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Abstract. We review recent developments in electronic structure cal-
culations that go beyond state-of-the-art methods such as density func-
tional theory (DFT) and dynamical mean field theory (DMFT). Specif-
ically, we discuss the following methods: GW as implemented in the
Vienna ab initio simulation package (VASP) with the self energy on
the imaginary frequency axis, GW+DMFT, and ab initio dynamical
vertex approximation (DΓA). The latter includes the physics of GW,
DMFT and non-local correlations beyond, and allows for calculating
(quantum) critical exponents. We present results obtained by the three
methods with a focus on the benchmark material SrVO3.

1 Introduction

The calculation of materials with predictive power is arguably the biggest challenge
of condensed matter theory. In the 20th century we have seen the breakthrough of
density functional theory (DFT) [1,2] (for reviews see Refs. [3,4]) which allows for
the reliable calculation of many materials and their properties. This is quite sur-
prising considering the fact that the approximations employed to the exchange and
correlation potential, such as the local density approximation (LDA) or the general-
ized gradient approximation (GGA), are rather crude. Despite the success of DFT
for many materials, there are entire classes of systems for which it does not work
properly. This happens, e.g., for materials, in which exchange or correlation effects
are large. Hence the silver bullet of method development is to find better potentials
or to improve upon exchange and correlations by many-body methods [5].
Materials in which the exchange part is particularly important are, e.g., semicon-

ductors. Here, DFT within LDA or GGA predicts consistently too small band gaps.
This can be overcome by hybrid functionals [6–9] that mix part of the exact exchange
to the exchange correlation functional. The amount of exact exchange that is re-
quired for an accurate modeling is, however, non-universal, i.e., material-dependent.
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For instance, in metals the long-range exchange is screened by long-range charge fluc-
tuations [10]. An accurate many-body framework to capture the system-dependent
screening is Hedin’s GW approach [11] which calculates the screened-exchange self
energy from the Green function G times the screened exchange W , see Figure 1 for
the corresponding Feynman diagram. Most GW results have been obtained using a
DFT-derived Green function G0 and an interaction W0 that has been screened by
the Lindhard function computed with G0. Only recently self-consistent GW calcu-
lations that use an approximate hermitianized form of the self energy, as proposed
by van Schilfgaarde and Kotani [12,13], became available. In Section 2 we discuss
the GW method and the calculation of the full frequency-dependence of the self en-
ergy, which is needed for spectral functions and for a self-consistency beyond the
van Schilfgaarde-Kotani approximation. We detail in particular the advantages of
our new imaginary-frequency implementation of GW within the Vienna ab initio
simulation package (VASP) [14,15]. Both methods, hybrid functionals and GW, can
lead to semiconductor band gaps in far better agreement with experiment [6,9,17],
with the GW self energy acting as a “scissors operator” [17]. Beyond that, GW also
describes quasiparticle renormalizations, finite life times, and improves on the total
energies of, e.g., defects [10,18]. While hybrid functionals are one-electron-like by con-
struction, also the GW – at least in all common implementations (see however the
recent Refs. [19,20]) – is based on a Green function G0 that is always related to a
single Slater determinant. Excluding any multi-reference character in G0, the G0W0
approach is thus not capable to treat systems in which fluctuations are strong.
Materials in which the correlation part is particularly important are, among oth-

ers, transition metal oxides and heavy fermion compounds with partially filled d
and f shells, respectively [21]. For treating electronic correlations in such materials,
dynamical mean field theory (DMFT) [22,23] (for a review see Ref. [24]) and its
merger with DFT [25,26] (for reviews see Refs. [27,28]) has been a big leap forward.
DMFT takes into account a major part of the electronic correlations: the “local” ones
that are confined to a single atomic site. Figure 1 (bottom) shows the corresponding
Feynman diagrams. This way, among others, quasiparticle renormalizations includ-
ing kinks [29–32], Hubbard side bands, metal-insulator transitions, and magnetism
can be described much more accurately than with one-particle methods, and finite
temperature properties become accessible as well. Early successes of DFT+DMFT
include the calculation of the Mott-Hubbard transition in V2O3 [33–36], magnetism
in Fe and Ni [25], and the α-γ transition in Ce [37,38]. More recently, it has also been
applied to oxide heterostructures [39–41], surfaces [42], nanoclusters [43] and oxygen
vacancies [44].
The major remaining shortcomings of DFT+DMFT are (i) the sand in the clock-

work when interfacing a density functional theory with a Feynman diagrammatic
approach and (ii) that only local correlations are taken into account in DMFT.
Regarding (i), let us in particular mention the double counting: It is unclear which
part of the DMFT correlations are taken into account already on the DFT side, and
so different double counting schemes have been proposed. Most commonly used is
the fully localized limit [45]. The double counting issue is particularly pronounced
in so-called “d+ p” DFT+DMFT calculations that in, say, oxides, include both, the
transition metal d- as well as the oxygen p-orbitals and can lead to largely different
results [46–48].
This conceptual problem can be overcome by substituting DFT by GW in the

so-called GW+DMFT approach [49,50], which merges two many-body Feynman di-
agrammatic approaches so that one can precisely identify which diagrammatic con-
tribution is counted twice. GW+DMFT also provides for a better treatment of the
exchange contribution. This is not only of advantage for correlated semiconductors
such as Ga1−xMnxAs, and ligand-states in, e.g., transition metal oxides [51], but also
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Fig. 1. First line: In GW the self energy Σ is given by the interacting Green function G
(black straight line) times the screened interactionW (red wiggled line) from coordinate/site
Ri to Rj . Second line: The screened interaction W in turn is given by the bare interaction
(here denoted as V ) and the screening in the random phase approximation (RPA). This
RPA screening is generated by the last term which yields a ladder in terms of V and bubbles
consisting of two Green functions. Third line: In DMFT the self energy is given by the local
contribution of all Feynman diagrams with the local interaction U always on the same site
Ri. Fourth line: In AbinitioDΓA, we take as the irreducible vertex Γ the bare non-local
Coulomb interaction V q and the local vertex Γloc which depends on orbitals (l, m . . . )
and frequencies (ν, ν′, ω) but not momenta (k,k′,q); Γloc also includes the local Coulomb
interaction U (adapted from Ref. [16]).

for a quantitative description of effective masses of correlated electrons [52]. We dis-
cuss the GW+DMFT approach and present results in Section 3; for a more detailed
introduction we refer the reader to references [53–56]. One should note, however, that
the treatment of non-local correlations is very limited in GW+DMFT as only charge
fluctuations and only the particle-hole channel are included in GW. Moreover they
are treated only in weak coupling perturbation theory, i.e., by building the particle-
hole ladder only in terms of the bare Coulomb interaction V , see Figure 1 (middle).
There are essentially two routes that deal with non-local correlations while keep-

ing the local DMFT correlations at the same time: cluster [57–59] and diagrammatic
extensions [60–66] of DMFT. The former have been successfully applied to the two
dimensional Hubbard model and helped establishing the presence of superconduc-
tivity in this model. However, due to numerical restrictions, realistic multi-orbital
calculations are only possibly for a handful of sites, restricting the cluster extensions
essentially to nearest neighbor correlations (for a review see Ref. [67]).
Diagrammatic extensions of DMFT on the other hand can treat short- and long-

range correlations on an equal footing, which allowed, among others, for the calcu-
lation of critical exponents [68–71] and revealed the absence of a metal-insulator
transition in the two-dimensional Hubbard model on a square lattice [72]. In
Section 4 we discuss the first of these diagrammatic extensions, the dynamical vertex
approximation (DΓA) [60,73] and its extension to ab initio calculations. For the latter,
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AbinitioDΓA [16,74], we take as the vertex (irreducible in the particle-hole channel)
the bare non-local Coulomb interaction as well as the local Coulomb interaction and
all local vertex diagrams, see Figure 8. From this unifying framework, we naturally
generate all (local and non-local) GW diagrams, all local DMFT diagrams, as well
as non-local diagrams beyond. The latter include, e.g., spin fluctuations which are
important in the vicinity of phase transitions, for magnons and pseudogap physics.
For a pedagogical introduction see reference [75], and reference [76] for an elaborate
presentation.

2 Hedin’s GW method: The new VASP implementation

2.1 Method

Hedin’s method is in principle an exact approach to describe many-body interac-
tions [11,18,77–79]. However, in practice for computational reasons, virtually all im-
plementations of this method are limited to the so-called GW approximation. This
greatly simplifies the calculations, but also makes important approximations1; the
considered Feynman diagrams are shown in the top panel of Figure 1.
The new aspect of the present VASP implementation [15] is that it is tuned for

massively parallel computers and that it works in imaginary time and frequency as
opposed to the earlier VASP implementation that worked along the real frequency
axis [14,80] and necessitated very fine frequency grids. In the following, we will give
a brief outline of the computational steps of the present code, highlighting why it is
particularly convenient for a combination with DMFT. We follow previous publica-
tions but emphasize simplicity and conciseness by dropping for instance the Brillouin
zone index as well as the PAW formalism [15]. The first step in a GW calculation is
to determine the DFT one-electron orbitals ψi and one-electron energies ǫi. From the
DFT orbitals the one-electron Green function follows:

G(r, r′, iτ) =

occ
∑

i

ψi(r)ψ
∗

i (r
′)e−(ǫi−µ)τ (τ < 0), (1)

G(r, r′, iτ) = −

unocc
∑

a

ψa(r)ψ
∗

a(r
′)e−(ǫa−µ)τ (τ > 0). (2)

Generalization to finite temperature is straightforward and involves restriction of the
time to −β ≤ τ ≤ β, where β is the inverse temperature, and introduction of Fermi
occupancy factors ni = 1/(exp((ǫi − µ)β) + 1) and (1− ni) in the first and second
equation, respectively. It is then easy to show that the function observes the anti-
periodicity for Fermionic Green functions G(r, r′, iτ) = −G(r, r′, i(τ − β)).
As typically done in plane wave codes, all functions are expanded in a plane wave

basis and fast Fourier transformed (FFT) to real space only when this is required:

G(r, r′, iτ) =
∑

g,g′

eigrG(g,g′, iτ)e−ig
′r′ (3)

G(g,g′, iτ) =
1

N2r

∑

r,r′

e−igrG(r, r′, iτ)eig
′r′ . (4)

1 Only the particle-hole channel is considered and the vertex is approximated by the bare
Coulomb interaction V q, see Section 4.
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Here Nr is the total number of real-space grid points. Since the plane-wave basis can
be chosen to be significantly smaller than the number of real-space grid points [81],
the plane wave expansion typically reduces the storage demand by a factor 6-8 for
orbitals (one position index), and a factor 62 − 82 for Green functions (two position
indices). The first crucial approximation of the GW method is that the irreducible
polarizability is approximated by the independent particle polarizability (RPA).
Assuming a factor 2 for spin-degenerate systems, we get

P (r, r′, iτ) = 2G(r, r′, iτ)G(r′, r,−iτ) = 2G(r, r′, iτ)G∗(r, r′,−iτ), (5)

that is, vertex corrections of the form P = 2GGΓ are neglected. This approximation
neglects important many body effects, for instance excitonic effects [10,80] that are
captured by particle-hole ladder diagrams. It has been shown that these terms become
important when self-consistent calculations are performed [80]. From the irreducible
polarizability the screened interaction (see Fig. 1 middle) can be determined by:

W (r, r′, iω) = V (r, r′) + V (r, s)P (s, s′, iω)W (s′, r′, iω) ⇔ W−1 = V −1 − P. (6)

Here, V is the Coulomb kernel, and integration over repeated spatial coordinates (s
and s′) is assumed. For reasons of computational efficiency, the calculation is more
conveniently done in reciprocal space, where the Coulomb kernel is diagonal [15].
The Dyson-like equation for the screened interaction needs to be solved in fre-

quency space iω. This obviously requires one to perform a Fourier transformation
of the independent particle polarizability from imaginary time [compare Eq. (5)] to
imaginary frequency. In previous (imaginary time) GW codes [82,83] this was a fairly
cumbersome operation involving fitting, a fast Fourier transformation, and some ana-
lytic continuation at very large frequencies and times. Using a mathematical rigorous
treatment, Kaltak et al. determined imaginary time and frequency grids [84] that
have a number of favorable properties. (i) The grids are non-uniformly spaced. This
allows to simultaneously and accurately describe intra-band transitions at very small
energies (meV), as well as high energy excitations into continuum like states (up to
several 100 eV). (ii) The time and frequency grids are individually optimized to allow
accurate calculations of the correlation energy to second order. Convergence of the
correlation energy is exponential in the number of time or frequency points, with 20
points yielding µ eV convergence even for metals. (iii) The grids are dual to each other:
if a Bosonic function is known on a grid of Nω frequency points ωk, k = 1, ..., Nω, the
numerical error in the Bosonic function is minimal for a set of corresponding Nτ = Nω
imaginary time points τj , j = 1, ..., Nτ . (iv) Related to point (iii), a numerical discrete
Fourier transformation exists to transform any function from imaginary time to imag-
inary frequency (and vice versa):

f(iωk) =

Nω
∑

j=1

γkjcos(ωkτj)(f(iτj) + f(−iτj)) + iλkjsin(ωkτj)(f(iτj)− f(−iτj)). (7)

This is a numerical approximation to the Fourier transformation from time to
frequency :

f(iω) =

∫

∞

−∞

f(iτ)eiωτdτ

=

∫

∞

0

[

cos(ωτ)(f(iτ) + f(−iτ)) + i sin(ωτ)(f(iτ)− f(−iτ))
]

dτ. (8)

The corresponding matrix of coefficients, e.g., γkjcos(ωkτj), are precalculated and
stored.
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The evaluation of the self energy is most conveniently done in imaginary time

Σc(r, r′, iτ) = −G(r, r′, iτ)W c(r, r′, iτ), W c(iω) =W (iω)− V (9)

with the bare Coulomb kernel V subtracted before the Fourier transformation of
W and the contribution GV calculated analytically. As for the polarizability, also
equation (9) neglects vertex corrections (Σ = −GWΓ). For non-correlated semicon-
ductors, the vertex contributions are only of the order of 0.2 eV for states close to the
Fermi-level but can reach up to 1 eV for localized d-orbitals [85].
With the evaluation of Σc, a single shot G0W0 calculation is finished, so it is

worthwhile to recapitulate what can be done with the yet calculated quantities. It
is straightforward to express the self energy in any basis, for instance, a set of lo-
calized Wannier functions and to export it to a DMFT solver. The advantages over
a conventional GW implementation are numerous. (i) First, many GW codes avoid
calculating the full frequency dependency of the self energy, and instead evaluate the
self energy only at a few points close to the DFT one-electron energies Σ(ǫDFTi ). In
the present code, this is no longer necessary and one obtains the self energy at all
imaginary time points by equation (9). There is a (small) price to pay, though: to
obtain physically measurable quantities, the self energy needs to be continued to the
real axis, for which continued fractions are used [15]. However, since DMFT solvers
usually work in imaginary time, the interface between VASP and DMFT is simple
and requires only an interpolation from the few available imaginary frequency points
{iωi} to a denser Matsubara grid. (ii) Each of the individual compute steps scales
(at worst) cubic in the number of grid points or plane waves and linear in the number
of k-points, as opposed to conventional GW codes, which scale quartic in the number
of basis functions and quadratic in the number of k-points. The favorable scaling is
straightforward to see: the calculation of the polarizability [Eq. (5)] and self energy
[Eq. (9)] are clearly quadratic in the number of grid points, however, cubically scaling
rank one updates of matrices and matrix multiplications are required to calculate the
Green function [Eq. (1)] and the screened potential [Eq. (6)]. This favorable scaling
combined with the efficient frequency grids allowed for efficient calculations of the
random phase approximation (RPA) of the correlation energy for isolated defects
in huge supercells containing several hundred atoms [86]. (iii) The constrained RPA
(cRPA) [87] is simple and straightforward to implement in the present code. One
only needs to remove the polarizability P t(iτ) = 2Gt(iτ)Gt(−iτ) of some target, say
t2g, orbitals from the total polarizability P = P

r + P t to obtain an effective screened
interaction U :

U−1(iω) = V −1 − P r(iω) ⇔ U−1(iω) =W−1(iω) + P t(iω). (10)

The polarizability P r(iω) then captures all screening effects, except for the one inside
the target space, which will be treated in the DMFT solver. The full frequency-
dependent U(iω) can be calculated with very little extra cost, and after transformation
from the plane wave basis to a localized target space, it can be directly imported into
a DMFT continuous time quantum Monte Carlo solver.
The advantages of the imaginary time and imaginary frequency representation are

more obvious if self-consistency is considered. Once the GW self energy is known, the
Green function can be updated by

Gc(iω) = (iw + µ−HHF − Σc + [Σimp − Σ
GW
imp ])

−1 − (iw + µ−HHF)−1, (11)

where HHF = −∇2/2 + V ion + V H + V x is the Hartree-Fock Hamiltonian consisting
of the kinetic energy term, the ionic V ion, Hartree V H and exact exchange potential



Dynamical Mean-Field Approach with Predictive Power 2571

V x. To obtain a converging Fourier transformation when transforming to the imag-
inary time, the Hartree-Fock Green function (second term) needs to be subtracted
and added back in imaginary time

G(iτ) = Gc(iτ) +GHF(iτ). (12)

This closes the cycle and allows to continue with a re-evaluation of the independent
particle-hole polarizability in equation (5). Clearly, it is also possible to add any local
self energy in equation (11) (terms in square brackets) and, thus, seamlessly incorpo-
rate DMFT results. Likewise, the irreducible polarization propagator can incorporate
local effects beyond the independent particle-hole approximation, if the DMFT code
provides the required information (P → PGW + Pimp − P

GW
imp , compare next section).

This opens the route towards a concise implementation of GW+DMFT, as discussed
in the next section (see Fig. 5). A closure of the self-consistency cycle is already pos-
sible in the present code, although some intricacies for metallic systems still need to
be solved, including an approximate inclusion of Drude-like metallic screening, and
an efficient update of the chemical potential, which is important to achieve robust
convergence in the self-consistency cycle for metals.

2.2 Results

The GW method has now been used for almost five decades. However, despite its
undisputed improvements compared to DFT, results vary significantly between dif-
ferent codes. Errors are actually particularly large for transition metal compounds
placing a serious question mark on any quantitative predictions. Specifically in ox-
ides, d-binding energies can vary by up to 1 eV using different codes and implementa-
tions [88]. This is clearly unacceptable, if one aims to merge GW with more accurate
methods such as DMFT. One major problem of the GW method is that the con-
vergence with respect to the basis set size is extremely slow [89,90]. Specifically, for
the projector augmented wave method, as used in VASP, the partial waves, which
are supposed to form a sufficiently complete basis in the vicinity of the atoms, need
to be chosen such that basis set convergence can be attained. The slow convergence
has been rigorously discussed by Klimes et al. in reference [88]. Although that paper
also establishes a suitable benchmark for solid state systems, we are not aware that
other comparable reference numbers have yet been published for solids. Then, how
can one ascertain that the numbers predicted with VASP are accurate and reproduce
the infinite basis set limit? Fortunately, the new VASP GW code allows us to address
this issue. Since it is efficient for large unit cells and large basis sets, it is possible to
compare the results for molecules with atomic codes that use Gaussian type orbitals
(GTOs). GTOs have been used for 50 years in quantum chemistry and have matured
to a point where convergence for excited state calculations can be obtained fairly
easily, although careful basis set extrapolations are as important as for plane waves.
Figure 2 shows the difference between the basis set extrapolated GTO results

and the VASP PAW results for the ionization potential of 100 closed shell molecules.
The mean deviation between both codes is only 60meV [91], and large outliers are
practically absent. We note that the deviations between other plane wave codes and
GTOs are on average twice as large, but can even reach 200meV on average. The other
important point is the large difference between theory and experiment highlighting
how limited the precision of G0W0 is even for simple weakly correlated systems such
as small molecules. This clearly underlines the need to go beyond the random phase
approximation and single shot G0W0 calculations.
As an illustrative example for solid state calculations, we show results for SrVO3.

Figure 3 shows our calculated on-site dynamical screened intra-orbital interaction
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Fig. 3. On-site dynamical partially screened (a) intra-orbital interactions U(iω), (b) inter-
orbital U ′(iω), and (c) Hund’s coupling J(iω) of SrVO3 as a function of the imaginary
frequency (shown in blue circle). The bare counterparts are also shown as black dashed
lines. The red solid lines are obtained from a Padé fit. We use 20 optimized imaginary
frequency grid points and 8× 8× 8 k points in the calculations.

U(iω), inter-orbital U ′(iω), and Hund’s coupling J(iω) of SrVO3 using the cRPA and
V-t2g-like maximally localized Wannier functions. In imaginary frequency, U , U

′ and
J are rather smooth functions, so that it is possible to interpolate them from the
optimized frequency grid to Matsubara frequencies by a Padé interpolation [92] (see
the red solid lines in Fig. 3). This makes it possible to transfer them to a dynamical
impurity solver. In the static limit (ω = 0), U , U ′, and J are calculated to be 3.38,
2.42, and 0.44 eV, respectively, agreeing perfectly with the ones directly obtained from
the conventional implementation working on the real frequency axis. Moreover, they
are in nice agreement with the published values [93,94]. In the high-frequency limit
(ω →∞), U , U ′, and J approach the unscreened (bare) counterparts (16.29, 15.07,
and 0.55 eV).
Figure 4a shows the single-shot G0W0 momentum resolved spectral function.

Compared to DFT, the t2g bandwidth is reduced by 20% in G0W0. In the G0W0
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DFT bandsa b

Fig. 4. (a) Momentum resolved spectral function in the G0W0 approximation (color/gray)
and DFT (black line). (b) Comparison of the DFT and G0W0 local spectral function A(ω).

approximation, spectral weight is transferred to satellites. This is much more clearly
seen in the local, momentum-integrated, spectral function as shown in Figure 4b.
The plasmon satellite of the t2g quasi-particle band at ∼3 eV arising from the t2g
contribution to the fully screened interaction at the plasmon frequency [51,95] is well
reproduced. Further, a plasmon peak deriving from transitions outside the t2g sub-
space is seen at ∼15 eV [51,93]. We note, however, that in our calculations repeated
plasmon peaks at higher frequencies are absent. This is a well known issue of the
G0W0 approximation [96].

3 Screened exchange and local quantum fluctuations: GW+DMFT

3.1 Method

The key advantage of the GW approach discussed above is its treatment of dynamical
screening: While standard electronic structure methodologies – such as Hartree-Fock
or DFT – work with the bare Coulomb interaction V , GW explicitly incorporates
the polarizability of the electronic system. As a consequence, the repulsion between
electrons becomes reduced and retarded. The resulting screened-exchange self energy
yields a much improved description of, e.g., sp-semiconductor gaps, whereas the re-
tardation effects account for spectral weight transfers to (plasmon) satellite features,
and finite lifetimes of electronic excitations.
However, as already mentioned in the Introduction, the perturbativeGW approach

is insufficient for strongly correlated materials. In fact, it fails to account for their
strong mass renormalizations, Hubbard satellites, and local moments physics [21]. Our
recent understanding of strong electron-electron correlations was indeed propelled by
the advent of a non-perturbative technique: the dynamical mean field theory [24].
The latter maps the lattice problem onto the self-consistent solution of an Ander-
son impurity model, and the lattice self energy is identified with the single-site (i.e.,
local) self energy of the impurity [23]. This mapping becomes exact in the limit of
infinite lattice coordination [22]. By construction, DMFT accounts only for correla-
tions from on-site interactions, yet it includes – as depicted in Figure 1 – all Feynman
diagrams built from the Hubbard U and Hund J interactions and the local impu-
rity propagator. To set up a realistic DMFT calculation, the one-particle part of
the Hamiltonian is taken from DFT (whence the name DFT+DMFT [25,26]) and
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the screened interaction parameters – U and J – can be computed from techniques
such as constrained DFT [97], or, better, the constrained random phase approxima-
tion [87,98,99]. However, as mentioned in the Introduction, it is not separable how
the Hubbard U already contributes to the DFT band-structure. so that there is the
problem of “double-counting” correlations when adding the DMFT self energy.
From this brief summary it is apparent that GW and DMFT are very comple-

mentary techniques: GW has no restriction on the range of the interaction or the
self energy and therefore excels for sp-systems. In DMFT the interaction and the self
energy are by necessity localized on an atomic site, yet their non-perturbativeness
allows for a reliable description of the Kondo and Mott physics realized in many
d- or f -electron materials. At the same time, GW and DMFT share a common
(diagrammatic) language. Therewith, both methods can profit from each other: As
the RPA technique is integral part of the GW, it can provide the DMFT with a Hub-
bard U computed from first principles [see the preceding section and Eq. (10)]. In
return, DMFT susceptibilities and self energies can add local vertex corrections to all
orders to Hedin’s equations for the polarization and self energy, see equations (5) and
(9), respectively. Contrary to DFT+DMFT, any double-counting in this combination
of screening and correlations can be avoided, since a clear-cut separation is possible
on the diagrammatic level.
This outlines the GW+DMFT method proposed in reference [50]. By ele-

gantly combining the best of both worlds – screened exchange and local quan-
tum fluctuations – GW+DMFT has the potential to vastly extend the realm of
quantitative and predictive many-body electronic structure calculations. Let us
give specific examples: In many materials the separation between correlated d or
f -states and ligand sp-orbitals is often severely underestimated within DFT and
DFT+DMFT [46,100–102]. Yet, optical transitions between these states can actually
be relevant for technological applications in, e.g., intelligent window coatings [103],
or eco-friendly rare-earth-based pigments [104]. Calculating the red colour of CeSF
indeed required incorporating a GW correction into DFT+DMFT [104]. Non-local
(inter-site) self energies à la GW were also shown to be crucial in oxides [102,105], in-
termetallics [106], and iron-pnictides and chalcogenides [107], e.g., for explaining the
non-magnetic nature of BaCo2As2 [108]. Moreover, important effects of dynamical
screening were found, among others, in oxides [51,109,110], pnictides [108,111] and
cuprates [112]. On the other side, local vertex corrections in susceptibilities beyond
RPA where shown to be crucial in, both, Hubbard models [113,114] and realistic
materials, e.g., regarding the dynamical structure factor in iron-pnictides [115,116],
and the absence of ferromagnetism in stoichiometric FeAl [117].
After this general rationale, we will now discuss GW+DMFT in some more detail

(see Refs. [53–56] for longer reviews). The workflow of the approach is depicted in
Figure 5: On the left – in blue – is the DMFT [49,118,119] cycle with an additional
self-consistency for the two-particle interaction: It is required that the local screened
interactionWloc equals the screened impurity interactionWimp = U + UPimpWimp =
U − UχU , where χ = 〈T n(τ)n(0)〉 is the impurity density-density correlation function
and U the local interaction (containing, e.g., Hubbard and Hund terms). Owing to
the dynamical nature of screening, these interactions are in particular frequency-
dependent, i.e., U → U(ω). At least for density-density type of terms, solving an
Anderson impurity model with dynamical interactions is easily possible with quantum
Monte Carlo techniques, both approximately [109] and numerically exactly [109,120,
121]. On the right – in green – are Hedin’s equations for the polarization PGW and
the self energy ΣGW in the GW approximation. Neglecting vertex-corrections here
boils down to the RPA for PGW , equation (5), and the first order GW expression for
Σ, equation (9).
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Gimp = −
〈

Tcc†
〉

S
Wimp = U − UχU

Σimp = G−1 − G−1

imp

Pimp = U−1 − W −1

imp

Gloc =
∑

k

[

G−1

H
− Σ

]−1

Wloc =
∑

q W

G−1 = Gloc
−1 + Σimp

U−1 = Wloc
−1 + Pimp
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[

G−1

H
− Σ

]−1

P = Pimp + P GW − P GW
imp

W =
[

V −1 − P
]−1

W GW
imp =

[

U−1 − P GW
imp

]−1

Σ = Σimp + ΣGW − ΣGW
imp

P GW = 2GG

P GW
imp = 2GimpGimp

ΣGW = GW

ΣGW
imp = GimpW GW

imp

Fig. 5. The GW+DMFT approach. The DMFT sub-cycle is indicated in blue, the GW
procedure in green, and shared quantities in grey boxes.

DMFT and GW intersect at two junctures – marked in grey – once on the two-
particle level in the polarization, and once on the one-particle/spectral level in the self
energy. Both times, non-perturbative, yet local contributions from DMFT, Pimp and
Σimp, are added to the GW contributions, P

GW and ΣGW . Since the latter already
contain some of the local diagrams of the former, these terms have to be subtracted.
Indeed, at each iteration, we need to remove all contributions from the polarization
and the self energy that arise when computing the impurity analogues of P and Σ on
the GW level. In case of the polarization, this is achieved by subtracting a local RPA
polarization PGWimp = 2GimpGimp obtained from a convolution of two impurity Green

functions [122]: P = Pimp + P
GW − PGWimp . For the self energy, we need to subtract a

term ΣGWimp that is computed as the first order contribution in an interaction W
GW
imp

that derives from screening the impurity interaction – the Hubbard U – with the above

polarization PGWimp , i.e., W
GW
imp =

[

U−1 − PGWimp
]

−1
.2 Due to these junctures, there is

an outer self-consistency that allows for a feedback of local and non-local many-body
effects onto the GW and DMFT cycles, respectively. Typically such a calculation is

initialized with a Green function G =
[

G−1H − Σ
]−1
, where GH denotes the Hartree

Green function, and a guess for the self energy Σ (here including the Fock term). In
the first iteration, Σ is usually replaced by the DFT exchange-correlation potential
V xc, i.e., G = GDFT (called G0 in the Introduction section).

3.2 Results

Combining two methods that have evolved and matured independently over decades
into large software packages is an intricate endeavor. Therefore, the full scheme, as
shown in Figure 5, has been realized first for one-band calculations [49,113,114,123].
For realistic multi-band systems, the first implementation – Tomczak et al., [51]
– resorts to simplifications, namely (1) omitting global self-consistency, i.e., per-
forming only one-shot GW calculations starting with G = GDFT , (2) fixing the
double-counting polarization PGWimp to the (dynamical!) cRPA result and approxi-

mating Pimp ≈ P
GW
imp , (3) approximating the double-counting self energy by the local

2 Here, we leave out details on how to connect DMFT and GW in orbital space. For this as-
pect see the “orbital-separated” GW+DMFT scheme in reference [52] and also reference [95].
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projection of the GW self energy: ΣGWimp ≈
∑

k Σ
GW , and (4) solving the DMFT im-

purity with dynamical U(ω) within the approximative Bose factor Ansatz [109]. In
other early works, additional approximations were made: Taranto et al., used a sta-
tic Hubbard U and circumvented computing a fully frequency-dependent ΣGW [124]
(see also below), and Sakuma et al., combined DMFT and GW self energies from
independent calculations [125].
Applied to the prototypical correlated metal SrVO3, GW+DMFT revealed im-

portant new insights [51,52]: The additional ingredients – the momentum-dependent
self energy Σ(k, ω) and retardation effects in the Hubbard interaction U(ω) – are
found to compete. The dynamics in the interaction describes, among others, spec-
tral weight transfers to plasmon satellites (at ∼15 eV for SrVO3 [93]). These high
energy excitations account for an additional (i.e., beyond Hubbard-model physics)
reduction of the low-energy quasi-particle weight and, correspondingly, to a narrow-
ing of the band-width [109,110] (by a factor ZB ∼ 0.7 in SrVO3 [126]). Therefore,
DMFT calculations that use only static interactions, have to employ a larger Hubbard
U = 4− 5.5 eV [29,100,101,127] than the static limit U(ω = 0) ≈ 3.5 eV [51,93,98] of
the cRPA to account for the same mass enhancement; such a larger interaction is
actually obtained in constrained LDA [128]. The non-local exchange self energy on
the other hand widens the low-energy dispersion [51,107,129,130]. Correspondingly,
effective masses of quasi-particles are reduced. With respect to the LDA reference,
effective masses are given by the ratio of the LDA and GW+DMFT group velocities:

m∗

mLDA
=
dǫLDAk /dk

dEk/dk
,

dEk
dk
=
dǫLDAk /dk + ∂kReΣ(k, ω)

1− ∂ωReΣ(k, ω)

∣

∣

∣

∣

k=kF,ω=0

. (13)

Here, the denominator is related to the quasi-particle weight Zk = [1−
∂ωReΣ(k, ω)]

−1
ω=0. In DMFT, where the self energy is local, m

∗/mLDA = 1/Z holds.
In GW+DMFT, the extra term involving the momentum derivative of the self en-
ergy substantially counteracts the mass enhancement generated by the dynamical
correlations [52,107]. Altogether this yields a similar effective mass as in the previ-
ous DFT+DMFT calculations (that use U > U(ω = 0)), but the low-energy spectral
weight is different, and can be measured by transport or optics.
In Figure 6 we compare Matsubara self energies for the t2g orbitals of SrVO3 ob-

tained with our new implementation that combines the GW-code of VASP detailed
in Section 1 with the w2dynamics DMFT code [131,132].3 We employ the same ap-
proximations (1)–(3) as in reference [51]. However, instead of (4) the approximative
Bose-factor Ansatz [109], we use a numerical exact continuous-time quantum Monte
Carlo algorithm for retarded density-density interactions [120]. Our reference is a
standard DFT+DMFT calculation that uses a static Hubbard U(ω = 0) and Hund’s
J as provided by the cRPA (see Fig. 3). From the low-energy slope of ImΣ(iωn)
we extract a quasi-particle weight Z = 0.6. Turning on the retardation in the inter-
action, i.e., solving DFT+DMFT with the dynamical cRPA U(ω) adds substantial
renormalizations of plasmonic origin; Z decreases to 0.3. Moreover, since the dy-
namical interaction recovers at high frequencies the unscreened Coulomb interaction,
ReU(ω →∞) ≈ 16 eV, also the self energy Σ lives on a much larger energy scale [109]
than in the standard, static DFT+DMFT case. Adding the non-local GW self
energy decreases effective masses, i.e., the ratio of U over bandwidth diminishes and so
does the strength of correlations: In our GW+DMFT the local quasi-particle weight

3 The interface between both codes has been implemented by D. Springer. The capability
to use retarded density-density interactions in w2dynamics has been provided by D. Springer
and A. Hausoel. The framework of the Research Unit 1346 was instrumental for the success
of this collaboration involving at least 3 independent research groups.



Dynamical Mean-Field Approach with Predictive Power 2577

Fig. 6. Local Matsubara self energies (T = 300K) for the t2g orbitals of SrVO3 using (i)
DFT+DMFT with static U = U(ω = 0), (ii) DFT+DMFT with the dynamical interaction
U(ω) from cRPA, and (iii) GW+DMFT. Data obtained using the new GW implementation
of VASP in combination with w2dynamics.

is Z = 0.63, which is even slightly larger than within static DFT+DMFT. We find
qualitative agreement with previous GW+DMFT results from reference [52].4

GW+DMFT spectra for the t2g-orbitals of SrVO3 from reference [51] are shown in
Figure 7 in comparison with angle-resolved photoemission spectroscopy (ARPES) re-
sults. The calculation agrees well with the experimental data. Differences to previous
DFT+DMFT calculations (see, e.g., Refs. [29,100,101,127]) are however most pro-
nounced for unoccupied states [52], that are inaccessible to ARPES experiments. The
effects are in line with the above discussion: (i) W.r.t. DFT+DMFT the low-energy
bandwidth is enhanced by non-local self energy contributions (e.g., the unoccupied
dxy, dxz-bands at the X point move up from 0.6 eV [29] to ∼1 eV). (ii) Using an ab
initio screened interaction U(ω) (instead of a larger static U adjusted so as to re-
produce the experimental mass enhancement), the upper Hubbard band is placed at
much lower energy (e.g., 1.2(1.9)eV instead of 2.2(2.85)eV [29] at the Γ(X) point for
the dxy, dxz-components). Indeed, the upper Hubbard band merges with the quasi-
particle peak in momentum-integrated spectra. This reduced importance of Hubbard
physics has recently been confirmed by partially self-consistent GW+DMFT calcu-
lations [95], and is compatible with recent inverse ARPES experiment.5 Besides the
shown low-energy dispersion, also the position of ligand states, in particular the O-2p
and Sr-4d improve substantially in GW+DMFT. Since the discussed GW+DMFT
results are not globally self-consistent, the ligand states are at the same position as
in G0W0 calculations [51,52,124,133].
In the setup used for these results (one-shot G0W0), the only modification of

the DMFT code comes from adding the frequency- and momentum dependent GW
self energy contributions into the DMFT one-particle self-consistency. Yet, since the
GW self energy is a large and unhandy object, it stands to reason to approximate
it to alleviate memory consumption. Also, as mentioned in the preceding section,
some GW codes cannot provide the self energy on a continuous frequency mesh. A
strategy to simplify the influence of the GW self energy was pioneered by Taranto et
al., in reference [124]: By evaluating the self energy at the Kohn-Sham energies and
hermitianizing it along the lines of reference [12], it is possible (using an approximate
double-counting correction) to cast ΣGW into Hamiltonian form. This idea was

4 Deviations could be explained by differences in temperature, the lattice constant, as well
as the lifting of approximation (4).
5 T. Yoshida and A. Fujimori, private communication.
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Fig. 7. Comparison of GW+DMFT spectra from reference [51] (bottom) with angle resolved
experimental photoemission spectra (top) from references [134,135] for the Γ and X-point.

further developed into the more rigorous quasi-particle self-consistent
(QS)GW+DMFT approach proposed by Tomczak in reference [136] – previ-
ously alluded to in reference [107] – in which the double-counting correction can
be performed exactly, and furthermore, a global self-consistency is performed on
the QSGW[12] level. Flavors of QSGW+DMFT have subsequently been applied to
cuprates and nickel oxide [137], nickel and iron [138], as well as insightful model
systems [139,140]. Recently, Boehnke et al.[95] have pioneered a setup in which
GW+DMFT self-consistency is performed beyond the quasi-particle approximation,
yet only within a low-energy subspace, in this case the t2g-orbitals of SrVO3. As
anticipated in earlier model calculations for the extended Hubbard model [113,114],
the self-consistent local interactions are smaller in this setup than the initial cRPA
values: compared to previous non-self-consistent works [51,52] the strength of
correlations is reduced and mass renormalizations in SrVO3 become more plasmonic
in origin [95].
This concludes the description of the current state-of-the-art in GW+DMFT cal-

culations. While there is a panoply of materials to which the described methodology
can be applied with great benefit, let us point out two challenges for future devel-
opments: (i) Besides influencing the low-energy dispersion, the GW self energy also
effects higher lying states, e.g., the O-2p and the Sr-4d orbitals in SrVO3. Indeed,
the O-2p orbitals are off by 1.5−2 eV within DFT, and are pushed towards their
experimental position by the GW self energy [51,52,133]. This will reduce their con-
tribution to screening, causing an increase in the Hubbard U for the t2g-orbitals,
as indeed found when performing cRPA on top of QSGW. This effect of ligand
states will counteract the reduction of correlations seen in calculations in which self-
consistency is limited to the t2g-orbitals [95]. Hence, a GW+DMFT implementation
that includes ligand states in the self-consistency is eagerly awaited. (ii) Contrary
to one-shot G0W0, self-consistent GW+DMFT is a conserving theory on the one-
particle level: the GW+DMFT self energy is derivable from an approximation to a
free-energy functional [50,141]. Yet, on the two-particle level the situation is inverted:
RPA and also QSGW+DMFT [136] yield a conserving density-density response func-
tion/polarization. In fully self-consistent GW+DMFT which uses dressed Green func-
tions, on the other hand, gauge invariance for the polarization is not given and its
violation can lead to a qualitatively wrong description of, e.g., collective (plasmon)
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modes [142]. Achieving gauge-invariance respecting one- and two-particle quantities
within a GW+DMFT scheme remains a challenge for future works.

4 Correlations on all time- and length-scales: Ab initio DΓA

4.1 Method

The essential approximation of DMFT is that the self energy Σ, which is nothing
but the one-particle fully irreducible vertex, is local – given by all local skeleton
diagrams [24]. We can put this concept on the next level, assuming the locality of the
two-particle fully irreducible vertex Λ.6 This is the dynamical vertex approximation
(DΓA) [60,73]. From the local, fully irreducible vertex Λ, extracted by inverting the
local parquet equation of DMFT[143], one can construct – through the self-consistent
solution of the parquet equation of the lattice system – the non-local full vertex F , and
from that, the non-local DΓA self energy as well as all physical susceptibilities. This
full-fledged parquet DΓA approach has been employed in references [144,145]. In most
calculations however, a restriction to the particle-hole (and transversal particle-hole
channel) has been employed. In this so-called ladder DΓA [60,73], the local vertices
irreducible in the two particle-hole channels Γph are the starting point and the full
vertex F is constructed through the Bethe-Salpeter ladder. This neglects the particle-
particle channel which is important, e.g., for superconductivity and weak localization
corrections to the conductivity. In both variants the local and non-local self energy
is obtained through the Schwinger-Dyson equation of motion, and includes non-local
correlation effects such as spin fluctuations and pseudogap physics.
A variety of closely related approaches have been subsequently proposed [62–66].

They all have in common that they include all the local DMFT correlations, and
construct additional non-local correlations from the two-particle vertex via Feynman
diagrams. The differences are in the details: (i) which two-particle vertex is taken,
(ii) whether the real or a dual Green function (subtracting the local Green func-
tion) is taken as connection line, (iii) which Feynman diagrams are considered. These
diagrammatic extensions of DMFT have been highly successful for studying model
systems such as the one-band Hubbard model and we discuss selected results in
Section 4.2.
For realistic materials calculations, one might envisage using DΓA instead of

DMFT in a DFT+DΓA scheme. However, it is more appealing to use the Bethe-
Salpeter equation also as a means for calculating the non-local exchange and correla-
tion. This is possible by taking, as the irreducible vertex in the particle-hole channel,
the non-local Coulomb interaction V q in addition to the local vertex, see Figure 8b.
Besides non-local interactions, such a treatment also allows us to include less strongly
correlated orbitals – without the need to calculate the local vertex for them. In
the following we discuss this AbinitioDΓA, while results for SrVO3 are presented in
Section 4.3.
The flow diagram of the AbinitioDΓA algorithm is given in Figure 8, for a complete

presentation and technical details see reference [16]:
Figure 8a: The first step is to calculate the local generalized susceptibility χloc

via the numerical solution of an Anderson impurity model,7 and use the local variant

6 Defined as all Feynman diagrams with two incoming and outgoing particle lines that
cannot be separated into two pieces by cutting two Green function lines.
7 Calculating this vertex by continuous time quantum Monte Carlo simulations [146] is
computationally the most demanding step. For getting all components of the vertex, a worm
sampling is needed [147]; using an improved estimator [148,149] and vertex asymptotics [145,
149–151] increase the accuracy and size of the frequency box.
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(c) lattice Bethe-Salpeter equation

(b) the irreducible vertex

(d) Schwinger-Dyson equation of motion

(a) local Bethe-Salpeter equation

Fig. 8. Flow diagram of the AbinitioDΓA algorithm (from Ref. [16]). (This figure is subject
to copyright protection and is not covered by a Creative Commons license.)

of the Bethe-Salpeter equation as well as the bare (bubble) susceptibility χ0,loc to
extract the local irreducible vertex in the particle-hole channel Γloc (as indicated).
This vertex and the local susceptibility depends on three frequencies ν, ν′ and ω, and
four orbitals m, l, m′, l′.
Figure 8b: We supplement this local irreducible vertex Γloc with the non-local

Coulomb interaction V q at momentum q. Together these terms form the AbinitioDΓA
approximation for the irreducible vertex Γq in the particle-hole channel.
Figure 8c: With this Γq we solve the Bethe-Salpeter equation on the lattice to

get the full vertex F q.8

Figure 8d: This F q allows us in turn to calculate the AbinitioDΓA self energy
via the Schwinger-Dyson equation of motion (the second line represents the Hartree
and Fock contribution to the self energy).
Self consistency: With a new self energy and local Green function we can, in

principle, go back to Figure 8a and recalculate the local susceptibility and vertex,
closing the self-consistency loop.
Before turning to our presentation of selected DΓA results, let us briefly discuss

what kind of physics the AbinitioDΓA can describe. First of all, we notice that the
first, V q term of Figure 8b yields the RPA screening when inserted into the Bethe-
Salpeter equation in the particle-hole channel of Figure 8c. Via Figure 8d this yields
the GW self energy. That is, all GW diagrams are included in AbinitioDΓA. But on
top of GW, there is also the crossing symmetrically related ladder in the transversal

8 As detailed in reference [16], besides the displayed particle-hole ladder, also the transver-
sal particle-hole ladder is taken into account, and the double-counted contribution is sub-
tracted. The Bethe-Salpeter equation is formulated in terms of a magnetic and density com-

bination of spins which are not displayed in Figure 8. Neglecting the second, V k−k
′

term in

Figure 8b simplifies the momentum dependence (Γqkk
′

→ Γq) and dramatically reduces the
computational effort to solve the Bethe-Salpeter equation. Please note that a corresponding
local contribution U is included as part of Γloc but does not lead to a k, k

′-dependence.
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particle-hole channel. Second, if we only consider the local Green functions in the
Bethe-Salpeter equation Figure 8c, we recover the local F or susceptibility χ of Fig-
ure 8a as well as, via the equation of motion, the DMFT self energy. In other words,
all DMFT diagrammatic contributions are also included. Beyond both, we have more
diagrams and physics included, e.g., non-local spin fluctuations. These can be de-
scribed in weak coupling perturbation theory as the particle-hole and transversal
particle-hole ladder with the local bare interaction U as a building block. These dia-
grams are generated in Figure 8c when taking the bare U term which is part of Γloc in
Figure 8b. More precisely it is the U contribution to the vertex which is analogous to
the second, V k−k

′

term on the right hand side of Figure 8c which generates the spin
fluctuations. Let us emphasize that in DΓA such spin fluctuations are not restricted
to weak coupling, the same kind of diagrams are also generated with the full Γloc.

4.2 Results I: One-band Hubbard model

In the last decade the DΓA has been intensively applied to study several physical
aspects of the single-orbital Hubbard model. On the one hand, this was important
to demonstrate the performance of DΓA-based algorithms to describe intermediate-
to-strong-coupling parameter regions, hardly accessible to other techniques, in view
of subsequent applications to realistic systems. On the other hand, the DΓA, since
its first applications to single-orbital models, has allowed significant progress in the
fundamental understanding of important topics in many-body physics. We just men-
tion here, among others, in d = 2 the transformation of the Mott metal-insulator
transition into a crossover down to U = 0 and the spin-fluctuation-driven pseudo-
gap [72,73,152,153], and, in d = 3, the critical exponents of the Hubbard model and
the breakdown of the paramagnetic Fermi-liquid at low temperatures (T ) because
of spin fluctuations [68,153]. Notably, several of these DΓA findings have been sup-
ported [69,154] by complementary results of other powerful diagrammatic-extensions
of DMFT, such as the dual-fermion [62] and dual-boson approaches [155], as well as
other novel many-body techniques (e.g., the fluctuation diagnostics [156]).
In this section, we will review some of the most recent DΓA applications to the

single-orbital Hubbard model in d = 3, and discuss their possible implications for the
development of high-performing multiorbital algorithms. The first DΓA application
we consider is the investigation [71] of the quantum critical properties of the mag-
netic transition in the three dimensional Hubbard model, as a function of (hole-)
doping. As it was also found in DMFT [157], the relatively high antiferromagnetic
(AF) ordering temperature (TN ) of the half-filled system is progressively reduced
by increasing doping, until at about 20%-doping a quantum critical point (QCP)
is found (see Fig. 9). The reduction of TN is associated also to a gradual trans-
formation of the magnetic order from commensurate AF at (π, π, π) to an incom-
mensurate spin-density wave (SDW) at (π, π,Qz < π), see inset of Figure 9. While
the DMFT-description of the related (quantum) critical properties is restricted to
mean-field correlations in space, the DΓA-treatment of both space and temporal cor-
relations on an equal footing yields an improved understanding of the magnetic QCPs
in d = 3. In particular, beyond a sizable reduction of TN w.r.t. DMFT throughout
the phase-diagram, the finite-T critical exponents γ, ν found in DΓA for the mag-
netic susceptibility and correlation length, respectively, are consistent with the 3d-
Heisenberg universality class (i.e., γ ≃ 1.4, ν ≃ 0.7), independently on whether the
antiferromagnetism is commensurate or incommensurate. While this already corrects
the mere mean-field values of critical exponents found in DMFT (γ = 1, ν = 0.5), the
nature of the criticality changes further at the QCP. Here around n ∼ 0.8, the expo-
nents take unexpectedly the values γ ≃ 0.6± 0.1, ν = 0.9± 0.1, strongly violating the
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Fig. 9.Magnetic phase-diagram of the three-dimensional Hubbard model with nearest neigh-
bor hopping t as a function of decreasing density n (hole-doping), for an intermediate value
of the interaction U = 9.80t. The left and right box give the critical and quantum critical ex-
ponent ν at finite and zero T , respectively. The inset shows the deviation from commensurate
AF order in DΓA (adapted from Ref. [71]).

typical scaling relation γ = 2ν. These values are also incompatible with the standard
Hertz-Millis-Moriya theory [158,159] for perturbative QCPs. By means of a comple-
mentary semi-analytical analysis [160], the unusual values of the critical exponents
have been ascribed to the presence of lines of Kohn’s points in the underlying Fermi
surface, whose effect is no longer damped by finite-temperature fluctuations at the
QCP. The DΓA results have, thus, identified an additional, important factor control-
ling the quantum critical properties of correlated systems, hitherto mostly neglected.
The effects of non-local fluctuations are, obviously, not confined to the (quantum)

critical properties, as they also affect the spectral properties, in particular at the
Fermi-energy. However, while the electronic self energy is significantly corrected w.r.t.
the DMFT results, especially at low-T [68,153], a closer inspection[161] reveals that,
in d = 3, the intrinsic frequency/momentum structure of the electronic self energy in
DΓA displays specific, important patterns. These, in turn, can be used for devising
important simplifications of realistic many-body algorithms for bulk systems, such as
GW, GW+DMFT, or the AbinitioDΓA. Specifically, an inspection of the DΓA self
energy, continued to real frequencies (see Fig. 10) shows that the self energy of the 3d
Hubbard model, even in the most correlated low-doping regime (n = 0.9), displays a
clear separation in the time/frequency and space/momentum domains:

Σ(k, ω) = Σloc(ω) + Σnon−loc(k). (14)

The hallmark of such a separation, which extends to a relatively broad frequency
interval around the Fermi level, is immediately visible in Figure 10 in form of the
parallel frequency behavior of ReΣ(k, ω) for different k, which reflects a momentum-
independent quasi-particle renormalization factor Zk ∼ Z. The DΓA demonstrates,
in fact, that the momentum dependence of Σ(k, ω) is essentially confined to the
static sector, which explains the shift among the different parallel self energies. Not
surprisingly, the same qualitative behavior, though – quantitatively – less correlated
(i.e., with a larger Z) is found in the corresponding GW results, shown for comparison
in Figure 10. It is however noteworthy that the static momentum-dependence is much
larger in DΓA than in GW. This advocates the presence of true non-local correlation
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Fig. 10. Real part of the self energy Σ(k, ω) of the Hubbard model in d = 3 (U = 1.6,
T = 0.043 and n = 0.9; energies in units of the half-bandwidth), analytically continued to
the real-frequency axis, computed with DΓA (solid lines) and GW (dashed lines), respec-
tively. The curves correspond to different k-points crossing the Fermi-surface selected on two
different paths in the (kx, ky)-planes with constant kz = 0, π (left/right panel), as shown in
the corresponding insets (adapted from Ref. [161]).

effects as opposed to exchange effects that cause a large (static) k-dependence in
multi-band GW calculations [52,129]. In fact, lacking spin-fluctuations (both local
and non-local), GW – where space-time separation was first evidenced [52,107] –
verifies equation (14) up to larger frequencies than DΓA.
The validity of equation (14) for strongly correlated systems in d=3 is inspiring

for promising algorithmic improvements, potentially applicable to several many-body
techniques (e.g., GW, GW+DMFT, AbinitioDΓA). In all these cases, the assump-
tion of a full time-space separability of Σ(k, ω) would allow to avoid numerically ex-
pensive transfer-momenta/frequency convolutions in the intermediate steps of many-
body/diagrammatic calculations, reducing considerably the numerical effort. Further
details about such simplifications, and an explicit proposal of a “space-time sepa-
rated GW” scheme are reported in reference [161]. We should also notice, at the end
of this section, that complementary simplifications of the momentum structure, were
suggested by the recent findings of reference [162]: In d = 2 the momentum depen-
dence of Σ(k, ω) can often be approximated by a dependence on the non-interacting
dispersion, i.e., Σ(k, ω)→ Σ(ǫk, ω).

4.3 Results II: SrVO3

Being a diagrammatic extension of DMFT, the algorithmic implementation of
DΓA is not affected by cluster-size limitations of cluster extensions of DMFT,
making possible a systematic generalization of the DΓA approach to treat realistic
multiorbital systems. While the technical aspects of the AbinitioDΓA [16,74] have
been addressed in the previous Section, here we will discuss the physics emerging
from the first applications of the AbinitioDΓA to realistic material calculations.
Specifically, we will focus on the very recent AbinitioDΓA study of Galler et al. [16]
performed for the correlated-metal testbed material SrVO3. In this compound the
3d−t2g bands of V are rather well separated from the other bands, which allows
for a relatively accurate modelization already in terms of a three-orbital t2g-only
manifold. In fact, this modelization has been exploited in the past for a huge number
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Fig. 11.Momentum-dependence in the kz = 0-plane of (a) the real and (b) imaginary part of
the electronic self energy at the lowest Matsubara frequency (iν0), computed in AbinitioDΓA
for the V-t2g orbital 3dxy of SrVO3. The corresponding quasi-particle parameters (weight
Zk) and scattering rate γk, are reported in panels (c) and (d), respectively (reproduced from
Ref. [16]). (This figure is subject to copyright protection and is not covered by a Creative
Commons license.)

of many-body calculation, from LDA+DMFT to GW+DMFT (see Sect. 3), and
represents, thus, a sort of drosophila among correlated systems.
The application of the AbinitioDΓA to SrVO3 has allowed one of the first non-

perturbative analyses of the momentum-dependence of the self energy, and of the
spectral function in this compound. The AbinitioDΓA calculation foots on a DMFT
solution of a realistic three-band Hubbard model for the t2g-orbitals of vanadium. The
latter uses a static Hubbard U = 5.0 eV and Hund’s J = 0.75 eV in the rotationally-
invariant Kanamori parametrization. The computation of two-particle quantities re-
sorts to a recent worm algorithm [147]. A sample of the AbinitioDΓA results, for
the dxy-orbital, is shown in Figure 11, where ReΣ(k, iν) and ImΣ(k, iν) at the low-
est Matsubara-frequency (iν = iν0 = πT ) are reported, as well as the related qua-
siparticle parameters (Zk) and (γk) extracted from a low-frequency expansion of
ImΣ(k, iνn). These AbinitioDΓA results show that a sizable momentum dependence
does appear in the electronic self energy of SrVO3 even if – as in this case – non-local
interactions are neglected. These effects thus correct the purely local DMFT results.
Interestingly, this k-dependence is mostly confined to ReΣ(k, iν0) (Fig. 11a), where
one observes a momentum differentiation larger than 0.2 eV, which, however, does
not directly mirror the shape of the underlying Fermi-surface. At the same time, the
overall k-dependence of Im Σ(k, iν0), and the related quasi-particle coefficient Zk,
γk (Figs. 11b–11d) is definitely much weaker (e.g., Zk varies less than 2% over the
whole Brillouin zone, with an average value slightly increased w.r.t. DMFT). We note
that this behavior matches rather well the conclusions of the space-time separation
emerging from previous single band DΓA calculations [161] discussed above. More-
over, going beyond the single-orbital framework, it is also worth emphasizing that
a correlation between the momentum and orbital-dependence is found: the strength
of the k-dependence, as computed in reference [16], displays the same trends for the
orbital dependence of Σ. The latter was found, again, to be much more pronounced
for ReΣ(k, iν0), than for the other quantities shown in Figure 11.

5 Conclusions

One of the main challenges in computational materials science is to predict the prop-
erties of materials for which the standard DFT-based methods are not applicable.
Present DFT functionals are not reliable if the screening of the electron-electron
interaction over different length- and time-scales is insufficient to approximate the
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electronic exchange and correlation with the common LDA and GGA functionals.
This is the case for some correlated semiconductors, most transition metal oxides, as
well as heavy fermions. In this paper, we have reviewed the forefront of methodologi-
cal progress towards a full ab initio treatment of electronic exchange and correlations
beyond DFT, and its state-of-the art merger with DMFT. These progresses range
from the inclusion of the frequency dependencies in Hedin’s GW-scheme for realistic
calculations of large systems, to the implementation of a corresponding GW+DMFT
algorithm that lifts the quasi-particle approximation in the scheme suggested by van
Schilfgaarde and Kotani, and, eventually, to the treatment of correlations beyond the
purely local description of DMFT by means of the AbinitioDΓA. Such advances are
of extreme importance, because the new algorithms are conceived to be able to treat
all classes of materials, independently of the strength and the range of the screened
electronic interaction in the specific compound. While such ambitious goals will cer-
tainly require further work in the next decade, the examples we have selected in this
work to illustrate the applications of the different method developments already show
a promising trend.
Specifically, we have started by discussing the outline of the new GW imple-

mentation in the Vienna ab initio simulation Package (VASP), written for massively
parallel computations and working – for the first time within the VASP package –
on the imaginary time/frequency axis. This allows not only the calculation of full
dynamical information at the GW level, but also opens the road for the implementa-
tion of a self-consistency at the GW level – beyond the quasi-particle approximation
by van Schilfgaarde and Kotani. The applicability of the new implementation has
been demonstrated with a calculation of the testbed correlated metal SrVO3. The
progress in the GW part are also pivotal for allowing a more natural and precise
interfacing with DMFT-based algorithms. In particular, after reviewing the generic
scheme of the GW+DMFT, where the non-local, but perturbative GW-exchange and
correlations are supplemented with the purely local, but non-perturbative ones of
DMFT, we have shown self energy results obtained with the G0W0+DMFT merger
of the VASP and the w2dynamics codes, again for the prototype material SrVO3.
In particular, numerical results obtained by means of different levels of refinement
(e.g., retaining/neglecting the dynamical structure of the screened interaction in the
DMFT part) have been presented and critically analyzed.
Finally, we have reviewed the most general algorithmic framework in which even

the limitations of GW+DMFT can be overcome, i.e., the AbinitioDΓA approach.
This diagrammatic scheme starts with a local irreducible vertex (Γ) obtained by
using an impurity-solver (such as w2dynamics) and supplements it with the bare
non-local Coulomb interaction. From this starting vertex, ladder diagrams (or for
a few orbitals parquet diagrams) are constructed, yielding non-local self energies
and correlation functions. While one can easily obtain – within the AbinitioDΓA
formalism – all previously discussed approaches (GW, DMFT, and GW+DMFT)
as limiting cases, it also includes non-local correlations beyond these schemes, such
as spin fluctuations. For a simple, one-band Hubbard model, we have recapitulated
the unexpected properties found at the magnetic QCP in three dimensions, and
discussed the space-time separability of the self energy. For realistic multi-orbital
materials calculations, we have shown the very first AbinitioDΓA results for SrVO3,
and discussed the corrections found w.r.t. DMFT. Indeed, we evidenced a sizable
momentum-dependence in the SrVO3 self energy even for purely local interactions –
an effect well beyondGW approaches [161]. Instead, the momentum dependence in our
GW+DMFT results is almost exclusively propelled by exchange contributions origi-
nating from non-local interactions – thus far omitted in our AbinitioDΓA calculations.
As a consequence, the results of AbinitioDΓA and GW+DMFT cannot yet be directly
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compared. Calculations that include the non-local interaction in AbinitioDΓA are
under way.
As it is typical in physics, and especially true in the case of new algorithmic

developments, a significant amount of future work will be inspired by the progress
we have reviewed in this paper. In particular, the new method enhancements pave
the way towards the implementation of a fully self-consistent, frequency-dependent
GW scheme in VASP, while the frequency-dependent treatment of both the GW self
energy and the local dynamic interaction of DMFT represents an important step
towards the realization of a globally self-consistent GW+DMFT merger of the VASP
and the w2dynamic codes. Eventually, the first successful applications of AbinitioDΓA
for treating strong non-local correlations beyond GW+DMFT will encourage further
efforts towards a new standard of ab initiomaterials science calculations for correlated
electron systems.
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44. S. Backes, T.C. Rödel, F. Fortuna, E. Frantzeskakis, P. Le Fèvre, F. Bertran,
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M. Aichhorn, A. Toschi, Phys. Rev. B 91, 125109 (2015)

73. A.A. Katanin, A. Toschi, K. Held, Phys. Rev. B 80, 075104 (2009)
74. A. Toschi, G. Rohringer, A. Katanin, K. Held, Ann. Phys. 523, 698 (2011)
75. K. Held, Lecture Notes “Autumn School on Correlated Electrons. DMFT at 25: Infinite
Dimensions”, Reihe Modeling and Simulation, Vol. 4, Forschungszentrum Juelich
GmbH (publisher) [arXiv:1411.5191] (2014)

76. G. Rohringer, New routes towards a theoretical treatment of nonlocal electronic corre-
lations, Ph.D. thesis, Vienna University of Technology, 2013

77. G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. Lett. 45, 290 (1980)
78. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)
79. F. Bechstedt, F. Fuchs, G. Kresse, Phys. Stat. Sol. B 246, 1877 (2009)
80. M. Shishkin, M. Marsman, G. Kresse, Phys. Rev. Lett. 99, 246403 (2007)
81. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys.
64, 1045 (1992)

82. H.N. Rojas, R.W. Godby, R.J. Needs, Phys. Rev. Lett. 74, 1827 (1995)
83. L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I. White, W. Godby, Comput. Phys.
Commun. 125, 105 (2000)
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