
Merging Component Models
and Architectural Styles

Rema Natarajan David S. Rosenblum
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{rema,dsr}@ics.uci.edu

1. ABSTRACT
Components have increasingly become the
unit of development of software. In industry,
there has been considerable work in the
development of component interoperability
models, such as ActiveX, CORBA and
JavaBeans. In academia, there has been
intensive research in developing a notion of
software architecture. Our research involves
studying how standard component models can
be extended to accommodate important issues
of architecture, including a notion of
architectural style and support for explicit
connectors. In this paper, we discuss issues
arising from our initial effort in this research,
where we have extended the JavaBeans
component model to support component
composition according to the C2 architectural
style.
1.1 Keywords
Architectural style, C2, component standards, connectors,
JavaBeans, software architecture

2. INTRODUCTION
Components have increasingly become the unit of
development of software. In industry, there has been
considerable work in the development of component
interoperability models, such as ActiveX [1], CORBA [4],
and JavaBeans [6]. These models help developers deal
with the complexity of software and promote reuse.

Component interoperability models also make a positive
move toward standardization of components, and the
creation of a software component marketplace.

Software architecture research deals with the same issues
of software complexity and promoting reuse. Software
architecture has been the focus of intense research in
academia. Architectures help developers focus on system
level requirements and the interconnection of components
in a large-scale software system.

Both these approaches use software components as the
building blocks. With component interoperability models,
the focus is on specifying interfaces, packaging, binding
mechanisms, inter-component communication protocols,
and expectations regarding the runtime environment. With
software architectures and architectural styles, the focus in
on specifying systems of communicating components,
analyzing system properties, and generating “glue” code
that binds system components [3].

It seems intuitive to merge component interoperability
models with suitable architectural styles to leverage the full
benefit from both technologies, and to develop a
comprehensive approach to software development. It also
opens up opportunities for researchers in industry and in
academia to exchange views and results.

In this paper, we describe our work in enhancing the
JavaBeans component model to support component
composition according to the C2 architectural style. Our
approach enables the design and development of
applications in the C2 architectural style using off-the-shelf
Java components or beans that are available to the
developer. The creation of individual components with
their specific interfaces, functionalities and behaviors is a
different task from the composition of an architecture of a
system that satisfies requirements. The merging of the
component interoperability model with the architectural
style provides a seamless integration of both activities.

3. THE JAVABEANS COMPONENT MODEL
The JavaBeans component model is a component model
tailored to the Java language. The JavaBeans design pattern
defines a protocol to which beans must adhere. This
interface pattern mainly consists of the properties, methods,
and events that together define a bean interface. Properties

encapsulate key attributes of a bean and can be read-only,
read/write, bound (meaning they generate events whenever
they change values) or constrained (meaning their changes
can be vetoed by other beans). Methods are public
operations that form part of the bean interface. Beans
communicate with each other through bean events; the
event handling is based on the Java 1.1 event model. Thus,
the JavaBeans component model concentrates on the
interface a Java software building block can or should
represent. It does not specify how the building blocks can
or should be combined to create any type of application. It
specifies how two or more beans can communicate
information, without imposing any semantic rules on the
information exchanged or on the topology of any bean
communication network [6]. The JavaBeans design pattern
is designed to make beans tool-aware; in particular, the
interface pattern has been defined for a modern software
developer who will manipulate beans via visual
interactions.

4. THE C2 ARCHITECTURAL STYLE
The C2 architectural style is primarily concerned with
high-level system composition issues, rather than particular
component packaging approaches [3,5]. The building
blocks of C2 architectures are components (computational
elements) and connectors (interconnection and
communication elements). This separation of computation
from communication enables the construction of flexible,
extensible, and scalable systems that can evolve both
before and during runtime. This style places no restrictions
on the implementation language or granularity of
components and connectors, potentially allowing it to use
multiple interoperability technologies for its connectors.
This flexibility has enabled us to use the event-based
interoperability of JavaBeans for our purposes. Central to
the C2 style is the principle of limited visibility or
“substrate independence”: components are arranged in a
layered fashion in a C2 architecture, and a component is
completely unaware of components that reside beneath it in
the stack of component layers. Substrate independence has
a clear potential for fostering substitutability and reusability
of components across architectures. Components
communicate only by exchanging messages through
connectors, which greatly simplifies the problem of control
integration issues; this property also facilitates low-cost
interchangeability of components to construct different
members of the same system family. Two components
cannot assume that they will execute in the same address
space; this eliminates complex dependencies, such as
components sharing global variables and simplifies
modification of architectures. Conceptually, components
run in their own thread(s) of control, allowing components
with different threading models to be integrated into a
single application. Finally, a conceptual C2 architecture can
be instantiated in a number of different ways. Many
potential performance issues or variations in functionality

can be addressed by separating the architecture from actual
implementation techniques.

5. EXPERIENCE TO DATE
We have begun our investigation of the problem of
merging component models with architectural styles by
enhancing the BeanBox (the visual composition
environment for JavaBeans) that comes with Sun’s Bean
Development Kit. The BeanBox allows developers to
develop beans using the beans design pattern, and
instantiate and test the beans in the BeanBox. Our
enhancements make the BeanBox C2-aware. In particular,
the enhanced BeanBox allows one to build complex
compositions of the beans in the C2 style as different
instantiations of a given C2 architecture. It is not necessary
to do any translation or mapping to convert an existing
bean into a C2 component. Introspection mechanisms
employed in the BeanBox are used to extract the properties,
methods and events that form the public interface of the
bean. Conceptually, beans communicate using bean
events; these events then become the requests and
notifications in the C2 architecture. The developer informs
the Beanbox through an appropriate dialog about the events
that are to be classified as requests and events. An
instantiated bean is wrapped in a C2 Component, which has
a wrapper for the bean, and a dialog manager that manages
the communication of beans through these requests and
notifications.

As shown in Fig. 1, this wrapping is done according to the
general model of wrapping that has been defined for
components in the C2 style [5]. The visual interface of the
BeanBox allows the developer to build C2 architectures
composed of beans intuitively and easily. The tool
automatically enforces the C2 style constraints and notifies
the developer when C2 style constraints are violated. C2
connector beans are used as the connectors in the
architecture.

A key advantage of this approach is that our architectural
infrastructure is now complete, in the sense that the full
range of developmental activities is supported from the
design, development and testing of individual components,
to the design, development and testing of architectures that
are compositions of these individual elements. Another
advantage is that all these activities are now integrated into
a single environment, and this leads the way to a seamless,
comprehensive development philosophy that facilitates
easy shifting of focus from one activity to another.
Sophisticated architectural development tools built along
these lines will tie in neatly with component-based
software development.

6. CONCLUSIONS
Having considered and explored the possibility of
combining a popular component interoperability model
with a useful software architectural style, we are convinced
of the advantages of this approach to development of

component-based software. In the future, we plan to
complete the implementation of this tool, and we plan to
further investigate the issues raised and opportunities
opened up by this approach. For example, this research
opens up interesting possibilities to use an enhanced
BeanBox to test runtime behaviors of system architectures
before system implementation is completed.

The plug-in capabilities of the JavaBeans environment, and
the philosophy of substrate independence in C2, make
substituting of components and rearranging of architectures
fairly easy. The BeanBox is an example of a tool where the
distinction between the design environment and the runtime
environment of systems has become blurred. This is an
issue that is being studied in greater depth in other work on
C2, in the context of designing and instantiating system
architectures [2]. Our experience, we believe, will help us
expand and develop our understanding of the synergy
between component models and software architectures.

7. ACKNOWLEDGMENTS
Discussions with Dick Taylor and Peyman Oreizy helped
us improve many of the ideas presented in this paper. This
material is based upon work supported by the National
Science Foundation under Grant No. CCR-9701973, and by
the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number F49620-
98-1-0061. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation

thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Office of Scientific Research or the U.S. Government.

8. REFERENCES
[1] D. Chappell, Understanding ActiveX and OLE.

Redmond, WA: Microsoft Press, 1996.

[2] N. Medvidovic, P. Oreizy, and R.N. Taylor, “Reuse of
Off-the-Shelf Components in C2-Style Architectures”,
Proc. 19th International Conference on Software
Engineering, Boston, MA, pp. 692–700, 1997.

[3] P. Oreizy, N. Medvidovic, R.N. Taylor, and D.S.
Rosenblum, “Software Architecture and Component
Technologies: Bridging the Gap”, Digest of the OMG-
DARPA-MCC Workshop on Compositional Software
Architectures, Monterey, CA January 1998.

[4] J. Siegel, CORBA Fundamentals and Programming.
New York, NY: Wiley, 1996.

[5] R.N. Taylor, N. Medvidovic, K.M. Anderson, J. E.
James Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow, “A Component- and Message-
Based Architectural Style for GUI Software”, IEEE
Transactions on Software Engineering, vol. 22, no. 6,
pp. 390–406, 1996.

[6] L. Vanhelsuwe, Mastering JavaBeans: SYBEX Inc,
1997.

Internal
ObjectDialog

&
Constraints

W rapper
Domain
Translator

Domain
Translator

Dialog
&
Constraints

Java Bean

C2 Wrapper

Fig. 1. Wrapping of C2 components; the general model of wrapping is shown in the picture on the
left, while the picture on the right shows how the general model has been applied for JavaBeans.

