the MF approximation there always exists a convergent
algorithm that computes beliefs b; (i € Z) solving (12) by
simply using (12) as an iterative update equation for the
beliefs. At each step the objective function, i.e., the Lagrangian
corresponding to the region-based free energy approximation

For binary random variables with pmf in an exponential family it was
shown in [29] that this gives a good approximation whenever the truncation
of the Plefka expansion does not introduce a significant error.

"The Lagrange multiplier [27, p.283] for each belief b; (i € Z) corre-
sponding to the normalization constraint can be absorbed into the positive
constant z; (¢ € ).



of the MF approximation (11), cannot increase and the algo-
rithm is guaranteed to converge. Note that in order to derive
a particular update b; (¢ € Z) we need all previous updates b;
with j € U,eniy V(@) \ i

By setting n;_,4(z;) 2 bi(x;)) Vi € Z,a € N(i) the
fixed-point equations in (12) are transformed into the message
passing fixed-point equations

nz_m(ﬂiz) =z; H ma—)i(xi)

a€N(7)

Z H Njva (2 lnfa(xa)>

xa\wz JEN( )\
(13)

for all a € A,i € AN(a). The MF approximation can be
extended to the case where px is a pdf, which is shown in
Appendix B. Formally, each sum over z; (¢ € Z) in (12) and
(13) has to be replaced by a Lebesgue integral whenever the
corresponding random variable X; is continuous.

Ma—i xz =€xp <

D. EM algorithm

Message passing interpretations of the EM algorithm [21]
were derived in [30], [31]. It can be shown that the EM
algorithm is a special instance of the MF approximation [32,
Sec.2.3.1], which we briefly summarize in the following.
Suppose that we apply the MF approximation to px in (1) as
described before. In addition, we assume that forall: € £ C T
the beliefs b; fulfill the constraints that b;(x;) = 6(x; — ;).
Using the fact that 01n(0) = 0, we can rewrite Fyp in (11) as

Fur = Z Zbi(xi)lnbi(xi)

1€T\E =4

SN T bita) o fulxa).

a€A x4 i€N(a)

(14)

For all i € 7\ € the stationary points of Fyr in (14) have the
same analytical expression as the one obtained in (12). For
i € £, minimizing Fyp in (14) with respect to Z; yields

Z; = argmin(Fyvr)

1 exp<

= argmax<
i a€N (i)

15)

xa\zi jEN (a)\i
(16)

Setting n;_sq(z;) = bi(x;) Vi € T,a € N(i), we get the
message passing update equations defined in (13) except that
we have to replace the messages n;_,(x;) for all ¢ € £ and

a € N(i) by

Nisa(Ti) =0(2; — Z;)

T

11 ma—n‘(ﬂ?i)) A7)

with z; = argmax(
a€N(7)

for all i € £,a € N(a).

> 11 bj(%)lnfa(xa)>>.

III. COMBINED BP / MF APPROXIMATION FIXED-POINT
EQUATIONS

H Ja(%a) H fo(xp)

a€ Amr be Agp

Let
(13)

be a partially factorized pmf with Ayg N Agp = 0 and A £
Awmr U App. As before, we have x = (v; | i € I), X, =
(z; | € N(a))T with N(a) C T for all a € A, and N (i) =
{a € A| i€ N(a)} for all i € Z. We refer to the factor
graph representing the factorization [, 4., fa(Xa) in (18) as
“BP part” and to the factor graph representing the factorization
[l.c Avr fa(x4) in (18) as “MF part”. Furthermore, we set

w2 | Na) I £ | Na)
a€ Avr a€Agp
and
Nuir (i) £ Avr NN (4) Nip(i) £ Agp NN (7).

Next, we define the following regions and counting num-
bers:
1) one MF region Ryr = (Zur, Avr) with cgy, = 1;
2) small regions R; = ({i},0) with cg, = 1 — [Npp(i)| —
Iz, (7) for all i € Zgp;
3) large regions R, = (N(a),{a}) with cg, = 1 for all
a € Agp.
This yields the valid set of regions and associated counting
numbers

Repmr ={(Ri,cr,) | i € Igp} U {(Ra,cr,) | a € App}
U {(RMF, CRys) }- (19)

The additional terms Iz, (i) in the counting numbers of
the small regions R; (¢ € Z) defined in 2) compared to
the counting numbers of the small regions for the Bethe
approximation (see Example 2.2) guarantee that Rppwmr 1S
indeed a valid set of regions and associated counting numbers.

The valid set of regions and associated counting numbers
in (19) gives the region-based free energy approximation

Fopme= Y Y ba(x nr xg

aC€App Xa

— Z Z H bi(z;) In fo(x4)

aCAMF Xa i€N(a)

= > (Wee(i) = 1) Zb

i€L

) Inb; (z;) (20)
with FBP’MF = Frypwe- In (20), we have already plugged in
the factorization constraint

H bi(x;)

1E€ELMF

with xmp 2 (27 | i € Zyr) " and byr 2 bg,,.. The beliefs b;
(1 € Z) and b, (a € App) have to fulfill the normalization
constraints

bMF XMF

Zbl(xz) =1, Viéelur \IBP

' (21)
Zba(xa) =1, VacAgp



and the marginalization constraints

bi(z;) = Z by(x4), V ae€ Agp,ie N(a).

Xo \ T

(22)

Remark 3.1: Note that there is no need to introduce normal-
ization constraints for the beliefs b; (i € Zgp). If a € Np(7),
then it follows from the marginalization and normalization
constraint for the belief b, that

1= ba(xa)
=S (Y baxa)

z; Xq \ T4
= Z bi(z;)

We will show in Lemma 2 that the region-based free energy
approximation in (20) fulfilling the constraints (21) and (22)
is a finite quantity, i.e., that —oo < Fppmp < 00.

The constraints (21) and (22) can be included in the
Lagrangian [27, Sec.3.1.3]

A
Lgpmr = Fep MF

- Y Z/\a,i(xi)<bi($)—

aC€App i€N(a) Ti

— Z %(Zb T; —1)

1€Zmr\Zsp

- Z %(Zb Xq —1)

a€ Agp

S balxa)

Xq \Ts

(23)

The stationary points of the Lagrangian Lgpyp in (23) are
then obtained by setting the derivatives of Lgp mr With respect
to the beliefs and the Lagrange multipliers equal to zero.
The following theorem relates the stationary points of the
Lagrangian Lppmp to solutions of fixed-point equations for
the beliefs.

Theorem 2: Stationary points of the Lagrangian in (23) in
the combined BP-MF approach must be fixed-points with
positive beliefs fulfilling

ba(xa) = Za fa(xa) H ni%a(wi); Vac ABP

€N (a)

%—ZZH mBP, () H mME (x;), VieT

a€Ngp(7) a€Nyr()
(24)

with
niaa(xi) =2z H c~>’L x% H mcaz 331
ceNgp(i)\a ce€Nur (i)
VaeAieN(a)
a~>1 {EZ —Zaq Z fa Xa H njﬁa(wj)v
xa\afz ]EN(G)\i

Va € App,i € N(a)

mgdiz xl _eXp< Z H nj—m £ ln.fa(xa)>

xq\zi JEN (a)\i
Yaé€ AMF,i EN(G)

(25)

and vice versa. Here, z; (i € 7) and z, (a € Agp) are positive
constants that ensure that the beliefs b; (z € Z) and b, (a € A)
are normalized to one with z; =1V i € Zgp.
Proof: See Appendix C. |

Remark 3.2: Note that for each ¢ € 7\ Zgp Theorem 2 can
be generalized to the case where X; is a continuous random
variable following the derivation presented in Appendix B.
Formally, each sum over x; with ¢ € Z\Zgp in the third identity
in (25) has to be replaced by a Lebesgue integral whenever
the corresponding random variable X; is continuous.

Remark 3.3: Note that Theorem 2 clearly states whether
“extrinsic” values or “APPs” should be passed. In fact, the
first equation in (25) implies that each message n;_,,(x;) (a €
A,i € 7) is an “extrinsic” value when a € Agp and an “APP”
when a € Ayr.

A. Hard constraints for BP

Some suggestions on how to generalize Theorem 1 ([9,
Th.2]) to hard constraints, i.e., to the case where the factors
of the pmf px are not restricted to be strictly positive real-
valued functions, can be found in [9, Sec. VI.D]. An example
of hard constraints are deterministic functions like, e.g., code
constraints. However, the statements formulated there are only
conjectures and based on the assumption that we can always
compute the derivative of the Lagrange function with respect
to the beliefs. This is not always possible because

O0Fgp
Ob,(x4)

with Fgp from (3). In the sequel, we show how to generalize
Theorem 2 to the case where f, > 0V a € Agp based on the
simple observation that we are interested in solutions where
the region-based free energy approximation is not plus infinity
(recall that we want to minimize this quantity). As a byproduct,
this also yields an extension of Theorem 1 ([9, Th.2]) to hard
constraints by simply setting Ayr = (0.
Lemma 2: Suppose that

— oo as f(xq) =0

fa 20,
fa >0,

VCLE.ABP,
VaE.AMF,

(26)
(27)
z,2 0 for all i € T and each realization Z; of X;.3

Furthermore, we assume that b; (i € Z) and b, (a € Agp)
fulfill the constraints (21) and (22). Then

1) Fgpmr > —00;
2) The condition

bo(Xq) =0,

A Xa with a € ABPa fa ()_(a) =0 (28)

is necessary and sufficient for Fppmr < 00;

3) If (28) is fulfilled, the remaining stationary points b;(x;)
(¢ € 7) and b, (x,) excluding all X, from (28) (a € Agp)
of the Lagrangian in (23) are positive beliefs fulfilling
(24) and (25) excluding all X, from (28) and vice versa.

4) Moreover, (24) and (25) hold for all realizations X,
(including all X, from (28)) and, therefore, (24) contains
(28) as a special case.

8If px |z;= 0 then we can simply remove this relization Z; of X;.



Proof: See Appendix D. ]
Remark 3.4: At first sight it seems to be a contradiction to
the marginalization constraints (22) that (28) holds and all the
beliefs b; (i € Zgp) are strictly positive functions. To illustrate
that this is indeed the case, let i € Zgp, a € Npp(i), and
fix one realization Z; of X;. Since px |z,Z 0 we also have
fa |z,% 0. This implies that f,(X,) # O for at least one
realization X, = (Z; | j € N(a))T with i € N(a) and,
therefore, b,(X,) # 0. The marginalization constraints (22)
together with the fact that the belief b, must be a nonnegative
function then implies that we have indeed b;(Z;) > 0.

B. Convergence and main algorithm

If the BP part has no cycles and

|N(a) ﬂIBp| <1, Vace AMF7 29)

then there exists a convergent implementation of the combined
message passing equations in (25). In fact, we can iterate
between updating the beliefs b; with ¢ € Zyr \ Zgp and the
forward backward algorithm in the BP part, as outlined in the
following Algorithm.

Algorithm 1: If the BP part has no cycle and (29) is
fulfilled, the following implementation of the fixed-point equa-
tions in (25) is guaranteed to converge.

1) Initialize b; for all i € Zyr \ Zgp and send the cor-
responding messages n;q(z;) = b;(x;) to all factor
nodes a € Nyr(i).

2) Use all messages mME, (z;) with i € Zgp N Zyr and
a € Nur(i) as fixed input for the BP part and run
the forward/backward algorithm [10]. The fact that the
resulting beliefs b; with ¢ € Zgp cannot increase the
region-based free energy approximation in (20) is proved
in Appendix E.

3) For each i € Zyr N Zpp and a € Nyg(i) the message
Nj—q(x;) is now available and can be used for further
updates in the MF part.

4) For each i € Tyr \ Zpp successively recompute the
message n;_q(z;) and send it to all a € Nyg(z). Note
that for all indices i € Zyr \ Zpp

02 Fap mF 1

Gbi(sci)z - bl(acl) > 07

which implies that for each index ¢ € Zyp \ Zgp we are
solving a convex optimization problem. Therefore, the
region-based free energy approximation in (20) cannot

increase.
5) Proceed as described in 2).

Remark 3.5: If the factor graph representing the BP part has
cycles then Algorithm 1 can be modified by running loopy BP
in step 2). However, in this case the algorithm is not guaranteed
to converge.

IV. APPLICATION TO ITERATIVE CHANNEL ESTIMATION
AND DECODING

In this section, we present an example where we show
how to compute the updates of the messages in (25) based

on Algorithm 1. We choose a simple channel model where
the updates of the messages are simple enough in order
to avoid overstressed notation. A class of more complex
MIMO-OFDM receiver architectures together with numerical
simulations can be found in [23]. In our example, we will use
BP for modulation and decoding and the MF approximation
for estimating the parameters of the a posteriori distribution
of the channel gains. This splitting is convenient because BP
works well with hard constraints and the MF approximation
yields very simple message passing update equations due to
the fact that the MF part in our example is a conjugate-
exponential model [5]. Applying BP to all factor nodes would
be intractable because the complexity is too high, cf. the
discussion in Subsection IV-C.

Specifically, we consider an OFDM system with M + N
active subcarriers. We denote by D C [1: M + N] and P C
[1: M+ N] the sets of subcarrier indices for the data and pilot
symbols, respectively with |P| = M, |D| = N, and PND = ().
After removing the cyclic prefix we get the following input-
output relationship in the frequency domain:

Yp =Hp ©Xp +Zp

(30)
Yp=HpOxp+Zp

where Xp £ (X; | i € D)7 is the random vector correspond-
ing to the transmitted data symbols, xp 2 (z; | i € P)T
is the vector containing the transmitted pilot symbols, and
Hp 2 (H; | i € DT and Hp = (H; | i € P)T are
random vectors representing the multiplicative action of the
channel while Zp 2 (Z; |i € D)T and Zp = (Z; | i € P)T
are random vectors representing additive noise with pz(z) =
CN(z;0,7v 'Ipryn) and Z 2 (Z; | i € DUP)T. Note that
(30) is very general and can also be used to model, e.g., a time-
varying frequency-flat channel. In the transmitter, a random
vector U = (U; | @ € [1 : K]) representing the information bits
is encoded and interleaved using a rate R = K/LN encoder
and a random interleaver, respectively into the random vector
Ty

)
with length LN representing the coded and interleaved bits.
Each random subvector C(™ with length L is then mapped,
i.e., modulated, to X; with i, € D (n€[l:N]).

Setting Y £ (V; | i € DUP)T and H £ (H; | i € DUP)T,
the pdf py x, H,c,u admits the factorization

c=(cW' . oW

pY,XD,H,C7U(Y7XD7h7Cau)
= py|xp,H(Y|Xp, h) pr (h) px,jc(Xp|c) pcju(clu) pu(u)
= [ pviix. o il i) T oy, (wilBy) % pra(h)

i€D JjeEP

X H Px, oo (2, [c™) x peju(clu)

n€[1:N]

x J1 puitus) (31)
ke[1:K]

where we used the fact that H is independent on Xp, C, and
U and Y is independent on C and U conditioned on Xp.



Note that
py;|x,H1; (YilTi, hi)(yi) = %exp(f’ﬂyi — hiw]?)
= CN(y;; hizi, 1/7), Vie D (32)
Py, (Yilhi) (i) = %exp(f’ﬂyi — haa|?)
= CN(y;; hizi, 1)), VieP.
(33)
We choose for the prior distribution of H
prr(h) = CN(h; pby, A% ).
Now define
IZ42{X;|ieD}U{H}
u{cM,....c\" Uy, ..., Uk} (34)

AE{py,x,m, |1 €D} U{py,u, | i € P}U{pu}
U{px, jcm [n€[l: N}
U{pcut U{po, | k€[l : K]}

and set f, = a for all a € A. For example, we have f,, (h) =
pu(h). We choose a splitting of A into Agp and Ayr with

ABP é{pXinlc(n) ‘ n e [1 : N]}

(35)

U{pcut U{py, | ke[l K]} (36)
Ame = {py,x,.1, | 1 € Dy U {py,m, | i € P}U {pu}.
With this selection
Tgp ={X; |ieD}u{C,. .. .ci"
u{ly,..., Uk} (37

which implies that ZgpNZyr = {X; | ¢ € D}. The factor graph
corresponding to the factorization in (31) with the splitting of
A into Ay and Agp as in (36) is depicted in Figure 1.

We now show how to apply the variant of Algorithm 1
referred to in Remark 3.5 to the factor graph depicted in
Figure 1. Note that (29) is fulfilled in this example; however,
cycles occur in the BP part of the factor graph due to the
combination of high-order modulation and (convolutional)
coding (see Table I).

Algorithm 2: 1) Initialize

b (h) = CN(h; p, Agg')
and set
NH-py,|x, 5, (h) = bu(h),

2) Using the particular form of the distributions py;| x,,#,
(i € D) in (32) and py,|p, (i € P) in (33), compute

mg/l’i\xiniﬁxi (xl)

X exp ( - ’Y/dh NH—py, | x, .1, (h)lyl - h2$1|2>

2)
Yili, 1

x CN| z;; , , VieD
( %+Mﬂw%+mw>

VieD.

Yk,
o, + I |?

%)

Xg

o exp ( — (0%, + |um,

with 0%, 2 [Ag'lii (i € D).
3) Use the messages My, 1, =X
input for the BP part and run BP.
4) After running BP in the BP part, compute the messages
NX;-py, x, n, (i) (i € D) and update the messages in
the MF part. Namely, after setting

(z;) (i € D) as fixed

A N
KX, = NX;—py, x;.H; (zl)xl

z;
0% 2D N cspy, iy, (@) T — x|
T

for all ¢ € D compute the messages

mMF (hz)

Py;|x;, 1, ~H

X €xp ( - VZ NX;—py,|x;.58; (l’i)lyi - hixi2>
X

2
2 2 Yillx,
X ex — oyx. + . h'—il
p( Y(oX, + |1x, ") [hi U§(i+|MX1'2 )
e 1
o ON( hyy 5 2BXe ~|, vieD
0%, +lux.[? v(o%, + nx,[?)

o exp(—7|yi — hiz;|?)

Ty 1 .
|zi|2 y]@i|?)
—1
mys_pr(h) = CN(h; pgy, Ayp )
and
NH—py,|x, .1, (h)
= ZH H mg[:|xini—>H(hi) my)i‘quaH(hj)mggeH
i€D JEP
det(AH)
= SN exp (= = pr)"Au (b~ ) )

= CN(h; uir, Ay'), Vi€D.

Here, we used Lemma 3 in Appendix F to get the
updated parameters

p = Ay (A pd + Anfin)

~ (38)
Ap =AY+ An
with
B Yo%, + lux,|?) ifi=jeD
Al = S 7]ail? ifi=5¢€P
0 else
and
yyix;  ifieP.

The update for the belief by is
bu(h) = NH—py,|x, H, (h),

i.e., b (h) = CN(h; upr, Ag').
5) Proceed as described in 2).



MF part
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Fig. 1.

Factor graph corresponding to the factorization of the pdf in (31) with D = {i1,..

BP part

Px;

|Ic .

bcju .

.,in} and p € P. The splitting of the factor graph into BP and

MF parts is chosen in such a way that utilizes most of the advantages of BP and the MF approximation.

A. “Extrinsic” values versus “APP”

In consideration of Remark 3.3 it is instructive to analyze
the messages coming from the variable nodes Zgp N Zyp =
{Xi,..., XN}, which are contained in the BP and MF parts
of the factor graph depicted in Figure 1. Whether a message
passing from a variable node to a factor node is an “extrinsic”
value or an “APP” depends on whether the corresponding
factor node is in the BP or the MF part. Thus, the messages

nx;, TP, o) (xln )

— yinlxinﬂin X, (z;,), Vnell:N]

which are passed into the BP part, are “extrinsic” values,
whereas the messages

H (min)

in

n’X{,n — Dy, |1 X;

in in’

__ . BP . MF .
B Px, 1c(m =Xy, (xl") mme 1X4,, Hy, ™ Xin (xl")’
Vnell:N],

which are passed into the MF part, are “APPs”. Note that
this result is aligned with the strategies proposed in [19], [20]
where “APPs” are used for channel estimation and “extrinsic
values” for detection.

B. Level of MF approximation

Note that there is an ambiguity in the choice of variable
nodes in the MF part. This ambiguity reflects the “level of
the MF approximation” and results in a family of different
algorithms. For example, instead of choosing H as a single
random variable, we could have chosen H; (i € [1 : M + N])
to be separate variable nodes in the factor graph. In this case
we make the assumption that the random variables H; (i €
[1: M + NJ) are independent and the set of indices Z in (34)
has to be replaced by

T2{X;|ieD}U{H,|ic DUP}
u{cM,...,cVyu{un,. .. Uk}

Since this is an additional approximation, the performance of
the receiver is a nonincreasing function of the level of MF
approximation. However, it is possible that the complexity
reduces by applying an additional MF approximation. See [23,
Sec. IV-B] for further discussions on this ambiguity for a class
of MIMO-OFDM receivers.

C. Comparison with BP combined with Gaussian approxima-
tion

The example makes evident how the complexity of the
message-passing algorithm can be simplified by exploiting
the conjugate-exponential property of the MF part, which
leads to simple update equations of the belief byg. In fact,
at each iteration in the algorithm we only have to update the
parameters of a Gaussian distribution (38). In comparison let
us consider an alternative split of A by moving the factor
nodes py,|x, g, (1 € D) in (32) and py, |z, (i € P) in (33) to
the BP part. This is equivalent to applying BP to the whole
factor graph in Figure 1 because my" 5 = mpy 1. Doing
so, each message mBP (hi) (i € D) does no longer
admit a closed form expression in terms of the mean and the
variance of the random variable X; and becomes a mixture
of Gaussian pdfs with 2° components; in consequence, each
message NH p,. . . (h) (i € D) becomes a sum of 2-(V=1)
terms. To keep the complexity of computing these messages
tractable one has to rely on additional approximations.

As suggested in [33], [34], we can approximate each
message mg;‘xi,Hi_)H(hi) (i € D) by a Gaussian pdf. BP
combined with this approximation is comparable in terms
of complexity to Algorithm 2, since the computations of
the updates of the messages are equally complex. However,
Algorithm 2 clearly outperforms this alternative, as can be
seen in Figure 2. It can also be noticed that the performance
of Algorithm 2 is close to the case with perfect channel state
information (CSI) at the receiver, even with a low density of
pilots, i.e., such that the spacing between any two consecutive

pu—H —
Py;ix; 0, > H



pilots (Ap) approximately equals the coherence bandwidth’
(Weon) of the channel or twice of it.

BER

Perfect CSI

F N
N
~
~
. BP-MF M =25 *
10 "F| —— BP Gaussian approx. M = 25

BP-MFM = 13
— % — BP Gaussian approx. M = 13

2 4 6 8 10 12 14
SNR (dB)

Fig. 2. Bit error rate (BER) as a function of signal-to-noise ratio (SNR)
for Algorithm 2 (BP-MF), BP combined with Gaussian approximation as
described in Subsection IV-C, and perfect CSI at the receiver. Pilot spacing
Ap = Weon (M =25) and Ap = 2Weop (M = 13).

TABLE I
PARAMETERS OF THE OFDM SYSTEM.

Number of subcarriers M 4+ N = 300
Number of evenly spaced pilots M € {13,25}
Modulation scheme for pilot symbols | QPSK

Modulation scheme for data symbols
Convolutional channel code
Multipath channel model

Subcarrier spacing

Coherence bandwidth

16QAM (L = 4)
R=1/3 (133,171, 165)s
3GPP ETU

15 kHz

Weon ~ 200 kHz

D. Estimation of noise precision

Algorithm 2 can be easily extended to the case where the
noise precision 7y is a realization of a random variable I". In
fact, since Inpy,x, g, r (i € D) and Inpy, g, r (i € P)
are linear in 7, we can replace any dependence on 7y in the
existing messages in Algorithm 2 by the expected value of T"
and get simple expressions for the additional messages using a
Gamma prior distribution for I', reflecting the powerfulness of
exploiting the conjugate-exponential model property in the MF
part for parameter estimation. See [23, Sec. IV-A] for further
details on the explicit form of the additional messages.

V. CONCLUSION AND OUTLOOK

We showed that the message passing fixed-point equations
of a combination of BP and the MF approximation correspond
to stationary points of one single constrained region-based
free energy approximation. These stationary points are in one-
to-one correspondence to solutions of a coupled system of
message passing fixed-point equations. For an arbitrary factor
graph and a choice of a splitting of the factor nodes into a
set of MF and BP factor nodes, our result gives immediately

9Calculated as the reciprocal of the maximum excess delay.

the corresponding message passing fixed-point equations and
yields an interpretation of the computed beliefs as stationary
points. Moreover, we presented an algorithm for updating the
messages that is guaranteed to converge provided that the fac-
tor graph fulfills certain technical conditions. We also showed
how to extend the MF part in the factor graph to continuous
random variables and to include hard constraints in the BP
part of the factor graph. Finally, we illustrated the computation
of the messages of our algorithm in a simple example. This
example demonstrates the efficiency of the combined scheme
in models in which BP messages are computationally in-
tractable. The proposed algorithm performs significantly better
than the commonly used approach of using BP combined
with a Gaussian approximation of computationally demanding
messages.

An interesting extension of our result would be to generalize
the BP part to contain also continuous random variables.
The results in [35] provide a promising approach. Indeed,
they could be used to generalize the Lagrange multiplier
for the marginalization constraints to the continuous case.
However, these methods are based on the assumption that
the objective function is Fréchet differentiable [36, p. 172].
In general a region-base free energy approximation is neither
Fréchet differentiable nor Gateaux differentiable, at least not
without any modification of the definitions used in standard
text books [36, pp. 171-172]'°. An extension to continuous
random variables in the BP part would allow to apply a
combination of BP with the MF approximation, e.g., for
sensor self-localization, where both methods are used [37],
[38]. Another interesting extension could be to generalize the
region-based free energy approximation such that the messages
in the BP part are equivalent to the messages passed in tree
reweighted BP or to include second order correction terms in
the MF approximation that are similar to the Onsager reaction
term [29].
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APPENDIX

A. Proof of Lemma 1

Suppose that {mq—;(7;), Miq(zi)} (a € Ayi € N(a)) is
a solution of (7) and set
VaeAieNa)
VaeAieN(a)

T%aﬂi(xi) = ﬁa,ima%i(xi)v

ﬁi—m(fﬂi) = Ta,mi—m(l’i),

(39)

with K i, 70 > 0 (a € A,i € N(a)). Plugging (39) into (7)
we obtain the following fixed-point equations for the messages

10For a positive real-valued function b, b + Ab might fail to be a positive
real-valued function for arbitrary perturbations Ab with sufficiently small
norm ||Abl].



{ma%z(%) n1—>a( 1)} (a cAie N( ))-
Ka,iMa—i(T7)

:wm( H Ta,j) Zfa(xa) H Nj—a(T;)

FEN (a)\i Xa\Z; JEN (a)\i

Ta,iniﬂa(xi)
:( H Hc,z‘) H mc%i(xi)
ceN(i)\a

ceN(i)\a

(40)
for all a € A,i € N(a). Now (40) is equivalent to (6) if and
only if

Tai= || keir Ya€AieN() 1)
ceN(i)\a
wa,i H Ta,j
ieN (a)\i
fa= —2 N VaedieN(@) @)

where the positive constants z, (a € .A) are such that the
beliefs b, (@ € A) in (5) are normalized to one. This
normalization of the beliefs b, (a € A) in (5) gives

7*2.]0(1 Xa H n]—nz 1']
JEN (a)
Zfa(xa) [[ njsa(z))
Xa JEN (a)
I[ 7aj
JEN(a)

1
=— _—  VYacA
Zo |1 Ta,j

JEN (a)

(43)

where we used (39) in the second step and (8) in the last step.
Combining (41), (42), and (43) we obtain

i o Ra,iTa,i
Za Wa,i
= 9 VaeAieN(a)
Wa,i

with
Il #eir VieT
cEN(7)

Now suppose that (9) is fulfilled. Setting

1
Kai=g" "', VaeAiecN(a)
1— —A—
Tai = U; WO v ae AjieN(a)

and reversing all the steps finishes the proof.

B. Extension of the MF approximation to continuous random
variables

Suppose that px is a pdf for the vector of random variables
X. In this appendix, we assume that all integrals in the region-
based free energy approximation are Lebesgue integrals and
have finite values, which can be verified by inspection of
the factors f, (a € A) and the analytic expressions of the
computed beliefs b; (: € I). An example where the MF

approximation is applied to continuous random variables and
combined with BP is discussed in Section IV.

For each 7 € 7 we can rewrite Fyr in (11) as

Fvr =D(b; || a;) + Z/ (xj)Inb;(x;) dz;

JET\i
- /1nfaxa [T biede; @4
a€ A\N (i) JEN (a)
with
@) zeo (Y [whe) [ b)),
a€N (i) JEN (a)\i
Viel.

It follows from [22, pp. 36-38] that D(b; || a;) is minimized
subject to [ b;(x;) da; =1 if and only if

a;(z;)

b;(z; _—
(i) = [ ai(z;)dz;

(45)

Formally, b; in (45) differs from b; in (12) by replacing sums
with Lebesgue integrals.

C. Proof of Theorem 2

The proof of Theorem 2 is based on the ideas of the proof
of [9, Th.2]. However, we will see that we get a significant
simplification by augmenting it with some of the arguments
originally used in [11] for Markov random fields and adopted
to factor graphs in [12]. In particular, we shall make use of
the following observation. Recall the expression for Fgp mr in
(20)

Fgpmr = Z Zb Xa f x;

aEApp Xa

— ZZ H bi(z;) In fo(x4)

a€AVF Xa i€N(a)

— > (|Nep(i)| - 1) Zb ;) Inb; (z;),

i€

(46)

the marginalization constraints

bl(xl) = Z ba(xa)a

Xa \ T4

Y a € Agp,i € N(a), 47)

and the normalization constraints

Zbl(xz) =1, Viéelur \IBP

' (48)
Zba(xa) =1, Vace Agp.



Using the marginalization constraints (47), we see that

D> balxa)in ] i)

a€App Xa €N (a)

e IPIPIN

a€App Xa i€N(a)

a€App icN(a) Ti

1€Zpp a€ENpp(i) Ti

Z |Npp(i) |Zb x;) Inb;(z;).

1€ Tpp
Combining (49) with (46), we further get

Fepmr = — Z Zba(xa)lnfa(xa)

aEApp Xa

- Z Z H bi(z;) In fo(x4)

a€AvF Xa i€N(a)

+ 30> bia) Inbi(

i€l x;

+ > I,

a€ Agp

o (X4) Inb; ()

(49)

(50)

with the mutual information [24, p. 19]

ba(x4)
I, 2 ba In ———m——
‘ ; (xa) In [Lienra) bilzi)’

Next, we shall compute the stationary points of the Lagrangian

YV a € Agp. (&29)

Lppmr =FBp,ME

- Y Z/\a,i(xi)<bi($)—

aC€App i€N(a) Ti

— Z %(Zb T; —1)

1€Zmr\Zpp

- Z %(Zb Xq —1)

a€ Agp

S balxa)

Xq \ T4

(52)

using the expression for Fppyp in (50). The particular form
of Fgpmr in (50) is convenient because the marginalization
constraints in (47) imply that for all ¢ € Z and a € Agp we
have % = —Inpp(i)(a). Setting the derivative of Lgp mr
in (52) with respect to b;(z;) and b,(x,) equal to zero for all
i € Z and a € Agp, we get the following fixed-point equations
for the stationary points:

Z )\(L [ xl

aEA&P()

2 > 1w

a€Nwr (1) xa\zi JEN (a)\i
+ |NBP( )l + IIMF\IBP( ) P 1’

In b;(

i (x5) In fo(x4)

Viel

Inb,(x4) =1n fo(x4) Z Aai (T —l—ln( H bi(xi))
1€N(a) €N (a)
+ 9 — 1, YV a € Agp.
(53)

Setting

mEP, (w5) 2 exp (Aailw:) +1 -

VGEABp,iEN(a)

1
Nee (i) )

(54)
mME . (x;) —exp< Z H i(2;) In fa(xa)>
xa\z; JEN (a)\i
Va € Awr,i € N(a),
we can rewrite (53) as
() = 2 H mb, () H m¥E (z;), VieT
a€Npp(%) a€Nye (i)
bi xX;
ba(xa):Zafa(Xa) H #7 Va € Agp
. ma—)i (xl)
i€N(a)

(55)

with

25 £ eXp(IIMF\IBP (i)')/i)v Viel (56)

A 1
Za=exp | Yo — 1+ 1———) |, Vac Agpp.
(10 3 0 )

(57)

Finally, we define

niﬂa('ri) £ Zq H c~>’L xl H mcaz 1’1
c€Npp(i)\{a} c€Nwr ()

VaeAieN(a). (58)

Plugging the expression for n;_,4(z;) in (58) into the second
line in (55), we find that

i(25) = 2 H mbP, . (x;) H mME (z;), VieZ
a€Ngp(4) a€Nyir(7)
ba(xa> = Za fa(xa) H ni—)a(xi)v Vae ABP-
i€N(a)
(59)

Using the marginalization constraints in (47) in combination
with (59) and noting that z; = 1 for all ¢ € Zgp we further
find that

nHa(wi)mSii(%)
H ma—m H ma%z xl
a€Ngp(3) GGNMF( )
= > ba(xa)
Xa \Ti
=24 Z fa(Xa) H nja(zj), Va€ Agp,i € N(a).
Xa \Ti JEN (a)
(60)
Dividing both sides of (60) by n;_,(x;) gives
a—)z _Za Z fa Xa H nj%a(l‘j)
Xa\Zi JEN (a)\i
YV a € Agp,i € N(a) 61)



Noting that nj_q(x;) = bj(x;) for all @ € Ayr and j €
N (a), we can write the messages mME  (x;) in (54) as

a—r1
MF
Mey; (T4 —exp<

Z H Nja(T; lnfa(xa)>,
vV a € Aur,i € N(a). (62)

xq\Zi JEN (a)\i
Now (58), (61), and (62) are equivalent to (25) and (59) is
equivalent to (24). This completes the proof that stationary
points of the Lagrangian in (23) must be fixed-points with
positive beliefs fulfilling (24). Since all the steps are reversible,
this also completes the proof of Theorem C.

D. Proof of Lemma 2
We rewrite FBP,MF in (20) as FBP,MF = F1 + F2 + F3 with

Fl £ Z D(ba || fa)
a€ Agp
72 3 (T bl f)
a€Avr i€N(a)
Fy £ = (INep ()] + [Nue(i)] = 1)) bi(:) Inby ()
€L T
and set
0<ke 2 falxa), VacA
Then
Fy =Y D(ball fa/ka) = > Ink,
a€ Agp a€ Agp
>— > In(k
a€ Agp
>
B=Y D( IT o1 fa/ka) -3 Ik,
a€Avr i€N(a) a€ Awr
>— > Ink,
a€ Avr
> — 00
Fy > 0.

This proves 1). Now F3 < oo, (27) implies that F> < oo, and
(26) implies that F; < oo if and only if (28) if fulfilled, which
proves 2).

Suppose that we have fixed all b,(X,) (a € Agp) from (28).
Then the analysis for the remaining b;(x;) (¢ € Z) and b,(x,)
excluding all X, from (28) (a € Agp) is the same as in the
proof of Theorem 2 and the resulting fixed-point equations are
identical to (24) and (25) excluding all X, from (28) and vice
versa, which proves 3). We can reintroduce the realizations X,
with f,(X,) = 0 (a € Agp) from (28) in (25) because they
do not contribute to the message passing update equations, as
can be seen immediately from the definition of the messages
mBP, .(z;) (a € App,i € N(a)) in (25). The same argument
implies that (28) is a special case of the first equation in (24),
which proves 4) and, therefore, finishes the proof of Lemma
2.

E. Proof of convergence

In order to finish the proof of convergence for the algorithm
presented in Subsection III-B, we need to show that running
the forward/backward algorithm in the BP part in step 2)
of Algorithm 1 cannot increase the region-based free energy
approximation Fppmr in (20). To this end we analyze the

factorization
pewr) o [[ fux) T[T miiw)
1E€ZgpNImr beNMF( )

a€ Agp

(63)

with xgp 2 (2; | i € Zgp)". The factorization in (63) is the
product of the factorization of the BP part in (18) and the
incoming messages from the MF part. The Bethe free energy
(3) corresponding to the factorization in (63) is

FBP_ZZb ;

aEApp Xa

> zzba N

1€ZppNImr aENWr(2) Ti aﬁl(%ﬂ
_ Z (INBp(7)| + [Nup(i)| — 1) Zb ) 1Inb;(z;)
i€Tpp
Xa)
Z Zb Xq) ln
a€App Xa fa Xa)
= > D biw) lnmdE ()
1€ZppNImr a€ENVr(2) Ti
= > (Nee(i) - 1) Zb () In by (7). (64)

i€Lpp
We now show that minimizing Fgp in (64) is equivalent to
minimizing Fppymr in (20) with respect to b, and b; for all
a € Agp and i € Zgp. Obvioulsy,

OFgp,MF O0Fgp )
2 = 7 7
6b1(1‘l) 6bl(l‘5), Vi€ BP\ ME
and
OFgpmr  OFpp
Du(xs)  Dba(xy) O Asr

This follows from the fact that Fgpyp differs from Fgp by
terms that depend only on b; with ¢+ € Zyjr. Now suppose that
1 € Igp N Iyg. In this case, we find that

m = (1= N (3)) (n bi() + 1)
Z Z H (7)) In fo(x4)  (65)
a€Nyir (i) xa\x; JEN (a)\i
and
OFpp

Sty ~ (L~ W@ (nbifa) + 1) a—@%@ lnm, (z;).

(66)

From (25) we see that
Z H NjalT; lnfa(xa)>,

MF
Mey; (T —exp<
xa\wi JEN (a)\i

V a € Nyr(7). (67)



Note that, according to step 2) in Algorithm 1, the messages
mME . (x;) in (67) are fixed inputs for the BP part. Therefore,
we are not allowed to plug the expressions for the messages
mME . (x;) in (67) into (66) in general. However, since a €
Awr and i € ZgpNZyr, condition (29) implies that N'(a)\i C
Zumr \ Zpp and guarantees that
nj—a(x;) = bj(z;) (68)
is constant in step 2) of Algorithm 1 for all j € N(a) \
t C Zyr \ Zgp. Therefore, we are indeed allowed to plug the
expressions of the messages mMF, . (z;) in (67) into (66) and

finally see that also

aFBP,MF _ aFBP
81)1(371) 8bl(xl) ’

Vi € IBP n IMF-

Hence, minimizing Fgp in (64) is equivalent to minimizing
FBP,MF iIl (20)

By assumption, the factor graph in the BP part has tree
structure. Therefore, [9, Prop. 3] implies that

1) Fpp > 0;

2) Fgp = 0 if and only if the beliefs {b;,b,} in (64) are

the marginals of the factorization in (63).
Hence, for b; fixed with j € Zyr \ Zgp, we see that Fppvp
in (20) is minimized by the marginals of the factorization in
(63).

It remains to show that running the forward/backword
algorithm in the BP part as described in step 2) in Algorithm
1 indeed computes the marginals of the factorization in (63).
Applying Theorem 1 to the factorization in (63) yields the
message passing fixed-point equations

[I

CENBp(i)\a
Yae ABp,i EN(G)
mgp—n(xi) = Za Z fa(xa) H nj—m(xj)v
Xa \T; JEN (a)\i
Yac ABPJ EN(a).

() T w0,

CE/\/MF(i)

ni—m(zi)

(69)
The message passing fixed-point equations in (69) are the
same as the message passing fixed-point equations for the
BP part in (25) with fixed-input messages mML,(x;) for
all ¢ € Zgp N Zyr and @ € MNyg(i). Hence, running the
forward/backward algorithm in the BP part indeed computes
the marginals of the factorization in (63) and Algorithm 1 is

guaranteed to converge.

F. Product of Gaussian distributions

Lemma 3: Let
pi(x) = CN(x; s, A;7"), Vie[l:N].
Then

IT pi(x) < ON(x; p, A7)
1€[1:N]

with

[1]

[2]
[3]

[4]

[5]
[6]
[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Proof: Follows from direct computation. [ ]
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