
Merging Business Process Models

Marcello La Rosa1, Marlon Dumas2, Reina Uba2, and Remco Dijkman3

1 Queensland University of Technology, Australia
m.larosa@qut.edu.au

2 University of Tartu, Estonia
{marlon.dumas,reinak}@ut.ee

3 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

Abstract. This paper addresses the following problem: given two busi-
ness process models, create a process model that is the union of the
process models given as input. In other words, the behavior of the pro-
duced process model should encompass that of the input models. The
paper describes an algorithm that produces a single configurable process
model from a pair of process models. The algorithm works by extracting
the common parts of the input process models, creating a single copy of
them, and appending the differences as branches of configurable connec-
tors. This way, the merged process model is kept as small as possible,
while still capturing all the behavior of the input models. Moreover, ana-
lysts are able to trace back which model(s) a given element in the merged
model originates from. The algorithm has been prototyped and tested
against process models taken from several application domains.

1 Introduction

In the context of company mergers and restructurings, it often occurs that mul-
tiple alternative processes, previously belonging to different companies or units,
need to be consolidated into a single one in order to eliminate redundancies and
create synergies. To this end, teams of business analysts need to compare simi-
lar process models so as to identify commonalities and differences, and to create
integrated process models that can be used to drive the process consolidation
effort. This process model merging effort is tedious, time-consuming and error-
prone. In one instance reported in this paper, it took a team of three analysts
130 man-hours to merge 25% of two variants of an end-to-end process model.

In this paper, we consider the problem of (semi-)automatically merging pro-
cess models under the following requirements:

1. The behavior of the merged model should subsume that of the input models.
2. Given an element in the merged process model, analysts should be able to

trace back from which process model(s) the element in question originates.
3. One should be able to derive the input process models from the merged one.

The main contribution of the paper is an algorithm that takes as input a col-
lection of process models and generates a configurable process model [15]. A

2 M. La Rosa et al.

configurable process model is a modeling artifact that captures a family of pro-
cess models in an integrated manner and that allows analysts to understand
what these process models share, what their differences are, and why and how
these differences occur. Given a configurable process model, analysts can derive
individual members of the underlying process family by means of a procedure
known as individualization. We contend that configurable process models are a
suitable output for a process merging algorithm, because they provide a mecha-
nism to fulfill the second and third requirements outlined above. Moreover, they
can be used to derive new process models that were not available in the orig-
inating process family, e.g. when the need to capture new business procedures
arises. In this respect, the merged model can be seen as a reference model [4] for
the given process family.

The algorithm requires as input a mapping that defines which elements from
one process model correspond to which elements from another process model.
To assist in the construction of this mapping, a mapping is suggested to the user
who can then adapt the mapping if necessary.The algorithm has been tested on
process models sourced from different domains. The tests show that the process
merging algorithm produces compact models and scales up to process models
containing hundreds of nodes.

The paper is structured as follows. Section 2 introduces the notion of con-
figurable process model as well as a technique for proposing an initial mapping
between similar process model elements. Section 3 presents the process merging
algorithm. Section 4 reports on the implementation and evaluation of the algo-
rithm. Finally, Section 5 discusses related work and Section 6 draws conclusions.

2 Background

This section introduces two basic ingredients of the proposed process merging
technique: a notation for configurable process models and a technique to match
the elements of a given pair of process models. This latter technique is used
to assist users in determining which pairs of process model elements should be
considered as equivalent when merging.

2.1 Configurable Business Processes

There exist many notations to represent business processes, such as Event-driven
Process Chains (EPC), UML Activity Diagrams (UML ADs) and the Business
Process Modeling Notation (BPMN). In this paper we abstract from any specific
notation and represent a business process model as a directed graph with labeled
nodes as per the following definition. This process abstraction allows us to merge
process models defined in different notations.

Definition 1 (Business Process Graph). A business process graph G is a
set of pairs of process model nodes—each pair denoting a directed edge. A node
n of G is a tuple (idG(n), λG(n), τG(n)) consisting of a unique identifier idG(n)

Merging Business Process Models 3

(of type string), a label λG(n) (of type string), and a type τG(n). In situations
where there is no ambiguity, we will drop the subscript G from idG, λG and τG.

For a business process graph G, its set of nodes, denoted NG, is⋃
{{n1, n2}|(n1, n2) ∈ G}. Each node has a type. The available types of nodes

depend on the language that is used. For example, BPMN has nodes of type
‘activity’, ‘event’ and ‘gateway’. In the rest of this paper we will show examples
using the EPC notation, which has three types of nodes: i) ‘function’ nodes,
representing tasks that can be performed in an organization; ii) ‘event’ nodes,
representing pre-conditions that must be satisfied before a function can be per-
formed, or post-conditions that are satisfied after a function has been performed;
and iii) ‘connector’ nodes, which determine the flow of execution of the process.
Thus, τG ∈ {“f”, “e”, “c”} where the letters represent the (f)unction, (e)vent
and (c)onnector type. The label of a node of type “c” indicates the kind of
connector. EPCs have three kinds of connectors: AND, XOR and OR. AND
connectors either represent that after the connector, the process can continue
along multiple parallel paths (AND-split), or that it has to wait for multiple par-
allel paths in order to be able to continue (AND-join). XOR connectors either
represent that after the connector, a choice has to be made about which path to
continue on (XOR-split), or that the process has to wait for a single path to be
completed in order to be allowed to continue (XOR-join). OR connectors start
or wait for multiple paths. Models G1 and G2 in Fig. 1 are two example EPCs.

A Configurable EPC (C-EPC) [15] is an EPC where some connectors are
marked as configurable. A configurable connector can be configured by removing
one or more of its incoming branches (in the case of a join) or one or more of
its outgoing branches (in the case of a split). The result is a regular connector
with a possibly reduced number of incoming or outgoing branches. In addition, a
configurable OR connector can be mutated into a regular XOR or a regular AND.
After all nodes in a C-EPC are configured, a C-EPC needs to be individualized
by removing those branches that have been excluded during the configuration
of each configurable connector. Model CG in Fig. 1 is an example of C-EPC
featuring a configurable XOR-split, a configurable XOR-join and a configurable
OR-join, while the two models G1 and G2 are two possible individualizations
of CG. G1 can be obtained by configuring the three configurable connectors in
order to keep all branches labeled “1”, and restricting the OR-join to an AND-
join; G2 can be obtained by configuring the three configurable connectors in
order to keep all branches labeled “2” and restricting the OR-join to an XOR-
join. Since in both cases only one branch is kept for the two configurable XOR
connectors (either the one labeled “1” or the one labeled “2”), these connectors
are removed during individualization. For more details on the individualization
algorithm, we refer to [15].

According to requirement (2) in Section 1, we need a mechanism to trace back
from which variant a given element in the merged model originates. Coming back
to the example in Fig. 1, the C-EPC model (CG) can also be seen as the result
of merging the two EPCs (G1 and G2). The configurable XOR-split immediately
below function “Shipment Processing” in CG has two outgoing edges. One of

4 M. La Rosa et al.

Shipment is

complete

Deliveries

need to be

planned

Delivery is

relevant for

shipment

Shipment is

complete

Delivery is

relevant for

shipment

Delivery

Delivery

is to be

created

V

Deliveries

need to be

planned

Transporting

X

Order

generated and

delivery opened

X

2

Delivery is

relevant for

shipment

1,2

Delivery

V

2
2

X

1,2

V

1

Shipment is

complete

1,2

1,2

Delivery

is to be

created

2
X

Order

generated and

delivery opened

2

2

Deliveries

need to be

planned

1

1,2

1,2

X

2

1

Freight

packed
Freight

packed

Shipment

processing

Shipment

is to be

processed

Shipment

is to be

processed

Shipment

is to be

processed

label

label

event

function

AND connector

arc

mapping

configurable

connector

V

X

V

XOR connector

OR connector

max. common

region

CGG1 G2

Deliveries

need to be

planned

Delivery

unblocked

Delivery

unblocked

2

Shipment

processing

Shipment

processing

1: “ ”

2: “X”

V

1: “Transporation

 planning and

 processing”

2: “Transporting”

annotation

Transportation

planning and

processing

V

Transportation

planning and

processing

Fig. 1. Two business process models with a mapping, and their merged model.

them originates from G1 (and we thus label it with identifier “1”) while the
second originates from G2 (identifier “2”). In some cases, an edge in the merged
model originates from multiple variants. For example, the edge that emanates
from event “Delivery is relevant for shipment” is labeled with both variants (“1”
and “2”) since this edge can be found in both original models.

Also, since nodes in the merged model are obtained by combining nodes from
different variants, we need to capture the label of the node in each of its vari-
ants. For example, function “Transportation planning and processing” in CG
stems from the merger of the function with the same name in G1, and function
“Transporting” in G2. Accordingly, this function in CG will have an annotation
(as shown in the figure), stating that its label in variant 1 is “Transportation
planning and processing”, while its label in variant 2 is “Transporting”. Simi-
larly, the configurable OR connector just above “Transportation planning and
processing” in CG stems from two connectors: an AND connector in variant
1 and an XOR connector in variant 2. Thus an annotation will be attached
to this node (as shown in the figure) which will record the fact that the label
of this connector is “and” in variant 1, and “xor” in variant 2. In addition to
providing traceability, these annotations enable us to derive the original process
models by configuring the merged one, as per requirement (3) in Section 1. Thus,
we define the concept of Configurable Process Graph, which attaches additional
configuration metadata to each edge and node in a business process graph.

Definition 2 (Configurable Business Process Graph). Let I be a set
of identifiers of business process models, and L the set of all labels that pro-

Merging Business Process Models 5

cess model nodes can take. A Configurable Business Process graph is a tuple
(G,αG, γG, ηG) where G is a business process graph, αG : G→ ℘(I) is a function
that maps each edge in G to a set of process graph identifiers, γG : NG → ℘(I×L)
is a function that maps each node n ∈ NG to a set of pairs (pid, l) where pid is
a process graph identifier and l is the label of node n in process graph pid, and
ηG : NG → {true,false} is a boolean indicating whether a node is configurable or
not.

Because we attach annotations to graph elements, our concept of configurable
process graph slightly differs from the one defined in [15].

Below, we define some auxiliary notations which we will use when matching
pairs of process graphs.

Definition 3 (Preset, Postset, Transitive Preset, Transitive Postset).
Let G be a business process graph. For a node n ∈ NG we define the preset as
•n = {m|(m,n) ∈ G} and the postset as n• = {m|(n,m) ∈ G}. We call an
element of the preset predecessor and an element of the postset successor. There
is a path between two nodes n ∈ NG and m ∈ NG, denoted n ↪→ m, if and
only if (iff) there exists a sequence of nodes n1, . . . , nk ∈ NG with n = n1 and
m = nk such that for all i ∈ 1, . . . , k − 1 holds (ni, ni+1) ∈ G. If n 6= m and
for all i ∈ 2, . . . , k − 1 holds τ(ni) =“c”, the path n

c
↪→ m is called a connector

chain. The set of nodes from which a node n ∈ NG is reachable via a connector
chain is defined as

c• n = {m ∈ NG|m
c
↪→ n} and is called the transitive preset

of n via connector chains. Similarly, n
c•= {m ∈ NG|n

c
↪→ m} is the transitive

postset of n via connector chains.

For example, the transitive preset of event “Delivery is relevant for shipment”
in Figure 1, includes functions “Delivery” and “Shipment Processing”, since
these two latter functions can be reached from the event by traversing backward
edges and skipping any connectors encountered in the backward path.

2.2 Matching Business Processes

The aim of matching two process models is to establish the best mapping between
their nodes. Here, a mapping is a function from the nodes in the first graph to
those in the second graph. What is considered to be the best mapping depends
on a scoring function, called the matching score. The matching score we employ
is related to the notion of graph edit distance [1]. We use this matching score as
it performed well in several empirical studies [17, 2, 3]. Given two graphs and a
mapping between their nodes, we compute the matching score in three steps.

First, we compute the matching score between each pair of nodes as follows.
Nodes of different types must not be mapped, and splits must not be matched
with joins. Thus, a mapping between nodes of different types, or between a split
and a join, has a matching score of 0. The matching score of a mapping between
two functions or between two events is measured by the similarity of their la-
bels. To determine this similarity, we use a combination of a syntactic similarity

6 M. La Rosa et al.

measure, based on string edit distance [10], and a linguistic similarity measure,
based on the Wordnet::Similarity package [13] (if specific ontologies for a domain
are available, such ontologies can be used instead of Wordnet). We apply these
measures on pairs of words from the two labels, after removing stop-words (e.g.
articles and conjunctions) and stemming the remaining words (to remove word
endings such as ”-ing”). The similarity between two words is the maximum be-
tween their syntactic similarity and their linguistic similarity. The total similarity
between two labels is the average of the similarities between each pair of words
(w1, w2) such that w1 belongs to the first label and w2 belongs to the second
label. With reference to the example in Fig. 1, the similarity score between nodes
‘Transportation planning and processing’ in G1 and node ‘Transporting’ in G2 is
around 0.35. After removing the stop-word “and”, we have three pairs of terms.
The similarity between ‘Transportation” and “‘Transporting” after stemming is
1.0, while the similarity between “plan” and “process” or between “plan” and
“transport” is close to 0. The average similarity between these three pairs is thus
around 0.35. This approach is directly inspired from established techniques for
matching pairs of elements in the context of schema matching [14].

The above approach to compute similarities between functions/events cannot
be used to compute the similarity between pairs of splits or pairs of joins, as
connectors’ labels are restricted to a small set (e.g. ‘OR’, ‘XOR’ and ’AND’)
and they each have a specific semantics. Instead, we use a notion of context
similarity. Given two mapped nodes, context similarity is the fraction of nodes
in their transitive presets and their transitive postsets that are mapped (i.e. the
contexts of the nodes), provided at least one mapping of transitive preset nodes
and one mapping of transitive postset nodes exists.

Definition 4 (Context similarity). Let G1 and G2 be two process graphs. Let
M : NG1 9 NG2 be a partial injective mapping that maps nodes in G1 to nodes
in G2. The context similarity of two mapped nodes n ∈ NG1 and m ∈ NG2 is:

|M(
c• n)∩ c• m|+ |M(n

c•) ∩m c• |
max(| c• n|, | c• m|) + max(|n c• |, |m c• |)

where M applied to a set yields the set in which M is applied to each element.

For example, the event ‘Delivery is relevant for shipment’ preceding the AND-
join (via a connector chain of size 0) in model G1 from Fig. 1 is mapped to the
event ‘Delivery is relevant for shipment’ preceding the XOR-join in G2. Also,
the function succeeding the AND-join (via a connector chain of size 0) in G1 is
mapped to the function succeeding the XOR-join in G2. Therefore, the context
similarity of the two joins is: 1+1

3+1 = 0.5.
Second, we derive from the mapping the number of: Node substitutions (a

node in one graph is substituted for a node in the other graph iff they appear
in the mapping); Node insertions/deletions (a node is inserted into or deleted
from one graph iff it does not appear in the mapping); Edge substitutions (an
edge from node a to node b in one graph is substituted for an edge in the other
graph iff node a is matched to node a′, node b is matched to node b′ and there

Merging Business Process Models 7

exists an edge from node a′ to node b′); and Edge insertions/deletions (an edge
is inserted into or deleted from one graph iff it is not substituted).

Third, we use the matching scores from step one and the information about
substituted, inserted and deleted nodes and edges from step two, to compute
the matching score for the mapping as a whole. We define the matching score
of a mapping as the weighted average of the fraction of inserted/deleted nodes,
the fraction of inserted/deleted edges and the average score for node substitu-
tions. Specifically, the matching score of a pair of process graphs and a mapping
between them is defined as follows.

Definition 5 (Matching score). Let G1 and G2 be two process graphs and
let M be their mapping function, where dom(M) denotes the domain of M and
cod(M) denotes the codomain of M . Let also 0 ≤ wsubn ≤ 1, 0 ≤ wskipn ≤ 1
and 0 ≤ wskipe ≤ 1 be the weights that we assign to substituted nodes, inserted
or deleted nodes and inserted or deleted edges, respectively, and let Sim(n,m)
be the function that returns the similarity score for a pair of mapped nodes, as
computed in step one.
The set of substituted nodes, denoted subn, inserted or deleted nodes, denoted
skipn, substituted edges, denoted sube, and inserted or deleted edges, denoted
skipe, are defined as follows:

subn = dom(M) ∪ cod(M) skipn = (NG1 ∪NG2)− subn
sube = {(a, b) ∈ E1|(M(a),M(b)) ∈ E2}∪ skipe = (E1 ∪ E2) \ sube
{(a′, b′) ∈ E2|(M−1(a′),M−1(b′)) ∈ E1}

The fraction of inserted or deleted nodes, denoted fskipn, the fraction of inserted
or deleted edges, denoted fskipe, and the average distance of substituted nodes,
denoted fsubsn, are defined as follows.

fskipn = |skipn|
|N1|+|N2| fskipe = |skipe|

|E1|+|E2| fsubn = 2.0·Σ(n,m)∈M1.0−Sim(n,m)

|subn|

Finally, the matching score of a mapping is defined as:

1.0− wskipn · fskipn + wskipe · fskipe + wsubn · fsubn
wskipn + wskipe + wsubn

For example, in Fig. 1 the node ‘Freight packed’ and its edge to the AND-join
in G1 are inserted, and so are the node ‘Delivery unblocked’ and its edge to the
XOR-join in G2. The AND-join in G1 is substituted by the second XOR-join in
G2 with a matching score of 0.5, while the node ‘Transportation planning and
processing’ in G1 is substituted by the node ‘Transporting’ in G2 with a match-
ing score of 0.35 as discussed above. Thus, the edge between ‘Transportation
planning and processing’ and the AND-join in G1 is substituted by the edge
between ‘Transporting’ and the XOR-join in G2, as both edges are between two
substituted nodes. All the other substituted nodes have a matching score of
1.0. If all weights are set to 1.0, the total matching score for this mapping is
1.0−

7
21+ 11

19+ 2·0.5+2·0.65
14

3 = 0.64.

8 M. La Rosa et al.

Definition 5 gives the matching score of a given mapping. To determine the
matching score of two business process graphs, we must exhaustively try all
possible mappings and find the one with the highest matching score. Various
algorithms exist to find the mapping with the highest matching score. In the
experiments reported in paper, we use a greedy algorithm from [2], since its
computational complexity is much lower than that of an exhaustive algorithm,
while having a high precision.

3 Merging Algorithm

The merging algorithm is defined over pairs of configurable process graphs. In
order to merge two or more (non-configurable) process graphs, we first need to
convert each process graph into a configurable process graph. This is trivially
achieved by annotating every edge of a process graph with the identifier of the
process graph, and every node in the process graph with a pair indicating the
process graph identifier and the label for that node. We then obtain a config-
urable process graph representing only one possible variant.

Given two configurable process graphs G1 and G2 and their mapping M ,
the merging algorithm (Algorithm 1) starts by creating an initial version of the
merged graph CG by doing the union of the edges of G1 and G2, excluding
the edges of G2 that are substituted. In this way for each matched node we
keep the copy in G1 only. Next, we set the annotation of each edge in CG that
originates from a substituted edge, with the union of the annotations of the two
substituted edges in G1 and G2. For example, this produces all edges with label
“1,2” in model CG in Fig. 1. Similarly, we set the annotation of each node in
CG that originates from a matched node, with the union of the annotations of
the two matched nodes in G1 and G2. In Fig. 1, this produces the annotations of
the last two nodes of CG—the only two nodes originating from matched nodes
with different labels (the other annotations are not shown in the figure).

Next, we use function MaximumCommonRegions to partition the mapping
between G1 and G2 into maximum common regions (Algorithm 2). A maxi-
mum common region (mcr) is a maximum connected subgraph consisting only
of matched nodes and substituted edges. For example, given models G1 and
G2 in Fig. 1, MaximumCommonRegions returns the three mcrs highlighted by
rounded boxes in the figure. To find all mcrs, we first randomly pick a matched
node that has not yet been included in any mcr. We then compute the mcr of
that node using a breadth-first search. After this, we choose another mapped
node that is not yet in an mcr, and we construct the next mcr. We then postpro-
cess the set of maximum common regions to remove from each mcr those nodes
that are at the beginning or at the end of one model, but not of the other (this
step is not shown in Algorithm 2). Such nodes cannot be merged, otherwise it
would not be possible to trace back which model they come from. For example,
we do not merge event “Deliveries need to be planned” in Fig. 1 as this node is
at the beginning of G1 and at the end of G2. In this case, since the mcr contains
this node only, we remove the mcr altogether.

Merging Business Process Models 9

Algorithm 1: Merge
function Merge(Graph G1,Graph G2,Mapping M)
init

Mapping mcr, Graph CG
begin

CG⇐ G1 ∪ G2 \ (G2 ∩ sube)
foreach (x, y) ∈ CG ∩ sube do
αCG(x, y)⇐ αG1(x, y) ∪ αG2(M(x),M(y))

end
foreach n ∈ NCG ∩ subn do
γCG(n)⇐ γG1(n) ∪ γG2(M(n))

end
foreach mcr ∈ MaximumCommonRegions(G1,G2,M) do

FG1 ⇐ {x ∈ dom(mcr) | • x ∩ dom(mcr) = ∅ ∨ •M(x) ∩ cod(mcr) = ∅}
foreach fG1 ∈ FG1 such that | • fG1| = 1 and | •M(fG1)| = 1 do

pfG1 ⇐ Any(•fG1), pfG2 ⇐ Any(•M(fG1))
xj⇐ new Node(“c”,“xor”,true)
CG⇐ (CG \ ({(pfG1, fG1), (pfG2, fG2)})) ∪ {(pfG1, xj), (pfG2, xj), (xj, fG1)}
αCG(pfG1, xj)⇐ αG1(pfG1, fG1), αCG(pfG2, xj)⇐ αG2(pfG2, fG2)
αCG(xj, fG1)⇐ αG1(pfG1, fG1) ∪ αG2(pfG2, fG2)

end
LG1 ⇐ {x ∈ dom(mcr) | x • ∩ dom(mcr) = ∅ ∨ M(x) • ∩ cod(mcr) = ∅}
foreach lG1 ∈ LG1 such that |lG1 • | = 1 and |M(lG1) • | = 1 do

slG1 ⇐ Any(lG1•), slG2 ⇐ Any(M(lG1)•)
xs⇐ new Node(“c”,“xor”,true)
CG⇐ (CG \ ({(lG1, slG1), (lG2, slG2)})) ∪ {(xs, slG1), (xs, slG2), (lG1, xs)}
αCG(xs, slG1)⇐ αG1(lG1, slG1), αCG(xs, slG2)⇐ αG2(lG2, slG2)
αCG(lG1, xs)⇐ αG1(lG1, slG1) ∪ αG2(lG2, slG2)

end

end
CG⇐ MergeConnectors(M,CG)
return CG

end

Once we have identified all mcrs, we need to reconnect them with the remaining
nodes from G1 and G2 that are not matched. The way a region is reconnected
depends on the position of its sources and sinks in G1 and G2. A region’s source
is a node whose preset is empty (the source is a start node) or at least one of
its predecessors is not in the region; a region’s sink is a node whose postset is
empty (the sink is an end node) or at least one of its successors is not in the
region. We observe that this condition may be satisfied by a node in one graph
but not by its matched node in the other graph. For example, a node may be a
source of a region for G2 but not for G1.

If a node fG1 is a source in G1 or its matched node M(fG1) is a source in
G2 and both fG1 and M(fG1) have exactly one predecessor each, we insert a
configurable XOR-join xj in CG to reconnect the two predecessors to the copy of
fG1 in CG. Similarly, if a node lG1 is a sink in G1 or its matched node M(lG1)

10 M. La Rosa et al.

Algorithm 2: Maximum Common Regions

function MaximumCommonRegions(Graph G1,Graph G2,Mapping M)
init
{Node} visited⇐ ∅, {Mapping} MCRs⇐ ∅

begin
while exists c ∈ dom(M) such that c 6∈ visited do
{Node} mcr⇐ ∅
{Node} tovisit⇐ {c}
while tovisit 6= ∅ do

c⇐ dequeue(tovisit)
mcr⇐ mcr ∪ {c}
visited⇐ visited ∪ {c}
foreach n ∈ dom(M) such that ((c, n) ∈ G1 and (M(c),M(n)) ∈ G2) or
((n, c) ∈ G1 and (M(n),M(c)) ∈ G2) and n 6∈ visited do

enqueue(tovisit, n)
end

end
MCRs⇐ MCRs ∪ {mcr}

end
return MCRs

end

is a sink in G2 and both nodes have exactly one successor each, we insert a
configurable XOR-split xs in CG to reconnect the two successors to the copy
of lG1 in CG. We also set the labels of the new edges in CG to track back the
edges in the original models. This is illustrated in Fig. 2 where we use symbols
pfG1 to indicate the only predecessor of node fG1 in G1, slG1 to indicate the
only successor of node lG1 in G1 and so on. Moreover, in Algorithm 1 we use
function Node to create the configurable XOR joins and splits that we need to
add, and function Any to extract the element of a singleton set.

In Fig. 1, node “Shipment processing” in G1 and its matched node in G2 are
both sink nodes and have exactly one successor each (“Delivery is relevant for
shipment” in G1 and “Delivery is to be created” in G2). Thus, we reconnect this
node in CG to the two successors via a configurable XOR-join and set the labels
of the incoming and outgoing edges of this join accordingly. The same operation
applies when a node is source (sink) in a graph but not in the other.

By removing from MCRs all the nodes that are at the beginning or at the
end of one model but not of the other, we guarantee that either both a source and
its matched node have predecessors or none has, and similarly, that either both
a sink and its matched node have successors or none has. In Fig. 1, the region
containing node “Deliveries need to be planned” is removed after postprocessing
MCRs since this node is a start node for G1 and an end node for G2.

If a source has multiple predecessors (i.e. it is a join) or a sink has multiple
successors (i.e. it is a split), we do not need to add a configurable XOR-join
before the source, or a configurable XOR-split after the sink. Instead, we can
simply reconnect these nodes with the remaining nodes in their preset (if a

Merging Business Process Models 11

G2

fG1

pfG1

lG1

dom(mcr)

X

pfG2

1,2

1 2

slG1

X

slG2

1,2

1 2

CG

fG2

pfG2

lG2

slG2

cod(mcr)

2

2

G1

fG1

pfG1
1

lG1

slG1

dom(mcr)

1

Fig. 2. Reconnecting a maximum common region to the nodes that are not matched.

join) or postset (if a split) which are not matched. This case is covered by
function MergeConnectors (Algorithm 3). This function is invoked in the last
step of Algorithm 1 to merge the preset and postset of all matched connectors,
including those that are source or sink of a region, as well as any matched
connector inside a region. In fact the operation that we need to perform is the
same in both cases. Since every matched connector c in CG is copied from G1,
we need to reconnect to c the predecessors and successors of M(c) that are not
matched. We do so by adding a new edge between each predecessor or successor
of M(c) and c. If at least one such predecessor or successor exists, we make c
configurable, and if there is a mismatch between the labels of the two matched
connectors (e.g. one is “xor” and the other is “and”) we also change the label
of c to “or”. For example, the AND-join in G1 of Fig. 1 is matched with the
XOR-join that precedes function “Transporting” in G2. Since both nodes are
source of the region in their respective graphs, we do not need to add a further
configurable XOR-join. The only non-matched predecessor of the XOR-join in
G2 is node “Delivery unblocked”. Thus, we reconnect the latter to the copy of
the AND-join in CG via a new edge labeled “2”. Also, we make this connector
configurable and we change its label to “or”, obtaining graph CG in Fig. 1.

After merging two process graphs, we can simplify the resulting graph by
applying a set of reduction rules. These rules are used to reduce connector chains
that may have been generated after inserting configurable XOR connectors. This
reduces the size of the merged process graph while preserving its behavior and its
configuration options. The reduction rules are: 1) merge consecutive splits/joins,
2) remove redundant transitive edges between connectors, and 3) remove trivial
connectors (i.e. those connectors with one input edge and one output edge), and
are applied until a process graph cannot be further reduced. For space reasons,
we cannot provide full details of the reduction rules. Detailed explanations and
formal descriptions of the rules are given in a technical report [9].

The worst-case complexity of the process merging procedure is O(|NG|3)
where |NG| is the number of nodes of the largest graph. This is the complexity of
the process mapping step when using a greedy algorithm [2], which dominates the
complexity of the other steps of the procedure. The complexity of the algorithm
for merging connectors is linear on the number of connectors. The algorithm for

12 M. La Rosa et al.

Algorithm 3: Merge Connectors

function MergeConnectors(Mapping M, {Edge} CG)
init
{Node} S⇐ ∅, {Node} J⇐ ∅

begin
foreach c ∈ dom(M) such that τ(c) =“c” do

S⇐ {x ∈ M(c) • | x 6∈ cod(M)}
J⇐ {x ∈ •M(c) | x 6∈ cod(M)}
CG⇐ (CG \

⋃
x∈S{(M(c), x)}∪

⋃
x∈J{(x,M(c))})∪

⋃
x∈S{(c, x)}∪

⋃
x∈J{(x, c)}

foreach x ∈ S do
αCG(c, x)⇐ αG2(M(c), x)

end
foreach x ∈ J do
αCG(x, c)⇐ αG2(x,M(c))

end
if |S| > 0 or |J| > 0 then
ηCG(c)⇐ true

end
if λG1(c) 6= λG2(M(c)) then
λCG(c)⇐“or”

end

end
return CG

end

calculating the maximum common regions is a breadth-first search, thus linear
on the number of edges. The algorithm for calculating the merged model calls
the algorithm for calculating the maximum common regions, then visits at most
all nodes of each maximum common region, and finally calls the algorithm for
merging connectors. Since the number of nodes in a maximum common region
and the number of maximum common regions are both bounded by the number
of edges, and given that different regions do not share edges, the complexity of
the merging algorithm is also linear on the number of edges.

The merged graph subsumes the input graphs in the sense that the set of
traces induced by the merged graph includes the union of the traces of the two
input graphs. The reason is that every node in an input graph has a correspond-
ing node in the merged graph, and every edge in any of the original graphs has
a corresponding edge (or pair of edges) in the merged graph. Hence, for any
run of the input graph (represented as a sequence of traversed edges) there is
a corresponding run in the merged graph. The run in the merged graph has
additional edges which correspond to edges that have a configurable xor connec-
tor either as source or target. From a behavioral perspective, these configurable
xor connectors are “silent” steps which do not alter the execution semantics. If
we abstract from these connectors, the run in the input graph is equivalent to
the corresponding run in the merged graph. Furthermore, each reduction rule is
behavior-preserving. A detailed proof is outside the scope of this paper.

Merging Business Process Models 13

We observe that the merging algorithm accepts both configurable and non-
configurable process graphs as input. Thus, the merging operator can be used for
multi-way merging. Given a collection of process graphs to be merged, we can
start by merging the first two graphs in the collection, then merge the resulting
configurable process graph with the third graph in the collection and so on.

4 Evaluation

The algorithm for process merging has been implemented as a tool which
is freely available as part of the Synergia toolset (see: http://www.
processconfiguration.com). The tool takes as input two EPCs represented
in the EPML format and suggests a mapping between the two models. Once
this mapping has been validated by the user, the tool produces a configurable
EPC in EPML by merging the two input models. Using this tool, we conducted
tests in order to evaluate (i) the size of the models produced by the merging
operator, and (ii) the scalability of the merging operator.

Size of merged models. Size is a key factor affecting the understandability of
process models and it is thus desirable that merged models are as compact as
possible. Of course, if we merge very different models, we can expect that the
size of the merged model will almost equal to the sum of the sizes of the two
input models, since we need to keep all the information in the original models.
However, if we merge very similar models, we expect to obtain a model whose
size is close to the size of the largest of the two models.

We conducted tests aimed at comparing the sizes of the models produced by
the merging operator relative to the sizes of the input models. For these tests,
we took the SAP reference model, consisting of 604 EPCs, and constructed
every pair of EPCs from among them. We then filtered out pairs in which a
model was paired with itself and pairs for which the matching score of the
models was less than 0.5. As a result of the filtering step, we were left with
489 pairs of similar but non-identical EPCs. Next, we merged each of these
model pairs and calculated the ratio between the size of the merged model and
the size of the input models. This ratio is called the compression factor and is
defined as CF (G1, G2) = |CG|/(|G1| + |G2|), where CG = Merge(G1, G2). A
compression factor of 1 means that the input models are totally different and
thus the size of the merged model is equal to the sum of the sizes of the input
models (the merging operator merely juxtaposes the two input models side-by-
side). A compression factor close to 0.5 (but still greater than 0.5) means that
the input models are very similar and thus the merged model is very close to
one of the input models. Finally, if the matching score of the input models is
very low (e.g. only a few isolated nodes are similar), the addition of configurable
connectors may induce an overhead explaining a compression factor above 1.1

1 In file compression, the compression factor is defined as 1− |CG|/(|G1|+ |G2|), but
here we use the reverse in order to compare this factor with the matching score.

14 M. La Rosa et al.

Table 1 summarizes the test results. The first two columns show the size of
the initial models. The third and fourth column show the size of the merged
model and the compression factor before applying any reduction rule, while
the last two columns show the size of the merged model and the compression
factor after applying the reduction rules. The table shows that the reduction
rules improve the compression factor (average of 68% vs. 75%), but the merging
algorithm itself yields the bulk of the compression. This can be explained by the
fact that the merging algorithm factors out common regions when merging. In
light of this, we can expect that the more similar two process models are, the
more they share common regions and thus the smaller the compression factor
is. This hypothesis is confirmed by the scatter plot in Figure 3 which shows the
compression factors (X axis) obtained for different matching scores of the input
models (Y axis). The solid line is the linear regression of the points.

Size 1 Size 2 Size merged Compression Merged after
reduction

Compression
after reduction

Min 3 3 3 0.5 3 0.5

Max 130 130 194 1.17 186 1.05

Average 22.07 24.31 33.90 0.75 31.52 0.68

Std dev 20.95 22.98 30.35 0.15 28.96 0.13
Table 1. Size statistics of merged SAP reference models.

R² = 0.8377

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

M
at

ch
in

g
sc

o
re

Compression factor

Fig. 3. Correlation between matching score of input models and compression factor.

Scalability. We also conducted tests with large process models in order to assess
the scalability of the proposed merging operator. We considered four model pairs.
The first three pairs capture a process for handling motor incident and personal
injury claims at an Australian insurer. The first pair corresponds to the claim
initiation phase (one model for motor incident and one for personal injury),
the second pair corresponds to claim processing and the third pair corresponds
to payment of invoices associated to a claim. Each pair of models has a high
similarity, but they diverge due to differences in the object of the claim.

Merging Business Process Models 15

A fourth pair of models was obtained from an agency specialized in handling
applications for developing parcels of land. One model captures how land de-
velopment applications are handled in South Australia while the other captures
the same process in Western Australia. The similarity between these models was
high since they cover the same process and were designed by the same analysts.
However, due to regulatory differences, the models diverge in certain points.

Pair # Size 1 Size 2 Merge time
(msec.)

Size merged Compression Merged after
reduction

Compression
after reduction

1 339 357 79 486 0.7 474 0.68

2 22 78 0 88 0.88 87 0.87

3 469 213 85 641 0.95 624 0.92

4 200 191 20 290 0.75 279 0.72
Table 2. Results of merging insurance and land development models.

Table 2 shows the sizes of the input models, the execution time of the merging
operator and statistics related to the size of the merged models. The tests were
conducted on a laptop with a dual core Intel processor, 2.53 GHz, 3 GB mem-
ory, running Microsoft Vista and SUN Java Virtual Machine version 1.6 (with
512MB of allocated memory). The execution times refer to the merging step
only, excluding the time taken to read the models from disk and to match them.

The results show that the merging operator can handle pairs of models with
around 350 nodes each in a matter of milliseconds—an observation supported by
the execution times we observed when merging the pairs from the SAP reference
model. Table 2 also shows the compression factors. Pairs 2 and 3 have a poor
compression factor (lower is better). This is in great part due to difference in
the size of these two models, which yields a low matching score. For example, in
the case of pair 2 (matching score of 0.56) it can be seen that the merged model
is only slightly larger than the larger of the two input models.

When the insurance process models were given to us, a team of three analysts
at the insurance company had tried to manually merge these models. It took
them 130 man-hours to merge about 25% of the end-to-end process models. The
most time-consuming part of the work was to identify common regions manually.

1,2

1,2

X

B

AA A

B
B

D

C

D

C

2

X

D

1,2

1

2

Fig. 4. Fragment of insurance models.

Later, we compared the common re-
gions identified by our algorithm and
those found manually. Often, the re-
gions identified automatically were
smaller than those identified manu-
ally. Closer inspection showed that
during the manual merge, analysts
had determined that some minor dif-
ferences between the models being
merged were due to omissions. Fig-
ure 4 shows a typical case (full node
names are not shown for confidential-
ity reasons). Function C appears in

16 M. La Rosa et al.

one model but not in the other, and so the algorithm identifies two separate
common regions. However, the analysts determined that the absence of C in the
motor insurance model was an omission and created a common region with all
four nodes. This scenario suggests that when two regions are separated only by
one or few elements, this may be due to omissions or minor differences in mod-
eling granularity. Such patterns could be useful in pinpointing opportunities for
process model homogenization.

5 Related Work

The problem of merging process models has been posed in [16], [7], [5] and
[11]. Sun et al. [16] address the problem of merging block-structured Workflow
nets. Their approach starts from a mapping between tasks of the input process
models. Mapped tasks are copied into the merged model and regions where the
two process models differ, are merged by applying a set of “merge patterns”
(sequential, parallel, conditional and iterative). Their proposal does not fulfill
the criteria in Section 1: the merged model does not subsume the initial variants
and does not provide traceability. Also, their method is not fully automated.

Küster et al. [7] outline requirements for a process merging tool targeted
towards version conflict resolution. Their envisaged merge procedure is not au-
tomated. Instead the aim is to assist modelers in resolving differences manually,
by pinpointing and classifying changes using a technique outlined in [6].

Gottschalk et al. [5] merge pairs of EPCs by constructing an abstraction
of each EPC, namely a function graph, in which connectors are replaced with
edge annotations. Function graphs are merged using set union. Connectors are
then restituted by inspecting the annotations in the merged function graph.
This approach does not address criteria 2 and 3 in Section 1: the origin of each
element cannot be traced, nor can the original models be derived from the merged
one. Also, they only merge two nodes if they have identical labels, whereas our
approach supports approximate matching. Finally, they assume that the input
models have a single start and a single end event and no connector chains.

Li et al. [11] propose another approach to merging process models. Given a set
of similar process models (the variants), their technique constructs a single model
(the generic model) such that the sum of the change distances between each
variant and the generic model is minimal. The change distance is the minimal
number of change operations needed to transform one model into another. This
work does not fulfill the criteria in Section 1. The generic model does not subsume
the initial variants and no traceability is provided. Moreover, the approach only
works for block-structured process models with AND and XOR blocks.

The problem of process model merging is related to that of integrating mul-
tiple views of a process model [12, 8]. A process model view is the instantiation
of a process model for a specific stakeholder or business object involved in the
process. Mendling and Simon [12] propose, but do not implement, a merging
operator that taken to different EPCs each representing a process view, and a
mapping of their correspondences, produces a merged EPC. Correspondences

Merging Business Process Models 17

can only be defined in terms of events, functions or sequences thereof (connec-
tors and more complex graph topologies are not taken into account). Moreover,
a method for identifying such correspondences is not provided. Since the models
to be merged represent partial views of a same process, the resulting merged
model allows the various views to be executed in parallel. In other words, com-
mon elements are taken only once and reconnected to view-specific elements by
a preceding AND-join and a subsequent AND-split. However, the use of AND
connectors may introduce deadlocks in the merged model. In addition, the origin
of the various elements in the merged model cannot be traced.

Ryndina et al. [8] propose a method for merging state machines describing
the lifecycle of independent objects involved in a business process, into a single
UML AD capturing the overall process. Since the aim is to integrate partial views
of a process model, their technique significantly differs from ours. Moreover, the
problem of merging tasks that are similar but not identical is not posed. Similarly,
the lifecycles to be merged are assumed to be disjoint and consistent, which eases
the merge procedure.

For a comparison of our algorithm with work outside the business process
management discipline, e.g. software merging and database schema integration,
we refer to the technical report [9].

6 Conclusion

The main contribution of this paper is a merging operator that takes as input a
pair of process models and produces a (configurable) process model. The oper-
ator ensures that the merged model subsumes the original model and that the
original models can be derived back by individualizing the merged model. Addi-
tionally, the merged model is kept as compact as possible in order to enhance its
understandability. Since the merging algorithm accepts both configurable and
non-configurable process models as input, it can be used for multi-way merging.
In the case of more than two input process models, we can start by merging two
process models, then merge the resulting model with a third model and so on.

We extensively tested the merging operator using process models from prac-
tice. The tests showed that the operator can deal with models with hundreds of
nodes and that the size of the merged model is, in general, significantly smaller
than the sum of the sizes of the original models.

The merging operator essentially performs a union of the input models. In
some scenarios, we do not seek the union of the input models, but rather a
“digest” showing the most frequently observed behavior in the input models.
In future, we plan to define a variant of the merging operator addressing this
requirement. We also plan to extend the merging operator in order to deal with
process models containing modeling constructs not considered in this paper. For
example, BPMN offers constructs such as error handlers and non-interrupting
events that are not taken into account by the current merging operator and that
would require non-trivial extensions.

Finally, the merging operator relies on a mapping between the nodes of the
input models. In this paper we focused on 1:1 mappings. Recent work has ad-

18 M. La Rosa et al.

dressed the problem of automatically identifying complex 1:n or n:m mappings
between process models [18]. Integrating the output of such matching techniques
into the merging operator is another avenue for future work.

References

1. H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.

2. R.M. Dijkman, M. Dumas, and L. Garćıa-Banuelos. Graph matching algorithms
for business process model similarity search. In Proc. of BPM, volume 5701 of
LNCS. Springer, 2009.

3. R.M. Dijkman, M. Dumas, L. Garćıa-Banuelos, and R. Käärik. Aligning business
process models. In Proc. of EDOC. IEEE, 2009.

4. P. Fettke and P. Loos. Classification of Reference Models – A Methodology and
its Application. In Information Systems and e-Business Management, volume 1,
pages 35–53, 2003.

5. F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-Vullers. Merging event-
driven process chains. In Proc. of CoopIS, volume 5331 of LNCS, pages 418–426.
Springer, 2008.

6. J.M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and resolving process
model differences in the absence of a change log. In Proc. of BPM, volume 5240
of LNCS, pages 244–260. Springer, 2008.

7. J.M. Küster, C. Gerth, A. Förster, and G. Engels. A tool for process merging in
business-driven development. volume 344 of CEUR Workshop Proceedings, pages
89–92. CEUR, 2008.

8. J.M. Küster, K. Ryndina, and H. Gall. Generation of business process models
for object life cycle compliance. In Proc. of BPM, volume 4714 of LNCS, pages
165–181. Springer, 2007.

9. M. La Rosa, M. Dumas, R. Käärik, and R. Dijkman. Merging business process
models (extended version). Technical report, Queensland University of Technology,
2009. http://eprints.qut.edu.au/29120.

10. I Levenshtein. Binary code capable of correcting deletions, insertions and reversals.
Cybernetics and Control Theory, 10(8):707–710, 1966.

11. C. Li, M. Reichert, and A. Wombacher. Discovering reference models by mining
process variants using a heuristic approach. In Proc. of BPM, volume 5701 of
LNCS, pages 344–362. Springer, 2009.

12. J. Mendling and C. Simon. Business process design by view integration. In Proc.
of BPM Workshops, pages 55–64, 2006.

13. T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet: : Similarity - Measuring
the Relatedness of Concepts. In Proc. of AAAI, pages 1024–1025. AAAI, 2004.

14. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

15. M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling
language. Information Systems, 32(1):1–23, 2007.

16. S. Sun, A. Kumar, and J. Yen. Merging workflows: A new perspective on connecting
business processes. Decision Support Systems, 42(2):844–858, 2006.

17. B.F. van Dongen, R.M. Dijkman, and J. Mendling. Measuring similarity between
business process models. In Proc. of CAiSE, volume 5074 of LNCS, pages 450–464.
Springer, 2008.

18. M. Weidlich, R.M. Dijkman, and J. Mendling. The icop framework: Identification
of correspondences between process models. In Proc. of CAiSE, 2010.

