
Merging Event-driven Process Chains

Florian Gottschalk, Wil M.P. van der Aalst, Monique H. Jansen-Vullers

Eindhoven University of Technology, The Netherlands.
{f.gottschalk,w.m.p.v.d.aalst,m.h.jansen-vullers}@tue.nl

Abstract. A main goal of corporate mergers is to gain synergy effects
through the alignment, integration, or combination of business processes.
While business processes are typically handled differently among com-
panies, many of them are variations of a common process like, e.g., pro-
curement or invoicing. The first goal for process analysts when aligning
business processes is thus to identify and seamlessly integrate overlapping
process parts. To support this we present in this paper an approach that
merges two business process models which are depicted as Event-Driven
Process Chains into a single process model without restricting the be-
havior that was possible in both the original models. The resulting model
can serve as a starting point for further process optimization. The ap-
proach has been implemented in the ProM process mining framework.
Therefore, it can be used together with a wide range of other process
mining and analysis techniques.

Key words: EPC, process alignment, process model integration

1 Introduction

Mergers, take-overs, or acquisitions even of huge cooperations are common head-
lines in today’s news. Across all businesses – from airlines to banks, from the
computer to the food industry – cooperations join forces not only to gain market
shares and thus to use economies of scale, but also to cut costs through synergy
effects. To achieve this, the combined company aims at reducing duplicate de-
partments or operations by merging the business processes of the companies.

Especially secondary and supporting processes like purchasing, invoicing, or
HR processes are good candidates for this as they are executed similarly among
companies. However, they are hardly identical. Thus, merging such similar busi-
ness processes still requires a process analysis of the as-is processes, an identi-
fication and mapping of identical tasks among the processes, and finally based
on this knowledge the creation of an integrated business process applicable for
both of the merging corporations.

In this paper, we focus on this last aspect by providing an algorithm that
integrates two process models into one simple process model which still allows for
the behavior possible in any of the original models. Traditionally, such a merge
of business process models is performed “in the mind of the process analyst”,
i.e. the process analysts builds a new process model after comparing the input
models manually. While building such a new, integrated model from scratch

allows for neglecting all aspects which are considered as irrelevant for the new
process by the process analysts, it comes with the risk that some aspects of the
one or the other process are accidentally neglected. This then might prevent the
performance of some process parts which are essential for the products of one
of the companies. By integrating the original process models automatically such
that all the behavior depicted in the original models remains possible, this risk
can be minimized. Process analysts are then not burdened with the integration
of the control-flow of the models, but can rather use the integrated model as
starting point for an optimization of the process.

To make the resulting process models easily understandable to business ana-
lysts, we based our work on Event-driven Process Chains (EPCs), a common, and
easy-to-understand process modelling language [12], also supported by commer-
cial process modelling tools like ARIS from IDS Scheer [13] or Microsoft Visio.
We therefore start this paper in the next section with a formal definition of
EPCs as a prerequisite for the merge algorithm. Afterwards Section 3 describes
the algorithm to merge multiple EPCs through merging graphs depicting the
relations between the EPCs’ functions as well as analyzes the behavioral impli-
cations of the merge. The algorithm’s implementation within the ProM process
mining framework is then depicted in Section 4. The paper ends with a brief
description of related work and with drawing some conclusions.

2 Prerequisites

Event-driven Process Chains (EPCs) basically consist of three node types,
namely events, functions and logical connectors, which are connected by directed
arcs as depicted in Figure 1. Events are passive elements depicting prerequisites
for or results from the execution of functions which are the active elements.

The logical connectors determine the control-flow behavior in case the
control-flow is split up into or joined from several parallel or alternative exe-
cution branches. If a connector of an EPC splits the control-flow up and is of
type XOR and has n successors this means that at runtime one out of its n
succeeding arcs is followed. If the connector is of type ∧ and has n succeeding
arcs, then all n of them are followed. If the split connector is of type ∨, any
m out of the n succeeding arcs can be triggered while m can have any value
between 1 and n. Thus, the ∧ and the XOR connectors are specializations of
the ∨ connector, i.e. an ∨ connector allows for the same triggering of succeeding
paths and thus for the same behavior as an XOR connector, it allows for the
same behavior as an ∧ connector, but it also allows for additional behaviors. If a
connector joins the control-flow, it behaves in a similar fashion. This means, an
∧ connector requires input from all incoming arcs to forward the case, an XOR
connector requires the input just from just one incoming arc to forward a case,
and an ∨ connector requires the input from a number of incoming arcs which is
determined at run-time. Thus an ∨ connector can join the control-flow behavior
in the same way as an ∧ connector and in the same way as an XOR connector,
but also as a partial synchronizer.

2

Quote
Flight

^

Quote
Accomodation

Prepare and Submit
Travel Form

X

Check
Travel Form

X

Check and Update
or Drop Travel Request

X Forward Travel Request

X

Travel Required

^

Quotes available Travel Request Approved

Travel Form Submitted Request Processed

Change Requested

Fig. 1. An EPC – Hexagons depict events, rectangles depict functions, and circles
depict connectors

After it has been triggered by a travel request, the process in Figure 1 thus
requires both an accommodation quote and a flight quote. Both quotes need
to be available before the process can pass the subsequent ∧ connector and
can continue with the preparation and submission of the travel form. After the
form has been checked, it can either be accepted or a change can be requested
– as indicated by the XOR connector subsequent to the “Check Travel Form”
function. If a change is requested, a choice exists if the form is either updated
or dropped. If it is updated, it re-joins the control-flow as if it would have been
submitted as a new travel form. If it is dropped, there is no need for further
processing. If the travel request is accepted, it is forwarded to the clearing center
and the processing of the request finishes as well.

The following formal EPC definitions are in line with the definitions in [9]:

Definition 1 (EPC). An Event-driven Process Chain is a five-tuple (E, F,C, l, A):

– E is a finite (non-empty) set of events,
– F is a finite (non-empty) set of functions,
– C is a finite set of connectors,
– l ∈ C → {∧,XOR,∨} is a function which maps each connector onto a con-

nector type,
– A ⊆ (E × F) ∪ (F ×E) ∪ (E × C) ∪ (C ×E) ∪ (F × C) ∪ (C × F) ∪ (C × C)

is a set of arcs.

Although Definition 1 already shows that arcs of an EPC cannot connect two
events or two functions directly, a well-formed EPC has to satisfy some further
requirements. To formalize them, we need to define some additional notations.

3

Definition 2 (EPC notations). Let EPC = (E, F, C, l, A) be an Event-driven
Process Chain.

– N = E ∪ F ∪ C is the set of nodes of EPC,
– For n ∈ N :

– •n = {m|(m,n) ∈ A} is the set of input nodes, and
– n• = {m|(n,m) ∈ A} is the set of output nodes,

– CJ = {c ∈ C| | • c| ≥ 2} is the set of join connectors,
– CS = {c ∈ C| |c • | ≥ 2} is the set of split connectors,
– A directed path p from a node n1 to a node nk is a sequence 〈n1, ..., nk〉 such

that (ni, ni+1) ∈ A for 1 ≤ i ≤ k − 1.
– CEF ⊆ C such that c ∈ CEF if and only if there is a path p = 〈n1, n2, ..., nk−1, nk〉

such that n1 ∈ E, n,..., nk−1 ∈ C, nk ∈ F , and c ∈ {n2, ..., nk−1},
– CFE ⊆ C such that c ∈ CFE if and only if there is a path p = 〈n1, n2, ..., nk−1, nk〉

such that n1 ∈ F, n,..., nk−1 ∈ C, nk ∈ E, and c ∈ {n2, ..., nk−1},
– CEE ⊆ C such that c ∈ CEE if and only if there is a path p = 〈n1, n2, ..., nk−1, nk〉

such that n1 ∈ E, n,..., nk−1 ∈ C, nk ∈ E, and c ∈ {n2, ..., nk−1},
– CFF ⊆ C such that c ∈ CFF if and only if there is a path p = 〈n1, n2, ..., nk−1, nk〉

such that n1 ∈ F, n,..., nk−1 ∈ C, nk ∈ F , and c ∈ {n2, ..., nk−1}.
We use the set of input and output nodes to define that each event is at

maximum preceded by one input node and at maximum succeeded by one output
node while each function has exactly one input and one output node. Further
on, each well-formed EPC needs at least one start event that is not preceded
by any other node and one end event that is not succeeded by any other node.
Connectors must have at least one input and one output node. They can also
have several input nodes or several output nodes, but not both at the same time.
To ensure this, we use the sets CJ and CS and require that they partition the set
of connectors C into on the one hand a set of connectors that split the control-
flow up, and on the other hand a set of connectors that join the control-flow.
Finally, we use directed paths to limit the set of routing constructs that can be
constructed using connectors. In a well-formed EPC there should be no paths
connecting two events or two functions only via connector nodes in between.
This also means that each connector should be either on paths from events to
functions only or on paths from functions to events only. Altogether, well-formed
EPCs can be formalized as follows:

Definition 3 (Well-formed EPC). A well-formed Event-driven Process Chain
(E, F,C, l, A) satisfies the following requirements:

1. The sets E, F , and C are pairwise disjoint, i.e. E ∩ F = ∅, E ∩C = ∅, and
F ∩ C = ∅,

2. for each e ∈ E : | • e| ≤ 1 and |e • | ≤ 1,
3. there is at least one event estart ∈ E such that | • estart | = 0,
4. there is at least one event eend ∈ E such that |eend • | = 0,
5. for each f ∈ F : | • f | = 1 and |f • | = 1,
6. for each c ∈ C : | • c| ≥ 1 and |c • | ≥ 1,

4

7. CJ and CS partition C, i.e. CJ ∩ CS = ∅ and CJ ∪ CS = C,
8. CEE and CFF are empty, i.e. CEE = ∅ and CFF = ∅,
9. CEF and CFE partition C, i.e. CEF ∩ CFE = ∅ and CEF ∪ CFE = C.

3 The Merge Algorithm

In the following we aim at merging multiple well-formed EPCs into a single
well-formed EPC such that the behavior that is possible according to the new
EPC, is at least the behavior that was possible in each of the original EPCs.
The behavior of an EPC is the order in which the EPC’s functions can be
executed as the functions represent the “active” behavior. Two EPCs represent
the same behavior if all the orders in which the functions of one of the EPCs
can be executed are also possible in the second EPC and vice versa. For our
purposes of providing a model which serves as the starting point for further
process optimization we further on prefer a compact and clear model (i.e. less
model elements and arcs) and therefore accept if this is on the expense of allowing
some additional behavior that was not possible in any of the original EPCs. This
means, the resulting model may allow for more behavior than the sum of the
parts’ behaviors. Hence, the merge algorithm generalizes.

To preserve the behavioral character of initial, i.e. the first executed, and
final, i.e. last executed, functions we require in the following that the initial and
final functions of the two EPCs are unique among the two models. Otherwise it
would be possible that the merge algorithms incorporates functions which are
first or last executed in one of the EPCs into the process flow of the other EPC
because the same function is executed somewhen in the middle of this other
EPC. If a pair of EPCs does not have such unique initial or final functions, a
unique dummy function not representing any real behavior can simply be added
in front of the initial functions and after the final functions of the original EPCs.
Without any behavioral meaning, the dummy function simply guarantees the
presence of a unique entry point of the process and thus preserves the behavioral
requirements of initial or final functions.

The algorithm we suggest for merging two EPCs conducts the merge in three
phases. At first we reduce the original EPCs to their active behavior, i.e. to their
functions, and represent them in form of models which we call function graphs.
Afterwards, the behavior represented by the two resulting function graphs is
merged into a new function graph which represents the combined behavior. And
last, the resulting function graph is then converted back into an EPC.

3.1 From EPCs to Function Graphs

A function graph is a reduction of an EPC to its functions as sole nodes. The
functions can be connected through directed arcs, meaning that the source func-
tion of the arc can be executed before the target function. Both a split type and
a join type is assigned to each arc. Both types can have either the value ∧, XOR,
or ∨. Some examples for function graphs are given in the second row of Figure 2.

5

Definition 4 (Function graph). A Function graph is a four-tuple (F,A, lJ , lS):

– F is a finite (non-empty) set of functions,
– A ⊆ (F × F) is a set of arcs,
– lJ ∈ A → {∧,XOR,∨} is a function which maps each arc onto a join relation

type such that ∀f1,f2,f3∈F ((f1, f2) ∈ A ∧ (f3, f2) ∈ A ∧ lJ (f1, f2) = ∧) ⇒
(lJ(f3, f2) 6= XOR),

– lS ∈ A → {∧,XOR,∨} is a function which maps each arc onto a split relation
type such that ∀f1,f2,f3∈F ((f1, f2) ∈ A ∧ (f1, f3) ∈ A ∧ lJ (f1, f2) = ∧) ⇒
(lJ(f1, f3) 6= XOR).

The behavior of a function graph is as follows. After a completed execution,
the functions in a function graph mark some outgoing arcs with tokens. Which
of the arcs are marked depends on the split types. If an arc has an ∧ split type,
a token has to be added to this arc after the execution of its source function. In
case of an XOR split type, a token can only be added to the arc if none of the
other arcs succeeding the source function receives a token at the same time. The
∨ type depicts that the marking of the arc after the source function’s execution is
optional. However, if a function is the source of a set of arcs, at least one of these
arcs must be marked with a new token after any of the function’s executions.

We require for the split types that a function is never the source of an arc of
type ∧ and of an arc of type XOR at the same time. From a logical point of view,
such type values would imply that the arc with the XOR type could never be
marked as the arc of type ∧ must always be marked with a token. That means,
the arcs of type XOR would never be followed and should thus be omitted.

a

EPC

Function Graph

ABD BAD CD

Possible Behavior:

a)

XOR

V

ACD CAD BCD CBD

Possible Behavior:

XOR

V

V V

XOR XOR XOR Split

Join
XOR

Possible Behavior:

AD BD CD

ABD BAD

CD ACD CAD BCD

CBD ABCD ACBD BACD

BCAD CABD CBAD

Possible Behavior:

XOR

V

ADB ADC ABD ACD

AD ABD ACD ADB

ADC ABCD ABDC ACBD

ACDB ADBC ADCB

Possible Behavior:

Possible Behavior:

AD ABC ACB

Possible Behavior:

Possible Behavior:

XOR

V

AD AB AC

ABC ACB

V V XOR

XOR XOR XOR

Split

Join

V V Λ

XOR XOR XOR

Split

Join
V V Λ

XOR XOR XOR Split

Join

b) c) d)

Fig. 2. The relation between EPCs and function graphs

6

The execution of a (non-initial) function then depends on the tokens on its
incoming arcs. The join types of the arcs determine when their joined target
function can be executed. In case an arc is assigned the join type ∧, the target
function needs to consume a token from that arc when it is executed, i.e. for
the function’s execution this arc must be marked with at least one token. An
arc of type XOR means that the target function can be executed if this arc is
marked with a token, independent of the markings of the other incoming arcs. In
this case this token is then also the only token consumed during the function’s
execution. An ∨ join type means that the consumption of a token from that
arc is optional for the execution of its target function. In any case, however, a
function with at least one incoming arc can only be executed if it consumes at
least one token from one of its incoming arcs.

For the join types we require that a function is never target of an arc of type
∧ and of an arc of type XOR at the same time. In such a case, the type values
would imply that the function must always consume a token from the arc of type
∧ and thus can never consume a token from the arc of type XOR exclusively.
As this means that these tokens would never be consumed, it is not necessary
to produce them and the arc should be omitted.

When transforming an EPC into a function graph, the functions in the func-
tion graph are the same functions as in the EPC. Every function in the function
graph is connected by arcs to exactly those functions which could be reached in
the EPC through a path which does not pass any other function. The arcs’ join
and split types are calculated based on the values of the join/split connectors
along the corresponding path in the EPC. If no connectors exist along the path
or if all these connectors are of type XOR, the corresponding arc is assigned the
type XOR. If all the connectors are of type ∧, the corresponding arc is assigned
the type ∧. Otherwise the value ∨ is assigned to the arc.

Definition 5 (Function graph from EPC). Let (E, F,C, l, A) be a well-
formed EPC. Then (F,AF , lFJ , lFS) is a function graph with

– AF = {(x, y) ∈ (F × F)|∃z1,...,zn∈C∪E〈x, z1, ..., zn, y〉 ∈ A∗}1
– lFJ ∈ AF → {∧,XOR,∨} is a function which maps each arc onto a join rela-

tion type as follows:

lFJ ((x, y)) =

XOR if ∀n≥0∀z1,...,zn∈C∪E〈x, z1, ..., zn, y〉 ∈ A∗ ⇒ ∀1≤i≤n,zi∈CJ

l(zi) = XOR
∧ if ∀n≥1∀z1,...,zn∈C∪E〈x, z1, ..., zn, y〉 ∈ A∗ ⇒ ∀1≤i≤n,zi∈CJ

l(zi) = ∧
∨ otherwise,

1 A∗ is the set of sequences over A, i.e, 〈z1, ..., zn〉 ∈ A∗ if and only if ∀1≤i<n(zi, zi+1) ∈
A.

7

– lFS ∈ AF → {∧,XOR,∨} is a function which maps each arc onto a split rela-
tion type as follows:

lFS ((x, y)) =

XOR if ∀n≥0∀z1,...,zn∈C∪E〈x, z1, ..., zn, y〉 ∈ A∗ ⇒ ∀1≤i≤n,zi∈CS

l(zi) = XOR
∧ if ∀n≥1∀z1,...,zn∈C∪E〈x, z1, ..., zn, y〉 ∈ A∗ ⇒ ∀1≤i≤n,zi∈CS

l(zi) = ∧
∨ otherwise.

We use the two examples in figures 2a and 2b to show the relation between
the splits of the control flow in an EPC and in the function graph as well as
the possible behaviors of these control-flow splits. In both figures we analyze the
behavior that can happen after a single execution of A. If all the split connectors
between two functions of an EPC are of type ∧, then the execution of the first
function implies the execution of the second function as it is the case for functions
A and D in Figure 2a. The ∧ split type of the corresponding arc in the function
graph therefore requires the marking of the arc after the execution of A. As this
arc is the only incoming arc of D, D requires only this token for its execution.
Hence, D can be executed after A in the function graph as in the EPC. If all
the split connectors between two functions of an EPC are of type XOR, then
the execution of the first function implies the exclusive execution of the second
function among all its subsequent functions. This is the case for functions A and
D in Figure 2b. The corresponding function graph thus requires that after A’s
execution the arc to D is marked exclusively as indicated by its XOR split type.

If the path between two functions of an EPC contains ∨ connectors, or if
it contains connectors of different types, then the succeeding function might or
might not be triggered. As an example, in the model in Figure 2a either B or C
can follow A (but always in combination with D). Within the function graph,
this behavior is reproduced by assigning the split value ∨ to the arc between A
and B and also to the arc between A and C. In this way, it is optional for each
of these arcs if it is marked after A’s execution. The function graph thus allows
for executing B or C after A as the EPC. But in addition to marking one of the
two arcs, the function graph also allows marking both or none of them as the
marking of an arc in a function graph is independent from the marking of other
arcs. Thus in addition to the behavior of the EPC, also behaviors where both B
and C or none of them follow A are possible in the function graph.

Figures 2c and 2d show the corresponding behavior relation for join connec-
tors of an EPC. Here we analyze the behavior that leads to a single execution
of D. If all the connectors join the control flow between two functions are of
type ∧, then the first function always has to precede the second one, as e.g. in
the case of functions C and D in Figure 2c. The corresponding arc’s ∧ join type
in the function graph also ensures that D can only be executed after C has been
executed and produced a token on this arc. In case all join connectors between
two functions in an EPC are of type XOR, the first function always precedes the
second one exclusively. Functions C and D in Figure 2d provide an example for
this. In the function graph an arc’s XOR join type implies exactly this behavior.
The target function requires and exclusively consumes a token from that arc. In

8

case different join connectors exist between two functions in an EPC (or if there
are only ∨ connectors), there are several combinations of preceding function ex-
ecutions possible before the execution of the succeeding function. The join type
∨ in the corresponding function graph thus specifies that the consumption of
tokens from each corresponding arc is optional for the execution of the target
function. However, although this covers the behavior of the EPC, it might also
allow for executing the target function in cases for which this was not allowed
in the EPC.

All in all this means that whenever the split or join type of an arc in the
function graph is XOR or ∧, the behavioral relation between those two functions
corresponds to the one in the EPC. When the split/join type is set to ∨ the
behavior of the EPC is also covered by the function graph. Then, however, also
additional behavior might be possible.

3.2 Combining Function Graphs

The goal of this paper is to merge process models (e.g. EPCs) while preserving
the original behavior. Function graphs over-approximate these behaviors and are
used as a tool to merge process models.

Two function graphs can be combined by merging the sets of functions, merg-
ing the sets of arcs, and calculating the split and join types of the arcs based on
the values in the two function graphs. When calculating the split and join types
of an arc, it is needed to analyze if functions are succeeded or preceded by the
same functions in both models. For this, let us first define shorthand notations
for the preset and postset of a function in a function graph.

Definition 6 (Function graph notations). Let (F,A, lJ , lS) be a function
graph. Then is

– preA ∈ F → IP(F) such that preA(n) = {m|(m, n) ∈ A} the preset of a
function n according to the set of arcs A, and

– postA ∈ F → IP(F) such that postA(n) = {m|(n,m) ∈ A} the postset of a
function n according to the set of arcs A.

If an arc is of split type XOR in one of the two function graphs and does not
exist in the other graph, or if it has type XOR in both graphs, then the arc to
the target function is either marked exclusively or not marked (a non-existent
arc cannot be marked). This corresponds to the behavior of an XOR split type
which is thus assigned to the arc in the resulting function graph as well. The
split type ∧ is only assigned to an arc if it either is of split type ∧ in both input
function graphs or if it has the value ∧ in one of the input function graphs and
there is no outgoing arc at all from the arc’s source function in the other function
graph. In case there is an ∧ split type assigned to the arc in one model and the
arc does not exist in the other model, but the source function of the arc has
other successor functions in the other model, the ∧ value cannot be assigned to
the resulting arc because it would imply that the arc must always be marked
in the resulting model. This conflicts with the model without the arc where a

9

non-existent arc can obviously not be marked. Thus, in such cases the arc gets
the more general split type ∨ assigned as it gets in all other cases.

The join types of arcs are calculated in line with the split types. Thus, the
corresponding line of argumentation also holds for the three join types of arcs. If
an arc is of join type XOR in one function graphs and does not exist in the other,
or if it has type XOR in both graphs, the arc is assigned the join type XOR.
The join type ∧ is assigned if the arc is either of split type ∧ in both function
graphs or if it is of type ∧ in one of them and the arc’s target function has no
predecessors in the other function graph. In all other cases the arc is assigned
join type ∨.

Definition 7 (Combining function graphs). Two function graphs g1 =
(F 1, A1, l1J , l1S), g2 = (F 2, A2, l2J , l2S) can be combined to a new function graph
g3 = (F 1 ∪ F 2, A1 ∪A2, l3J , l3S) where:

– l3S ∈ (A1 ∪A2) → {∧,XOR,∨} is a function which maps each arc onto a split
relation type as follows:

l3S((x, y)) =

XOR if (l1S((x, y)) = XOR and (x, y) 6∈ A2) or
(l1S((x, y)) = XOR and l2S((x, y)) = XOR) or
((x, y) 6∈ A1 and l2S((x, y)) = XOR),

∧ if (l1S((x, y)) = ∧ and postA2(x) = ∅) or
(l1S((x, y)) = ∧ and l2S((x, y)) = ∧) or
(postA1(x) = ∅ and l2S((x, y)) = ∧),

∨ otherwise,
– l3J ∈ (A1 ∪A2) → {∧,XOR,∨} is a function which maps each arc onto a join

relation type as follows:

l3J((x, y)) =

XOR if (l1J((x, y)) = XOR and (x, y) 6∈ A2) or
(l1J((x, y)) = XOR and l2J((x, y)) = XOR) or
((x, y) 6∈ A1 and l2J ((x, y)) = XOR),

∧ if (l1J((x, y)) = ∧ and preA2(y) = ∅) or
(l1J((x, y)) = ∧ and l2J ((x, y)) = ∧) or
(preA1(y) = ∅ and l2J((x, y)) = ∧),

∨ otherwise.

Figure 3 shows an example for the arc values resulting from combining two
function graphs. If an arc between two functions has the split type XOR assigned
(as, e.g., the arc between A and C in Figure 3a), then this succeeding arc can be
marked either exclusively or not at all after the execution of its source function.
This behavior must be preserved in the resulting function graph. As there is no
arc from A to C in Figure 3b, this function graph only requires that the arc
between A and C cannot be marked during execution which is covered by the
opportunity not to mark the arc of the XOR split type. Thus the corresponding
arc of the resulting function graph gets the type XOR assigned. The same would
hold if both input function graphs would require an XOR split type here as this
would still cover all possibilities allowed by the two input graphs.

If, however, one model requires that the arc succeeding a function is exclu-
sively marked after its execution (as the arc from A to B in Figure 3a) while the

10

c)

V V

XOR

Split

Join

XOR

AB AC AD ABD ADB AED EAD

ABED AEBD AEDB ACED AECD

AEDC EDAB EABD EADB EDAC

EACD EADC

Possible Behavior:

V

Λ

Λ

Possible Behavior:

ABD ADB AEBD AEDB

EABD EADB ABED

XOR
V

Split

Join

Λ

b)

Λ

Λ

Λ

a)

AB AC

Possible Behavior:

XOR

XOR

Split

Join

XOR

Λ

Λ

Fig. 3. Combining two function graphs and the behavior possible according to each
of the function graphs such that no tokens remain on the arcs

other model allows for a combined marking of the arc with other arcs through
an ∧ or ∨ split type (as in Figure 3b), then the arc is assigned the split type ∨
in the resulting model (see the arc from A to B in Figure 3c). In this way, both
combining the marking of this arc with other arcs (as required by Figure 3b) as
well as its exclusive marking (as required by Figure 3a) remains possible as long
as none of the other arcs leaving the first function is assigned the split type ∧.

According to the definition of function graphs, a single function that is the
the source of an arc with split type XOR cannot be source of an arc with type ∧
in the same graph. However, it is well possible that a function like function A in
Figure 3 is source of an arc of type XOR in one of the merged function graphs
(e.g., the arc to C in Figure 3a) and in the other graph it is the source of an arc
non-existent in the first graph which is of type ∧ (the arc to D in Figure 3b). In
this case the function is the source of the arc between functions A and D which
must obligatory be marked after A’s execution in the function graph of b) while
this arc is not part of the graph in a). Thus, the marking of the arc cannot be
made obligatory in the resulting model in c) because the obligatory marking of
the arc would then conflict with the behavior of the function graph in a) which
did not ask for the marking of an arc between A and D. Hence, in such cases
the marking of the arc becomes optional by assigning it the ∨ split type. In this
way also the condition that functions cannot be succeeded by arcs of split type
∧ and of split type XOR at the same time is guaranteed.

In case of the join type of the arc between A and D, there is no such function
D in the function graph of Figure 3a and thus also no incoming arc to D. Hence,
the only way in which D can be executed is depicted in Figure 3b where it always
requires a token on the arc from A as specified by the arc’s ∧ join type. The
resulting, corresponding arc in Figure 3c can therefore preserve the ∧ join type.

11

As the ∨ split and join types are less restrictive than the ∧ and the XOR
split/join types, using the ∨ for an arc which had type ∧ or type XOR in one
of the initial function graphs not only allows for the same behavior as in the
original graphs, but also for a number of additional behaviors that were not
possible in any of the original graphs. The behavior depicted in Figure 3 provides
an example for this. The figure shows the behavior required and possible such
that A is executed at least once and such that no tokens remain on the arcs
of the function graph. The behavior possible in both initial graphs is shown in
boldface while the new behavior is shown using non-boldface characters.

3.3 From function graphs to EPCs

A function graph can be transformed back into an EPC. For this, we first gen-
erate an EPC where each non-initial function is preceded by a dedicated join
connector and each non-final function is succeeded by a dedicated split connector
(see Figure 4b). Arcs connect these connectors in line with the arcs connecting
the functions of the function graph via an event for each such arc. Start events
are directly connected to initial functions while final functions are directly con-
nected to end events. The connector types are calculated for each connector
based on the values of all arcs leaving or ending in the corresponding function
in the function graph. If all arcs leaving a function in the function graph are
of split type XOR, the split connector of this function in the EPC becomes an
XOR connector (as for function B in Figure 4). If all arcs are of split type ∧,
it becomes an ∧ connector (as for A in Figure 4). Otherwise it becomes an ∨
connector. In the same way the join connector before each function in the EPC
becomes an XOR connector if all arcs pointing at this function in the function
graph are of join type XOR, it becomes an ∧ connector if the arcs are of join
type ∧, and it becomes an ∨ connector otherwise (as for E in Figure 4).

b) EPCa) Function Graph

V

V ΛXOR

XOR

XOR

Split

Join

Λ Λ

XORXOR

Λ Λ

Split

Join

XORXOR

XOR

XOR

c) well-formed EPC

XOR

Fig. 4. Transforming a function graph back into an EPC

12

Definition 8 (Generating an EPC from a function graph). A function
graph (F, AF , lFJ , lFS) can be converted into an EPC (E,F, CN

J ∪ CN
S , l, A) as

follows:

– For all f ∈ F : •f = {x|(x, f) ∈ AF }, and f• = {x|(f, x) ∈ AF }.
– CN

J = {cf
J |f ∈ F ∧ | • f | ≥ 1} assigns a join connector to each function,

– CN
S = {cf

S |f ∈ F ∧ |f • | ≥ 1}} assigns a split connector to each function,
– E = {e(f1,f2)|(f1, f2) ∈ AF }∪{ef

start |f ∈ F ∧•f = ∅}∪{ef
end |f ∈ F ∧ f• = ∅}

is the set of events,
– A = {(f, cf

S)|f ∈ F ∧ cf
S ∈ CN

S } ∪ {(cf
J , f)|f ∈ F ∧ cf

J ∈ CN
J }

∪ {(cf1
S , e(f1,f2))|(f1, f2) ∈ AF } ∪ {(e(f1,f2), cf2

J)|(f1, f2) ∈ AF }
∪ {(ef

start , f)|f ∈ F ∧ •f = ∅} ∪ {(f, ef
end)|f ∈ F ∧ f• = ∅},

– for all cf
J ∈ CN

J : l(cf
J) =

XOR if ∀x∈F (x, f) ∈ AF ⇒ (lFJ ((x, f)) = XOR)
∧ if ∀x∈F (x, f) ∈ AF ⇒ (lFJ ((x, f)) = ∧
∨ otherwise,

– for all cf
S ∈ CN

S : l(cf
S) =

XOR if ∀x∈F (f, x) ∈ AF ⇒ (lFS ((f, x)) = XOR
∧ if ∀x∈F (f, x) ∈ AF ⇒ (lFS ((f, x)) = ∧
∨ otherwise.

The EPC generated in this way might not be well-formed because it can
violate the Requirement 7 of Definition 3. It may contain connectors which have
only one incoming and at the same time only one outgoing arc (e.g., see functions
B, C, D, and F in Figure 4b). However, such connectors can simply be eliminated
from the net by replacing each of these connectors with a direct arc from its
predecessor node to its successor node (see Figure 4c).

Definition 9 (Generating a well-formed EPC from a function graph).
If an EPC (E¦, F ¦, C¦, l¦, A¦) was derived from a function graph, it can be con-
verted into a well-formed EPC (E, F,C, l, A) as follows:

– E = E¦,
– F = F ¦,
– For all n ∈ (E¦ ∪ F ¦ ∪ C¦): •n = {m|(m,n) ∈ A¦} is the set of input nodes,

and n• = {m|(n,m) ∈ A¦} is the set of output nodes,
– C = {c ∈ C¦| | • c| ≥ 2 ∨ |c • | ≥ 2},
– l ∈ C → {∧,∨,XOR} such that l(c) = l¦(c) for all c ∈ C,
– N ′ = E¦ ∪ F ¦ ∪ C,
– A = (A¦ ∩ (N ′ × N ′)) ∪ {(x, y) ∈ N ′ × N ′|∃z1,...,zn∈(C¦\C)〈x, z1, ..., zn, y〉 ∈

(A¦)∗}.
When transforming a function graph into an EPC, the connector values de-

termining the possible behavior of the resulting EPC are calculated from the
split and join type values of the function graph’s arcs. Only if each arc leaving
a function is assigned the split type XOR, then also the corresponding EPC
connector determining the successors of the function in the EPC is of type XOR
allowing for an exclusive choice of one of the succeeding functions. This corre-
sponds exactly to the behavior possible in the function graph. If all these arcs are

13

of type ∧, also the corresponding connector in the EPC becomes an ∧ connector.
Again, the behavior of triggering all succeeding paths is in line with the behavior
of the function graph. If the arcs are of type ∨ or if there is a mixture of differ-
ent split types among the arcs leaving a function of a function graph, then the
corresponding EPC connector is assigned type ∨. The resulting behavior then
corresponds to exactly the behavior if all the corresponding arcs of the function
graph are of type ∨. Each other combination of arc types in the function graph
allows for a subset of this behavior. Thus, by assigning the EPC connector the
type ∨, additional behavior might become possible in the EPC compared to the
behavior allowed in the function graph.

The argumentation for the behavior allowed by join connectors in the result-
ing EPCs is in line with this behavior of the split connectors.

All in all, in each of the merge algorithm’s three steps the possible behavior
of the input model(s) is at least preserved in the resulting model, but usually
even extended with additional behavior. As explained in the introduction, we
aim at “simple” models that preserve at least the original behavior over com-
plex models that match exactly the behavior of the input models. Thus, such an
over-approximation is a desired outcome. For that reason, we also rather stick
to the “simple” EPC derived in the last transformation here although introduc-
ing additional connectors to create an EPC that preserves the behavior of the
function graph more exactly would well be possible.

4 Tool support

We have implemented the approach described in this paper as a plug-in of the
ProM process mining framework2 (see Figure 5 for a screenshot of ProM). The
ProM framework integrates and enables the combined use of a wide variety of
process mining techniques through more than 250 plug-ins [2]. By implementing
the merge of EPCs as a ProM plug-in, it can be used and combined with existing
mining plug-ins to create integrated process models from log files and other
models.

Before performing the actual merge of two selected EPCs as described in this
paper, the ProM plug-in allows users to create a mapping between the functions
of the two input EPCs (see the top-right window in Figure 5) as well as between
their events. In this way, it can be avoided that different names for the same
functions or events (as e.g. defined through ontology classes or caused by typos
etc.) cause superfluous additional elements in the resulting model. To help the
user with this mapping, the plug-in automatically suggests possible correspond-
ing elements using a library provided by ProM for matching identifiers.3

After mapping the functions and events, the algorithm merges the two EPCs
in three phases as explained in this paper. As the behavior of a process model
2 See http://prom.sourceforge.net/.
3 An illustrated description of how to use the EPC merge plug-in can be found at
http://www.floriangottschalk.de/epcmerge.

14

Fig. 5. Merging the EPC from Figure 1 with the EPC depicted in the left using the
EPC merge’s implementation in ProM

is determined by the order of executing its functions, the names of the events
between the functions are irrelevant from a behavioral point of view and thus
ignored in the algorithm presented in this paper. The algorithm simply creates
new events when transforming the function graph back into an EPC. However,
for the depiction and understanding of the process, the event names are of course
important. Thus, after merging the two models, the plug-in re-names each event
of the resulting model based on the event names of the corresponding event(s)
in the original models. Considering that the plug-in introduces unique initial
functions before each start event in the original model, and unique final functions
after each end event of the original models, an event is always located on a path
between two functions. Thus, each event in the resulting model can be named
according to the event that is on the same path in the original models. Whenever
the events of the original EPCs differ, a choice between these differing events is
added on the path instead of the single event.

To illustrate the functionality of the ProM plug-in, consider the left window
in Figure 5 which shows another EPC for a travel approval process. This model
is merged with the process from Figure 1 (which is also shown in small on the
lower right of Figure 5) to illustrate our approach. In this process, reservations
are made directly before the travel form is filled in and submitted. The travel is

15

Quote
Accomodation

Quotes available

Prepare and Submit
Travel Form

X

Check
Travel Form

X

Check and Update
or Drop Travel Request

XForward
Travel Request

X

Quote
Flight

Quotes available

Make
Reservations

Reservations succesful

Archive
Travel Request

Change RequestedTravel Request Approved

Travel Required

V

Travel Request Rejected V

Travel Form SubmittedRequest Processed

Fig. 6. The EPC resulting from merging the EPCs from figures 1 and 5

afterwards either approved and the form forwarded to the clearing center or re-
jected and the form is archived. While the functions “Prepare and Submit Travel
Form”, “Check Travel Form”, and “Forward Travel Request” can be mapped to
equivalent functions in the EPC from Figure 1, the functions “Archive Travel
Request” and “Make reservations” cannot be mapped to any corresponding func-
tion (upper-right of Figure 5).

The EPC resulting from this merge is shown in Figure 6. In the integrated
model, an ∨ connector allows in the beginning for both the request of quotes
for accommodation and flights as in the model from Figure 1 as well as for
making directly a reservation as in Figure 5. Due to the use of the ∨ connector
even solely quoting a flight or combining such a quote with a reservation of an
accommodation would in contrast to the original models be possible according
to this new model. While in each of the original models the check of the travel
form could result in an acceptance of the travel request, the alternative to this
was a rejection in one of the models, while it was the request for a change in the
other model. Thus, the new merged model in Figure 6 allows for a choice of one
of these three options.

5 Related work

Process models like EPCs are used to provide abstract views on the process
behavior of complex systems. As various models are usually inconsistent [10]
even if they are intended to depict the same behavior, several frameworks to
merge such models and align the depicted system descriptions are suggested in
literature [4, 10, 11]. A concrete, but not implemented algorithm for merging
EPCs is suggested in [8]. While our goal is to merge several EPCs depicting
different processes that are executed similarly, the goal of [8] is to integrate
different views on the same process. For that reason the algorithm of [8] tries to
synchronize different behavior while our approach provides a choice between the
varying behavior.

16

Besides as a model, behavior can also be represented as a state-transition
system which explicitly shows each state the whole system can be in and how it
can change between these states. The synthesis of such state-based models into
Petri nets by using minimal regions is, e.g, presented in [6] and implemented in
tools such as Petrify [5]. Also ProM provides several region-based approaches [2].
The merge of transition systems and properties of such a merge of behavior are
discussed in [4, 14].

Furthermore, the behavior of a system can be represented as traces which
consist of a log entry for every action that has happened. Various process mining
approaches have been suggested to generate process models from such a set
of behavioral traces (e.g. [1, 3, 7]). While originally intended to discover the
behavior of one system, these techniques can also discover a process model that
covers the behavior of several systems if they are provided with a combined set
of traces from all the relevant systems.

6 Conclusions

In this paper we have shown an approach to merge two EPCs into a single
EPC that preserves all the behavior possible in the original EPCs, but that
may also allow for additional behavior. For this, we reduce EPCs to function
graphs that represent an abstraction of the behavior of the EPCs and unify such
function graphs. In this way the only expensive calculation during the merge is
re-calculating the connector values between the functions which is only required
locally. Thus, an efficient implementation is possible.

By implementing the algorithm within the ProM process mining framework,
it can now be used in combination with a wide range of other techniques helping
users in constructing process models for existing systems. While in some cases,
the additional behavior compared to the original models which is made possible
by this approach might be undesired, usually the goal of process analysts when
merging process models is to quickly align various depictions of the same or
similar processes. The resulting model is then just the starting point for further
process optimizations. Thus, a simple model which guarantees the behavior of
the original models, is usually more desired in such cases than a complex model
which tries to match the behavior exactly. For this reason, we also refrained
from encoding behavioral information available during the merge more exactly
in longer chains of EPC connectors.

While we depicted this approach using EPCs, the same approach should be
applicable to other business process modelling languages that support ∨ splits
and joins of the control flow. In our approach we focused on preserving the
behavior that was possible in the original EPCs, but neglected if this behavior
or the behavior that we created additionally during the merge is desirable and
sound behavior. In future research we thus have to show how the merged models
should be post-processed by process analysts in order to derive optimal and
executable business processes for merging corporations.

17

References

1. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In 26th International Conference on Applications and Theory of
Petri Nets (ICATPN 2005), volume 3536 of LNCS, pages 48–69. Springer, 2005.

2. W.M.P. van der Aalst, B. van Dongen, C. Günther, R. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Wei-
jters. ProM 4.0: Comprehensive Support for Real Process Analysis. In Petri Nets
and Other Models of Concurrency ICATPN 2007, volume 4546 of LNCS, pages
484–494. Springer, 2007.

3. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

4. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A
Manifesto for Model Merging. In GaMMa ’06: Proceedings of the 2006 international
workshop on Global integrated model management, pages 5–12, New York, NY,
USA, 2006. ACM.

5. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Pet-
rify: A Tool for Manipulating Concurrent Specifications and Synthesis of Asyn-
chronous Controllers. IEICE Transactions on Information and Systems, E80-
D(3):315–325, 1997.

6. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri
Nets from State-Based Models. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM
international conference on Computer-aided design, pages 164–171, Washington,
DC, USA, 1995. IEEE Computer Society.

7. B. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining: Aggregating
Instances Graphs into EPCs and Petri Nets. In Proceedings of the Second In-
ternational Workshop on Applications of Petri Nets to Coordination, Workflow
and Business Process Management, pages 35–58. Florida International University,
Miami, FL, USA, 2005.

8. J. Mendling and C. Simon. Business Process Design by View Integration. In
Business Process Management Workshops, volume 4103 of LNCS, pages 55–64.
Springer, 2006.

9. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, March 2007.

10. M. Sabetzadeh and S. Easterbrook. View Merging in the Presence of Incomplete-
ness and Inconsistency. Requirements Engineering, 11(3):174–193, 2006.

11. M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik. A Relationship-Driven
Framework for Model Merging. In MISE ’07: Proceedings of the International
Workshop on Modeling in Software Engineering, pages 2–8, Washington, DC, USA,
2007. IEEE Computer Society.

12. K. Sarshar and P. Loos. Comparing the Control-Flow of EPC and Petri Net from
the End-User Perspective. In 3rd International Conference on Business Process
Management (BPM 2005), volume 3649 of LNCS, pages 434–439, Nancy, France,
September 2005. Springer.

13. A.-W. Scheer. ARIS Toolset: A Software Product is Born. Information Systems,
19(8):607–624, December 1994.

14. S. Uchitel and M. Chechik. Merging Partial Behavioural Models. SIGSOFT Soft-
ware Engineering Notes, 29(6):43–52, 2004.

18

