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Abstract

The paper considers the problem of merging several belief bases in the presence of integrity constraints and proposes
a logical characterization of operators having a majority behaviour or a consensual one. Then a representation
theorem in terms of pre-orders on interpretations is given. The close connection between belief revision and merging
operators is shown and it is shown that the proposal extends the pure merging case (i.e. without integrity constraints)
studied in a previous work. Finally it is shown that Liberatore and Schaerf commutative revision operators can be
seen as a special case of merging.
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1 Introduction

In many computer science fields, one needs to synthesize a coherent belief from several
sources. The problem is that, in general, these sources contradict each other. So the merging
of belief sources is a non-trivial issue. The first work on that problem goes back at least to
[8].

Merging multiple sources of information is particularly interesting for distributed databases,
for multi-agent systems, and for distributed information systems in general. In the database
field a key issue of incoming systems will be to be able to integrate multiple databases into
a single database [34]. A lot of work has been done in the database area on the integration
of schemas [5, 10, 37, 20, 15]. Concerning the handling of inconsistency due to conflicting
data, there has been less effort than in the case of integration. In particular, we can find very
few reports about the rationality of merging [32, 25, 22, 23].

Inconsistency problems also occur when one wants to combine several expert systems.
Consider a set of belief bases coding the belief of several human experts. In order to build an
expert system it is reasonable to try to combine all these belief bases in a single belief base
that expresses the belief of the experts’ group. This process allows one to discover new pieces
of belief distributed among the sources. For example if an expert knows ikatue and
another knows that — b holds, then the ‘synthesized’ belief knows tlds true whereas
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none of the experts know it. This was calledplicit beliefin [17]. However, simply putting
these belief bases together is wrong since there could certainly be contradictions between
some experts.

Many merging methods have been proposed [8, 3, 4, 36, 12, 11]. In order to compare them
one needs a general methodology to determine the properties of such techniques. We have
proposed such a methodology in [23]. This paper is an extension of that work. The aim is on
the one hand to propose general properties of merging operators in a logical framework. On
the other hand we propose some families of merging operators which are studied in the light
of these properties. This will allow one to decide if a particular merging method is better than
another and to classify such methods.

We will consider information from different sources. This will be represented as a multi-
set{¢,..., ¥, } Where eachp, represents the information of the souiceThe choice of
multi-sets for representing a group of sources of information is a key point in order to take
into account the fact that the same piece of information could come from different sources
(this is important, for instance, to address majority merging). We consider operators having
two parameters: one of them is the multi-set of information from the different sources; the
other one is a piece of information that codes the integrity constraints for the system (it can
be physical constraints, unquestionable knowledge, etc.). The output of the operator has to
be a piece of information that satisfies the integrity constraints.

This work has similarities with that of Alchown, Gardenfors and Makinson, known as
AGM belief revision theory [1, 16, 18]. They proposed a set of postulates that characterizes
revision operators. Katsuno and Mendelzon proposed a representation theorem for revision
operators in terms of pre-orders on possible worlds. Similarly, we propose a set of postulates
that a merging operator has to satisfy in order to have good behaviour, and we also provide a
representation theoreenla Katsuno and Mendelzon. Actually there are deeper connections
between revision operators and merging operators: a merging operator is a generalization of
a revision operator and in some cases a revision operator will generate a merging operator.

We define two subclasses of merging operators, namely majority merging and arbitration
operators. The former striving to satisfy a maximum of protagonists, the latter trying to satisfy
each protagonist to the best possible degree. In other words majority merging operators try
to minimize global dissatisfaction whereas arbitration operators try to minimize individual
dissatisfaction.

Some operators quite close to merging operators have already been formally studied.
Revesz defined in [31, 32] model-fitting operators which can be considered as a generaliza-
tion of revision for multiple belief bases. His postulates do not distinguish between majority
and arbitration. Another essential difference between our approach and Revesz’s one is our
notion ofbelief setthat is actually a multi-set of belief bases, and the notioagfivalence
between two such belief sets.

Liberatore and Schaerf proposed postulates to characterize commutative revision operators
(they also called these operators ‘arbitration operators’) [24, 25]. Their definition has a strong
connection with revision operators, but the major drawback is that those operators merge only
two belief bases. Furthermore in their setting the result of merging two belief bases will be
logically stronger than the disjunction of the two belief bases. We consider that we cannot
systematically ignore information which is not from these belief bases. To illustrate this
situation consider the following example.

ExAMPLE 1.1
Suppose that we want to speculate on the stock exchange. We ask two financial experts about
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four shares A,B,C,D. We denote 1 if the share rises and 0 if it falls (we suppose that its value
cannot be stable). These agents have the same expert level and so they are both equally reli-
able. The first one says that all the shares will rise:= {(1, 1,1, 1)}, the second one thinks

that all the shares will fallp, = {(0,0,0,0)}. Liberatore and Schaerf operators will merge
these opinions and give the following resut:= {(0,0,0,0), (1,1,1,1)}. This means that
eithery; is totally wrong orp- is completely mistaken. But intuitively, if the two experts are
equally reliable, there is no reason to think that one of them has failed more than the other:
they both have to be at the same ‘distance’ from the truth. So they are certainly both wrong
on two shares and the result has to e: = {(0,0,1,1),(0,1,0,1),(0,1,1,0),(1,0,0,1),
(1,0,1,0), (1,1,0,0)}. So two of the shares will rise and two will fall but we do not know
which ones.

In our opinion Liberatore and Schaerf’s operators have to be seen as selection operators
and have to be used in applications which require the result to be one of the possibilities
given by the protagonists. For example, if the result of the arbitration is a medical treatment,
we cannot merge several therapies and so we have to use Liberatore and Schaerf operators.
Conversely, if we try to merge indications provided by a set of sensors, the same sensor can be
both validt on a variable and wrong on another one. So, in some situations, it could be natural
to take an ‘average’ of sensor indications. And, more generally, if we consider the problem
of knowledge merging as some kind of negotiation between several agents, it is sensible to
consider propositional letters (that asggriori logically independent) as the negotiation unit.

Liberatore and Schaerf’s operators take, in a sense, the interpretation as unit of change.
Our approach takes the propositional letter as such a unit, as Dalal says inghahge in
truth value of a single symbol can be considered as the smallest unit of chéNege/ant to
apply this idea to merging.

Another proposal in the literature is that of Lin and Mendelzon [28, 27]. They proposed a
theory merging by majoritgperator which solves conflicts between belief bases by taking the
majority into account. Theitheory merging operatatisfies the properties characterizing
our majority operators.

This paper is organized as follows. In Section 2 we give some definitions and some no-
tation. In Section 3 we propose a logical definition of merging operators with integrity con-
straints, we define majority and arbitration operators and give a model-theoretic represen-
tation of those operators. In Section 4 we define three families of merging operators. In
particular theA “Maz family of arbitration operators is, in the logical context, a new merg-
ing method. We illustrate the differences of behaviour of these three families on a concrete
example. In Section 5 we underline the strong connection between merging operators and
belief revision operators, showing that merging operators are a generalization of belief revi-
sion operators and we explore how to build merging operators from belief revision operators.
In Section 6 we show the connections between this work and related work on merging. We
first address the case where there is no integrity constraints and show that this work extends
that of [22]. Then we compare this work with Liberatore and Schaerf’s commutative revision
operators, showing that those operators can be seen as a special case of merging operators.
Next we discuss Lin and Mendelzon’s proposal of theory majority merging operators, and we
deal with Revesz’s model-fitting operators that are very close to merging operators. Finally
in Section 7 we give some conclusions and discuss open problems and future work.

1Roughly speaking, an agent (a sensor, a database) is valid iff what it says is true in the real world. This notion
was first introduced in the database field by A. Motro in [29]
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2 Préiminaries

We consider a propositional languagever a finite alphabeP of propositional letters. An
interpretation is a function fror® to {0,1}. The set of all the interpretations is denoted
W. An interpretation/ is a model of a formula if and only if it makes it true in the usual
classical truth functional way. Let be a formulamod(p) denotes the set of models of
@, i.e.mod(p) = {I € W: I |= ¢}. Let M be a set of interpretations,,, denotes a
formula whose set of models ig. WhenM = {I} we will use the notatio; for reading
convenience.

A belief basdX is a finite set of propositional formulae which can be seen as the formula
o which is the conjunction of the formulae &f.

Lety,,..., ¢, ben belief bases (not necessarily different). We ¢allief sethe multi-set
¥ consisting of those: belief bases¥ = {¢,,...,¢,}. We note/\ ¥ the conjunction of
the belief bases o¥, i.e. A¥ = ¢ A--- A p,. The union of multi-sets will be noted.
Belief bases will be denoted by lower case Greek letters and belief sets by upper case Greek
letters.

REMARK 2.1
We consider that an inconsistent belief base gives no information for the merging process so
we will suppose in the rest of the paper that the belief bases are consistent.

DEFINITION 2.2
A belief set¥ is said to be consistent if and only X ¥ is consistent. We will useiod(¥)
to denotenod( A ¥) and writel = ¥ for I € mod(¥).

DEFINITION 2.3

Let¥,, ¥, betwo belief sets¥; and¥, are said to be equivalent, notéd «+ V,, iff there
exists a bijectionf from ¥, = {¢},..., oL} to U, = {¢},..., 42, } suchthat f(p) < ¢.
In particular if¥ |, < ¥, thenm = n.

A pre-order< over WV is a reflexive and transitive relation 0. A pre-order is total if
VI,JeWI<.JorJ <I.Let<beapre-orderoverV, we define< as follows:I < J iff
I <JandJ £ I,and~ asI ~ Jiff I < JandJ < I. Let] be an interpretation we will
write I € min(A,<)iff € AandvJ € A1 < J.

By abuse ify is a belief base, and i# = {¢} is a belief set, thep will denote also the
belief set. In the same way LI ¢ will be used instead o¥ U {¢}, andy, U ¢, instead of
{¢1} U{p}. Letn and¥ be a positive integer and a belief set respectively, we will denote
¥" the multi-setd LI ... U P,

———

The set of consistgnt belief bases will be denoted3byThe set of belief sets will be
denoted byS. We will suppose from now on that integrity constraints are a finite set of
formulae, i.e. a belief base. We will callthis belief base. We are going to consider operators
A : S x B— Binwhich the second argument is seen as the integrity constraints. We will
write A, () instead ofA (¥, 11).

Letyp, u, ¥, andA be two belief bases, a belief set and an operator respectively. We define
the sequence

DL(T, ) = Au(T U )
and APTH(®, ) = AL(AR(T,9) U ).
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3 Merging with integrity constraints

In this section we give a logical definition of integrity constraints merging operators (IC
merging operators from now on), more exactly we give a set of postulates the operators
have to satisfy in order to have a good behaviour concerning the merging. We also define
arbitration and majority merging operators. Then we provide a representation theorem for
these three kinds of operators, by showing that a merging operator corresponds to a family of
pre-orders on possible worlds.

DEFINITION 3.1
A is said to be an IC merging operator if and only if it satisfies the following postulates:

(1C0) AL(T) F p.

(IC1) If pis consistent, the , (¥) is consistent.

(IC2) If A ¥ is consistent withu, thenA ,(¥) = A ¥ A p.

(IC3) If ¥y > ¥y anduy > po, thenA,, (¥1) & A, (Ts).

(ICH If oF pandy' F p, thenA (U ) Ap¥F L= A (pU@) AN ¥ L.

(IC5) AL(T1) AAL(T2) AT L T,).

(1C6) If AL (T1) A AL(T,) is consistent, thed , (T LI Ts) F A, (T1) AAL(Ts).
(ICT) &L (B) A e B Dy, (F).

(1C8) If AL, (T) A us is consistent, thel ;. (F) F A, (T) A po.

Intuitively A () is a belief baseloseto the belief set? satisfying the integrity con-
straintsu. This idea is what the postulates try to capture. The meaning of the postulates is
the following: (IC0) assures that the result of the merging satisfies the integrity constraints.
(IC1) states that if the integrity constraints are consistent, then the result of the merging will
be consistent(IC2) states that if possible, the result of the merging is simply the conjunc-
tion of the belief bases with the integrity constraints”3) is the principle of irrelevancy of
syntax, i.e. if two belief sets are equivalent and two integrity constraints bases are logically
equivalent then the belief bases result of the two merging will be logically equivglét)
is the fairness postulate, the point is that when we merge two belief bases, merging operators
must not give preference to one of theC5) expresses the following idea: if two groups
¥, and¥, agree on some alternatives then these alternatives will be chosen if we join the
two groups.(IC5) and (IC6) together state that if one could find two subgroups which agree
on at least one alternative, then the result of the global merging will be exactly those alter-
natives the two groups agree ofiC7) and (IC8) are a direct generalization of tif5-R6)
postulates for revision (cf. Section 5). They state that the notictosEnesss well-behaved
(see [18] for a full justification).

In addition to these basic requirements, we have alternative postulates.

First we can demand aiterationproperty that give a more ‘topological’ behaviour to
merging operators.

(ICit) If o pthendn A7 (¥, ) - . (iteration)

The intuitive idea of this property is that, since merging operators give, in a sense, the
average belief of a belief set, if we always take the result of a merging and iterate with the
same belief base, we have to reach this belief base after enough iterations.
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Now we define two merging operator subclasses, namely majority merging operators and
arbitration operators.

A majority merging operator is an IC merging operator that satisfies the followajgrity
postulate:

(Maj) In A, (T U T") FAL(T). (majority)

This postulate expresses the fact that if a subgroup appears quite enough in the whole group
then it is the opinion of the subgroup that will prevail. In particular if an individual opinion
has a large audience, it will be the opinion of the group.

An arbitration operator is an IC merging operator that satisfies the following postulate:

Apy (p1) € Dpus(en)

(Arb) Apyr—ps (1 Uge) < (p1 <> —p2)
B1 ¥ 2
w2 ¥opn

= AN pyvus (01 U @y) & Apy (@)
(arbitration)

This postulate says that if a set of alternatives preferred among one set of integrity con-
straintsu; for a basep, corresponds to the set of alternatives preferred among another set of
integrity constraintg:, for a basep,, and if the alternatives that belong to a set of integrity
constraints but not to the other are equally preferred for the whole ggoup (»,), then the
subset of preferred alternatives among the disjunction of integrity constraints will coincide
with the preferred alternatives of each base among their respective integrity constraints. This
property is much more intuitive when it is expressed in a model-theoretical way (cf. condition
8 of a fair syncretic assignment in Definition 3.4). It shows that this is the median possible
choices that are preferred.

We will illustrate this in the following scenario.

EXAMPLE 3.2

Tom and David missed the soccer match yesterday between reds and yellows. So they do not
know the result of the match. Tom listened in the morning that reds had a very good match.
So he thinks that a win for reds is more plausible than a draw and that a draw is more reliable
than a win for yellows. David was told that after that match yellows now have a good chance
of winning the championship. From this information he infers that yellows won the match,
and if not, at least drew. Confronting their points of view, Tom and David agree on the fact
that the two teams are of the same strength, and that they had the same chances of winning
the match. Whaarbitrationdemands is that with this information, Tom and David agree that

a draw between the two teams is the more plausible result.

Another property, opposed to the majority postulate, isrttagority independenggostu-
late:

M) Vn A, (T L") & AL (T, U Ty). (majority independence)

This very strong property states that the result of merging is fully independent of the pop-
ularity of the views. It simply takes into account each different view. A corollary of this
property is that for operators satisfying (Ml), belief sets that are indeed multi-sets can be seen
as simple sets.

But this property is not compatible with those of an IC merging operator.



Merging Information Under Constraints: A Logical Framework79

THEOREM 3.3
There is no IC merging operator satisfying (Ml).

PROOF This proof is due to P. Liberatore (personal communication). Let= {p, -}
and¥, = {y} be two belief sets. BYMI) we have thath+(¥, U ¥,) = A (T,).
By (IC4) we have also that\+(¥,) ¥ ¢ and A+(¥,) ¥ —p. Furthermore byIC2)
we deduceA+(T,) = ¢. SOAT(¥;) A A+(T,) is consistent and by/C6) we have
AT(T; UTy) F AT (T) AA(T,), ie. AT (T) F A1 (T) A p. ThenA+(T,) F ¢
which contradict§7C4). ||

Nevertheless a weak form of the last property callexhk majority independencecom-
patible with IC merging operators:

(WMI) V¢ Jpd ¥ oVn A, (Y L") < Au(¢ Uy).
(weak majority independence)

This weak form of majority independence asks that there are cases where the result of
merging is independent of the popularity of the views.

Now that we have a logical definition of IC merging operators, we will state a representa-
tion theorem that gives a more intuitive way to define IC merging operators. More precisely,
we will show that to each IC merging operator corresponds a family of pre-orders on possible
worlds.

First we have to introduce the notion®fncretic assignmenBy this we mean an assign-
ment uniting and blending together several pre-orders (preference relations).

DEFINITION 3.4

A syncretic assignmernis a function mapping each belief sét to a total pre-ordeK
over interpretations such that for any belief s&tsl ;, ¥, and for any belief bases ¢’ the
following conditions hold:

1.IfI =T and] = ¥,thenl ~g J.

2.1fI =¥ andJ [~ ¥, thenl <y J.

3. 1f ¥y & Uy, then<g,=<g,.

ANVI =l = J <ap 1.

5. IfI <g, Jandl <g, J, thenl <y, v, J.
6.1fI <y, Jandl <g, J, thenl <y, v, J.

The first two conditions ensure that the models of the knowledge set (if any) are the more
plausible interpretations for the pre-order associated to the knowledge set. The third condition
states that two equivalent knowledge sets have the same associated pre-orders. These three
conditions are very close to the ones existing in belief revision for faithful assignments [18].
The fourth condition states that, when merging two belief bases, for each model of the first
one, there is a model of the second one that is at least as good as the first one. It ensures that
the two knowledge bases are given the same consideration.

REMARK 3.5
Condition 4 is equivalent to the following condition:

4. 3T =g VI EeJd <y 1.
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ProOF Condition 4 implies condition 4 straightforwardly. To show that condition 4 im-
plies condition4’ simply notice that<.,, is a total pre-order, so if one choosés ¢
min(mod(¢'), <,y ) then by condition 4 and transitivityl = ¢ J <., I, that is condi-
tion 4’ holds. |

The fifth condition says that if an interpretatidis at least as plausible as an interpretation
J for a knowledge se¥ ; and if I is at least as plausible g@sfor a knowledge se¥ ,, then if
one joins the two knowledge set, thémvill still be at least as plausible ak

The sixth condition strengthen the previous condition by saying that an interprefason
at least as plausible as an interpretatibfor a knowledge se¥, and if I is strictly more
plausible than/ for a knowledge se¥ », then if one joins the two knowledge set, thewill
be strictly more plausible than.

These two previous conditions corresponds to Pareto conditions in Social Choice Theory
[2, 19].

We can also define two particular syncretic assignments with additional conditions.

DEFINITION 3.6
A majority syncretic assignmergt a syncretic assignment which satisfies the following:

7.1 <g, J,thendn I <g, g,» J.
A fair syncretic assignmeris a syncretic assignment which satisfies the following:

1 <, J
8. I <y, J' =1 <y, Ly J.
J Zo U, J!

Condition 7 says that if an interpretatidns strictly more plausible than an interpretation
J for a knowledge se¥ -, then there is a quorum of repetitions of the knowledge set from
which I will be more plausible thad for the larger knowledge s@t; LI ¥,". This condition
seems to be the weakest form of ‘majority’ condition one could state.

Condition 8 states that if an interpretatibis more plausible than an interpretatidifior a
belief basep, , if I is more plausible thai’ for another base,, and if J andJ’ are equally
plausible for the knowledge set, LI ,, thenI has to be more plausible thahand.7’ for
¢, U, (see Example 3.2 for an intuitive explanation).

Now we can state the following representation theorem for merging operators.

THEOREM 3.7
An operatorA is an IC merging operator if and only if there exists a syncretic assignment
that maps each belief s&tto a total pre-ordex ¢ such that

mod(A,(¥)) = min(mod(p), <w). (3.1)
When this equation holds we will say that the assignment represents the operator.

PrROOF (Only if part) Let A be an operator satisfying postulates (IC0-IC8). Let us define
a syncretic assignment as follows: for each belief&ete define a total pre-ordet ¢ by
puttingvVl,J e W I <y JifandonlyifI = A ().

First we show thakK y is a total pre-order:
Totality: VI, J € W, from (IC1) A (¥) # 0 and from (ICO)A,,, ,, (¥) F ¢y sy, SO
I <y JorJ <y I.

PLr,aY

Pyr,J3
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Reflexivity:From (IC0O) and (IC1) we have thdt , (¥) = ¢;. Sol <y I.

Transitivity: Assume thatl <y J andJ <g L and suppose towards a contradiction that

I £y L. So by definition and from (IC0) and (ICZ) erny (¥) € @pry- By (IC7) we find

thatAy (W) Apry b A% ., (¥). We consider two cases:

Case 1: A, (¥) A ¢y 1y is consistent thedh,, . (W) A oy < ¢y Thus

we have thatl £ A, (¥). But by (ICl)Aw{I)J‘L}( ) # 0, so by (ICO) we have

mod(Ay,, ,,(¥)) = {J,L} or mod(A,,, , ,(¥)) = {L}. Inthe first case by (IC7)
and (IC8_) we concludethak, , (¥) Ay gy < Dy, ,,(¥)andsol = Ay ().

Contradiction. In the second case by (IC7) and (I28),, , , (¥) Ay <> Dy, 1, (¥)

butJ = Ay, o, () sod [£ A, (¥). Contradiction.

Case 2:A,, ;. JL}(\II) A ¢gr, Ly is not consistent, s\, (V) = ¢,y Thendy,

() A %rr,0y = gy By (IC7) and (IC8) it follows tharAw{I J}( ) = ¢ry, that is by

definitionJ <y I. Contradiction.

Now we show thatmod(A,(¥)) = min(mod(n),<w). First for the inclusion
mod(A,(¥)) C min(mod(p), <w) assume thaf |= A,(¥) and suppose towards a con-
tradiction that! is not in min(mod(p), <w). So we can find & E p st J <y I,
thenl [£ Ay, (V). SinceA, (V) A ¢ 5y is consistent from (IC7) and (IC8) we have
Au(Y) Nppr gy < Dy, 5, (B). BUtl £ Ay (V) sol = A, (). Contradiction.

For the other inclusionmod(A,(¥)) O min(mod(n),<w), suppose that
I € min(mod(p), < ). We want to show thaf |= A, (¥). Sincel € min(mod(i), <w),
VI Epul <y Jandsol E A, (V). SinceA,(¥) A ¢y 5y is consistent from (IC7)
and (IC8) we have , (V) A ¢y v <> Dy, (U). Butl = Ay, (¥) sol = A (F).

It remains to verify the conditions of the syncretic assignment:
1.1fI | ¥ andJ = ¥, then by (IC2) we haveh,, | . (¥) = ¢ 53, S0I <y J and

J <g I by definition and thed ~y J.
2.1f I |= ¥ andJ = ¥, then by (IC2)A,, , ,,(¥) = ¢, sol <y JandJ £ I, ie.

I <y J.

3. Straightforward from (IC3)

4. We want to show that! = ¢ 3J = ¢' J <, I. First we show thallJ |= A vy (U
d) A . If not we haveA . (e U ¢) A ¢ = L, from (IC0O) and (IC1) we have that
Apvy (U ) F o, now by (IC4) we get thal\ v (@ LI ) A ¢ ¥ L. Contradiction.
Let I be a model ofp and takeJ such that/ = A,y (U ¢') A . We get from (IC7)
and (IC8) that/ = Ay, | |, (pU¢/). SoJ <,y I.

5.1fI <g, Jandl <g, Jthenl = Ay, (V1) A Ay, (¥2). Sofrom (IC5)] |=
Aw{“}(\h L ¥,) and by definition] <y, ¢, J.

6. Suppose thal <y, J andl <y, J. We want to show thal <y,,w, J. By the
hypothesisl = Ay (V1) A Dy, (2) andJ = Ay (V1) A Dy (P2).
So from (IC5) and (IC6A,, ,, (U1 U ¥2) = ¢ Thenl | A, (¥ U ¥2) and
J [~ Aw{”}(‘l!l Ll ¥5) and by definitionl <, 9, J.

(If part) Let's consider a syncretic assignment that maps each beliéf sea total pre-order

<y and define an operatadk by puttingmod(A ,(¥)) = min(mod(i), <w). We want to

show thatA satisfies (ICO-IC8).

(IC0O) By definitionmod(A ,(¥)) C mod(p).

(IC1) If uis consistent, themod(u) # 0. As there is a finite number of interpretations, there
is no infinite descending chains of inequalitiespsim(mod(p), <w) # 0. ThenA ,(¥)
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is consistent.

(IC2) Assume thaf\ ¥ A i is consistent. We want to shawin(mod(u), <y ) = mod(\ ¥ A
w). First note that iff = ¥ then from conditions 1 and 2, € min(W, <y). So if
I =9 Apthenl € min(mod(p), <g). Somin(mod(u), <w) 2O mod(\ ¥ A u). For
the other inclusion considére min(mod(u), <y ). Suppose towards a contradiction that
I = U A p. Sincel = ¥, by condition 2 we have thatJ = ¥ J <y . In particular
VIE Y AuJ <y I.Sol ¢ min(mod(u), <y ). Contradiction.

(IC3) Direct from condition 3 and the definition df.

(IC4) Assume thap - p, ¢' F p, andA (U ¢') A @ ¥ L, we want to show thaf\ , (¢ LI
d)N¢ ¥ L. Consider] = A, (U ) A ThenVI' |= p I <,y I'. But from
condition 4 we have thatJ = ¢’ such that/ <., I. ThenVl' |= p J <,y I'. Then
J = AL(eU¢) and therefore , (o U @) A ¢ ¥ L.

(ICB) If I |= AL (T1) A AL(T2) then] € min(mod(p), <w,) and sovJ = u I <g, J.
We have in the same way.J = u I <y, J. So by condition 5 we have that/ =
wl <g,uw, J. SOl € min(mod(p), <w,w,). SO by definition/ |= A, (¥, U ¥,).

(IC6) Assume than\ ,(¥1) A A, (T,) is consistent. We want to show that, (¥, U W) F
AL (T1) AAL(E,) holds. Takel = A, (¥, U W,), soVJ = p ] <g,uw, J. Suppose
towards a contradiction thdtf= A, (1) A A, (T2). SOT = AL(Tq) or T = AL ().
Suppose thal }= A, (¥,) (the other case is symmetrical). &S, (%) A A,(T5) is
consistendJ = A, (¥1) A A,(P2). SoJ <y, I andJ <y, I so by condition 6
J <w,uw, I andthenl = A, (¥, U ¥,). Contradiction.

(IC7) Let'stakel |= A, (¥) A po. We havedJ = py I <g J. SOVJ |= 1 A pe I < J,
SOI = Ay s (W)

(IC8) Assume thath,, (¥) A ue is consistent, s@J = A, (¥) A pe. Consider] =
A uiaps () and suppose that = A, (¥). SoJ <y I. ButJ | u; A ps then
I ¢ min(mod(p1 A p2), <w). ThusI = A, A, (). Contradiction. .

An analysis of the proof of Theorem 3.7 reveals that postulate (IC6) is used only in the
proof of condition 6 and that condition 6 is used only in the proof of postulate (IC6). Similarly
(IC4) corresponds to condition 4 on the assignment. This simple observation gives us the
following corollary (of the previous proof).

COROLLARY 3.8

An operator satisfies (IC0-IC5),(IC7) and (IC8) if and only if it can be represented by an
assignment satisfying conditions 1-5.

An operator satisfies (IC0-IC3),(IC5-IC8) if and only if it can be represented by an assign-
ment satisfying conditions 1-3, 5 and 6.

Next we will give another variant of Theorem 3.7 by weakening postulate (IC6) and its
corresponding condition on the assignment.
(1C6") If AL(T1) AAL(T,) is consistent, thel , (T, L Ws) A, (T1) V AL(T)

This property states that if an alternative is taken by a group, then if we split the group
in two subgroups (which agree on something), at least one of the these subgroups will take
the same alternative. This property correspond to the following condition that is obviously
weaker than condition 6.

6.1fI <w, J andIl <w, J, thenl <o, LW, J.
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DEFINITION 3.9
We will call IC quasi-merging operator an operator satisfying (ICO-IC5), (JC6C7) and
(IC8), and quasi-syncretic assignment an assignment satisfying conditions 165 and

THEOREM3.10
An operatorA is an IC quasi-merging operator if and only if it can be represented by a
quasi-syncretic assignment.

PrROOF (Only if part) Let A be an operator satisfying postulates (ICO-IC5), (IC6IC7)
and (IC8). Define an assignment as in the proof of Theorem 3.7.

By Corollary 3.8 this assignment representifigsatisfies conditions 1-5. It remains to
prove condition 6. Suppose that <y, J andl <y, J. We want to show that <y, v, J.
By the hypothesid = Ay, (1) A Ay, (U2)and] = Ay, (B1)V Ay (P).
Sofrom(IC8) A, ,, (¥1U¥;) = ;. Thenl |= A ¥, UT,)and] = A vu
¥,) and by definitionl <, v, J.

(If part) Let us consider an assignment satisfying conditions 1-5 attte maps each belief
set¥ to a total pre-ordexK ¢ and define the operatdx by the equation (3.1). By Corollary
3.8 we know that\ satisfies (IC0-IC5),(IC7) and (IC8). It remains to prove (IIC&\e want
to show that ifA, (¥1) A A, (¥2) is consistent, thed , (U LI ¥y) F AL (T1) V AL(T,)
holds. Assume that ,(¥,) A A, (T,) is consistent and take}= A, (¥, U T,), soVJ |=
u I <y,uw, J. Condition 8 is equivalent to Ifl <y, v, J, thenl <y, JorI <y, J.
Now suppose towards a contradiction thge A ,(¥1) vV A, (%), thatis] = A,(¥,) and
I £ AL (%), This can be rewritten a8J, € p J1 <w, [ and3J, € p Jo <w, I. But
AL (T1) A AL(T,) is consistent s@J; € posuch thavl’ € p Js <, I' andJ; <g, I'.
In particular we have thaf; <y, Ji andJs; <w, J». By transitivity we findJ; <y, I
andJ; <w, I, and by condition 6we conclude/s <w,uw, I. SOI £~ A, (T U ¥s).
Contradiction. [ |

W{I,J}( @{I,J}(

We have also representation theorems for majority merging operators and arbitration oper-
ators.

THEOREM3.11
An operatorA is an IC majority merging operator if and only if it can be represented by a
majority syncretic assignment.

PrROOF (Only if part)Let A be an operator satisfying postulates (ICO-IC8) and (Maj). Define
an assignment as in the proof of Theorem 3.7.

By Theorem 3.7 this is a syncretic assignment represeutinlj remains to prove condi-
tion 7. Assume thaf <y, J. ThenA,, . (¥2) = ¢;. From (Maj) we get thafin such that
Atp{I,J} (‘I’l L lI’Qn) F AW{I,J} (‘112), sodn AW{I,J} (‘I’l L \I’2n) = Yy, i.e.dn I <@, LUW,n J.

(If part) Let's consider a majority syncretic assignment that maps each beliéfteea total
pre-order<y and define the operatdk by lettingmod(A ,(¥)) = min(mod(i), <w). By
Theorem 3.7 we know thak satisfies (ICO—-IC8). It remains to prove (Maj). From conditions
6 and 7 we get easily the following condition:

I<g,J = dngVn>ny I <w,uw,~ J.
Since for each, <y is total this condition is equivalent to

Vno3n > no I <w,uw,r J = I <w, o (%)
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Now, suppose towards a contradiction that A, (¥, U ¥,") ¥ A,(%,). From this
hypothesis we get thatn 37 = uVJ = p I <w,uw,» Jand3J' E pu J' <y, I. Since
the number of possible worlds is finite, by a combinatorial argument (pigeon hole principle)
there existsl such that! <y, w,» J for anyJ |= p and an infinity of integers: and
such thadJ’ = p J' <w, I. This obviously entails the premisses of conditie:), so
we havel <y, J for any.J = p which is obviously in contradiction with the fact that
A Ept <w,I. |

REMARK 3.12
Notice that in the previous proof only conditions 6 and 7 on the syncretic assignment are used
to prove the postulate (Maj).

THEOREM3.13
An operatorA is an IC arbitration operator if and only if it can be represented by a fair
syncretic assignment.

PrROOF (Only if part)Let A be an operator satisfying postulates (ICO-1C8) and (Arb). Define
an assignment as in the proof of Theorem 3.7.

By Theorem 3.7 this assignment is a syncretic assignment, so it remains to show that
condition 8 holds. Assume that both<, I, J <, J'andl ~, ., J' hold. First if
I = J' thenJ <, u,, I follows from condition 6. Now supposk # J'. By hypothesis
Doy (o) & Dy (@) ¢ ppandAy (9 Ugy) = ¢ gy By the assumption
I # J', we have that both ab;; ;1 A =y 5y @andegy ;i A =y gy are consistent. Then
by (Arb) we get thatAQP{M,J,}(cp1 Up,) = ;. And by (IC7) and (IC8) we conclude that
Dp oy (o Ugy) =g, thatis) <g g, 1.

(If part) Let’s consider a fair majority syncretic assignment that maps each beliéf tea
total pre-ordeK g and defineA by puttingmod(A ,(¥)) = min(mod(r), <w). We know
by Theorem 3.7 thaf\ satisfies (IC0O-IC8), then it is enough to prove (Arb).

Assume thath, (01) < D (), Dpyoua (1 L) € (11 < —p2), pn A opp ¥ L
andus A = ¥ L hold. We want to show thah v, (1 U ) <> Ay, (¢1).

First we prove thai\ ,, (¢;) F Ay v, (@ U wy). Consider] = A, () and suppose
towards a contradiction thditfe A, v, (0 U wy). ThendJ = puy Vo pe J <gugp, 1.

We consider three cases$:= uy A pz, J |E 1 A —pe orJ = -y A ps.

Case 1.J = 1 A pz. Sincel = Ay (1), I <,, J. By hypothesish ,, (@) < A, (9).
Sol = Ay () and thenl <, J. Then by condition 5 we have thdt <, ,,, J.
Contradiction.

Case 2:J |= pu1 A e (theCase 3J = —u1 A pe, is symmetrical). Since £ o
andA,, (¢y) < Ay, () we have = Ay (@), sol <, J. By hypothesis we can
find a.J' = p2 A —p and with an analogous argumeht<,, J'. We also know that
Dy es—ps (0 Upy) & (p1 <> pe2), this implies ~, 1, J'. And then by condition 8 we
getthat! <, ., J. Contradiction.

Now we proveA ,, v, (¢; U ey) F Ay (¢r). Assume thal = A, v, (e U ey) and
suppose towards a contradiction tlig& A, (¢, ). There are three cases:

Case 1. |= piApothendJ = Ay (), 807 <, I. And,asA (@) < D, (9y), J <q,
I. So by condition 8 we have that <, 11, I, SOI = A, v, (v U wy). Contradiction.
Case 2.1 |= pu1 A —pe (theCase 3wherel = -y A po, is symmetrical). By hypothesis we
know thataI" |= -y A pa. SinceA,, (py) < Dy, () 3J = Ay (@) suchthatl <, T
andJ <, I'. We obtain also front\ ;,, -, (¢ U@y) <> (1 <> —pe) thatl ~, ,, I', SO
by condition 8 we getthal <, 1, I. SOI = Ay, v, (¢ U gy). Contradiction. [ |
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REMARK 3.14
Notice that in the previous proof only conditions 5 and 8 on the assignment are used to prove
the postulate (Arb).

4 Examples of operators

In this section we will define three families of operators and show that the first family gives
majority merging operators, the second family gives quasi-merging operators and the third
family gives arbitration operators.
We will suppose here that we have a distance between interpretations (possible worlds),
that is a functioni : YW x W — N (whereN is the set of natural numbers) such that:
d(1,J)=d(J,I)
d(I,J)=0iff I =J.
From now on we define the distance between an interpretatiod a belief base in the
following way:
d(I,¢) ?égd(f, J).
We also define the distance between two belief basasd’ induced by the above dis-
tance. This definition is not required for the definition of the operators but will be useful in
the proofs:

d(p,¢) = min d(I,J).
(pd) =, min d(I,J)

4.1 X operators

We define here a family of operators that will actually be majority merging operators. This
definition is similar to Borda rule in the framework of social choice theory [19, 2]. Indeed,
Borda rule tries to minimize the sum of ranks and our operator tries to minimize the sum of
distances.

DEFINITION 4.1

Let U be a belief set, lef be an interpretation and létbe a distance between interpretations.
We define the:-distance between an interpretation and a belief set as

ds(I,¥) = > d(I,9).
pew

Then we have the following pre-order:
<3 Jiff ds(I,®) <ds(J,¥).
The operato\* is defined by
mod(AY () = min(mod(p), <3).

The A* operators rely on the definition of the distance between an interpretation and a
belief set defined as the sum of the distances between this interpretation and the belief bases
of the belief set. The result ak> operators can be considered as the ‘election’ of the most
popular possible choices among the integrity constraints.

Lin and Mendelzon give &\ * operator (when the chosen distance is the Dalal distance
[13]) as an example of what they called operatorthebry merging by majoritin [28]. And
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independently, Revesz gives the same operator as an example of weighted model fitting in
[31].

This operator is indeed a majority merging operator as stated in the theorem below.
THEOREM4.2
A* is a majority merging operator.

PrROOF First of all notice the following fact, the proof of which is straightforward by defini-
tion:
ds (1,9, UWsy) =ds(I,%,) 4+ ds (1, ¥s). (4.1)

We prove that the assignmebt— <3 is a majority syncretic assignment. Then by Theo-
rem 3.11 we conclude tha 5, satisfieg7C0 — IC8) and(May).
Let us verify the conditions of a majority syncretic assignment:

1. IfI =¥ andJ =¥, thends(l,¥) =0andds(J,¥) =0,s0] ~y J.

2.1f I =T andJ [£ ¥, thends (I, %) = 0 andds(J,¥) > 0,s0] <y J.

3. Straightforward.

4. We want to show thatl |= ¢ 3J |= ¢ J <,uy I. We have thatl(l,¢) = 0 and
d(I,¢/) = min;_y d(I,J), so choose/ |= ¢ such thatd(I,J) = d(I,¢'). Then
d(J, ) = minp_, d(J,I') < d(J,1), andd(J,¢') = 0. Sods(J, oL ¢f) = dx(J, ) <
ds:(I,¢) = ds(I,oU ). So by definition] <, I.

5.If I <y, JandI <y, J, thendx(I,¥,) < ds(J,¥,) andds (I, ¥s) < dx(J, ¥3), SO

by equation 4. Uy (I, Uy U Uy) < ds(J, ¥, U Us).

. Follows from equation (4.1) as previous property.

7.1f I <y, J, thendx (I, ¥y) < ds(J, ¥2). We want to show thain I <y, v, J, thatis

dn dz([, qfl) +n*d2(I,‘I/2) < dz(J, q’l) +n*d2(.],‘1/2)

ds(I,%1)=ds(J,¥1)
ds(J,¥2)—ds(I,¥2)"

(o2}

so simply choose >
[ |

THEOREM4.3
If the distancel : W x W — N satisfies the triangular inequality, i&.Z, J) < d(I,J') +
d(J', J) thenA* satisfies (1G).

PROOF First assume thap + p andy¢’ + p. We will prove thatdn AE"(@’,@) F oo
Let a be the distance betweemandy', i.e. d(y,¢/) = a. Takel = g andJ = ¢
such thatdist(I,.J) = a. By using the triangular inequality, it is easy to see that
min{dists(I',pU¢) : I' |E p} thusI = Af(ap Ll ¢') and then, by (|C2)AE(AE(¢I L
©) L) F . Thereforedn AL (¢, ¢) F . From this, by puttings’ = AT (¥ L), (IC;)
follows. |

We will now illustrate the behaviour of majority operators through the following example
showing theA* operator at work. We will also use the same example with the two other
operators we define in this section. In particular, it will serve to highlight the difference of
behaviour between majority and arbitration operators.

EXAMPLE 4.4

We will choose as distance for the operators the Dalal distance [13]. The Dalal distance
between two interpretations is the number of propositional letters on which the two interpre-
tations differ, for example the Dalal distance betw€grd), 0) and(1, 1,0) is 1 since the two
interpretations differ only on the second letter.
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At a meeting of a block of flat co-owners, the chairman proposes for the coming year the
construction of a swimming pool, of a tennis court and a private car park. But if two of
these three items are built, the rent will increase significantly. We will denotg, by P
respectively the construction of the swimming pool, the tennis court and the private car park.
We will denotel the rent increase.

The chairman outlines that building two items or more will have an important impact on
therentu=((SAT)V(SAP)V(TAP)) =1

There are four co-ownefB = {p, U ¢, L¢3 U, }. Two of the co-owners want to build
the three items and do not care about the rent increase: ¢, = S AT A P. The third
one thinks that building any item will caused at some time an increase of the rent and wants
to pay the lowest rent so he is opposed to any construatigr: =S A =T A—-P A —I. The
last one thinks that the block really needs a tennis court and a private car park but does not
want a high rentincreasey =T A P A -1

The propositional letterS, 7', P, I will be considered in that order for the valuations:

mod(p) =W\ {(0,1,1,0),(1,0,1,0),(1,1,0,0),(1,1,1,0)}

mod(¢,) = {(1,1,1,1),(1,1,1,0)} mod(ps) = {(0,0,0,0)}

mod(p,) = {(1,1,1,1),(1,1,1,0)} mod(¢,) = {(1,1,1,0),(0,1,1,0)}

We sum up the calculations in Table 1, for each interpretation we give the distances between
this interpretation and the four belief bases and the distance between this interpretation and
the belief set according to th&> operator. The lines shadowed correspond to the inter-
pretations rejected by the integrity constraints. Thus the result has to be found among the
interpretations that are not shadowed.

TABLE 1. A® operator
Y1 pa p3 @ disty

(0,0,0,00 3 3 0 2 8
(0,0,0,1) 3 3 1 3 10
0,0,1,00 2 2 1 1 6
0,0,1,1) 2 2 2 2 8
0,1,0,00 2 2 1 1 6
0,1,0,1) 2 2 2 2 8
0,1,1,00 1 1 2 0 4
0,1,1,1) 1 1 3 1 6
(1,0,0,00 2 2 1 2 7
(1,0,0,1) 2 2 2 3 9
(,0,1,00 1 1 2 1 5
(1,0,1,1) 1 1 3 2 7
(1,1,0000 1 1 2 1 5
(1,1,0,1) 1 1 3 2 7
(1,1,1,00 0 0 3 0 3
(1,1,1,1) 0 O 4 1 5

If one takes the decision according to the majority wishes then witi\tfleoperator we
have 5 as minimum distance, smd(A 2% (¥)) = {(1,1,1,1)}, and the decision that satisfies
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the majority in the group is to build the three items and to increase the rent.

4.2 Max operators

We will define in this section thé\*** gperators. These operators are very close to the
minimax rule used in decision theory [33]. The minimax rule tries to minimize the worst
cases and similarly our operatér™2® tries to minimize the more remote distances. But

as we will see they are too rough as merging operators and then they do not satisfy all the
postulates. Neverthelegs" %* operators are quasi-merging operators. The behaviour of this
family can be seen as an approximation to the behaviour of arbitration operators.

DEFINITION 4.5
Let ¥ be a belief set, lef be an interpretation and Iétbe a distance between interpretations.
We define the Max-distance between an interpretation and a belief set as:

drrae (I, 0) = d(I, ).
Maz(I,¥) r;lea\;c( ®)

Then we define the following pre-order:

I <y J iff dagae (1, ¥) < dpran(J, 9).
The operator\ ™ is defined by:

mod(Aﬂ/[”(\Il)) = min(mod (), <} ).

The idea of this operator is to find the closest possible worlds to the overall belief set. So it
seems to be a good arbitration operator but it does not satisfy all the postulates. Revesz gives
aAMeaz gperator (with the Dalal distance [13] as chosen distance) as an example of model
fitting operators in [31].

THEOREM4.6
AMaz is a quasi-merging operator. Furthermore it satisfies (Arb); Jl@nd (MI). In partic-
ular AMez cannot satisfy (IC6) and (Maj).

PROOF First note that we have the following fact, the proof of which is straightforward:

REMARK 4.7
dMaw(I:‘Ijl u ‘112) = maX{dMaw(I:‘Ijl)adMaac(I:‘IJQ)}

We show that the assignmetit — <279 js a quasi-syncretic assignment. So by Theo-

rem 3.10AMe* s an |IC quasi-merging operator.

1. IfI =¥ andJ = ¥, thend .. (I, V) = 0anddya. (J, ) = 0,501 ~y J.

2.1f I =¥ andJ £ ¥, thend s, (I, ¥) = 0 andd . (J,¥) > 0, s0I <y J.

3. Straightforward.

4. We want to show thatI |= ¢ 3J |= ¢ J <,y I. We have thatl(l,¢) = 0 and
d(I,¢') = miny_ d(I, J), so choose = ' such thati(I,J) = d(I,¢).
Thend(J,p) = minp,d(J,I') < d(J,I), andd(J,¢') = 0. S0dra.(J, 00U ¢) =
dMaz(J, (,0) < dpaz (I, (,0/) = dymax (I, pu (,0’). So by definition/ Snpl_lgz’ 1.

5.1f I <w, J and I <w, J, thendM,w(I, ‘1’1) < dMaw(J,‘I’l) anddMM(I,‘IJQ) <
Aoz (J,P2), so0 by Remark 4. @ ps o, (1,01 U Ps) < dpree (J, ¥ U P).
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6.1f I <g, JandI <y, J, thendpro.(I, V1) < dpras(J,P1) anddyre. (I, P2) <
ez (J,P2), s0 by Remark 4.dnso. (1,01 U Ws) < dpree(J, ¥ U Ts).

In order to prove that (Arb) holds it is enough to show that condition 8 holds because of
Remark 3.14. Thus suppose that. , J, I <,, J'andJ ~, 1, J'. We want to show that
I <y 1, J. By remark 4.7 we havénra, (I, K1lUp,) = max{durae (I, 1), drraz (I, 05)}-
By the hypothesesax{dnroz (I, ¢1), drraz (I, 92)} < max{daraz(J, ), drae (T ,<p2)}
SinceJ ~y, 1, J s max{dnraz(J, 1), drrae (J, 03) ) = max{dnrae (J', ¢1), daraz (J', 05) }-
From this, it is easy to see thatax{draz(J, ¢1), drraz (I, 02)} < max{dMM( 1),
dyraz (T, o)} And by transitivitymax{dra. (I, ¢,), drrax (I, 05)} < max{dpraz(J, ;)
dMam(Ja 902)}’ i.e.l <oy Lip, J.

Now we prove thatIC';;) holds. Assume that - p andy’ + p. Itis enough to show that
In AMa" (o) - ¢ because from thisI C;) follows by puttingy’ = AMe (¥ L ¢). Let
a be the distance betweerandy’. We proceed by induction on

If a = 0, then by (IC2) A" (¢ U ¢) = ¢ A ¢f and by (IC2) agaim\ ) * (AN ** (¢ L
) U ) F . Suppose that > 1 and for anyi if i < a we have thati(p, ¢') = i implies
An AMa"(J @) I . We want to show that ifl(¢, ¢') = a thendn A" (J o) + o,
Sinced(y,¢') = a we can takel, I’ such thatl | ¢, I' = ¢ andd(I,I') = a. If
min{dya.(J,oU ) : J |= p} = a, thenl = AN (¢ L) and AN (AN (¢ L) U
©) F ¢. Otherwisemin{d .. (I', U ) : I' |= p} = io < a, thenmod(AL " (f Lg)) =
{JE w:dyuaa(J,pUd ) =i} Let's call¢/’ this belief base and notice that F p, so
puta’ the distance betweenandy’. Notice thata’ < iy < a so by the induction hypothesis
an Afy”n(@”, ¥) F . Thendn Aﬁ/f‘”n(go’, ¥) F .

The proof thatA M2 satisfies (M) follows easily from Remark 4.7. From this and Theo-
rem 3.3 follows that\ ”¢* does not satisfy (IC6).

Finally notice thatA }/** (o, U ¢ ) = AN (¢, U ,) from this and (IC4) is easy to see

that (Maj) fails. [ |
Let's see what thé\ M 2® gperator gives on the block of flats example (Example 4.4).

EXAMPLE 4.8

We recall that we use the Dalal distance in this example andStti&tP, I denotes respec-
tively the construction of the swimming pool, the tennis court, the private car park and the
rentincrease.

With AMaez as merging criterion we have 2 as minimum distance between possible choices
and the belief set (cf. Table 2) so the corresponding interpretations are selected:
mod(Aiwam(q])) = {(0’ 07 ]" 0)7 (0’ 07 ]" ]‘)7 (07 ]" 07 0)’ (0’ ]‘7 0’ ]‘)7 (]‘7 0’ 07 0)}' Then the
decision that best fit the group wishes is not to increase the rent and to build one of the three
items, or to increase the rent and build the tennis court or the private car park.

Y

4.3 GMax operators

We define in this section a new kind of merging operators, namely\tfi¢/** family. The

aim is to capture the ‘arbitration’ behaviour of the*** family but without losing the prop-

erties of an IC merging operator. The idea behind these operators has been used in social
choice theory [30], where they are callkximin functions (see also [14] for an example in
decision theory).
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TABLE 2. AMa® gperator
V1 Yo 3 g distmax

(0,0,0,00 3 3 0 2 3
(0,0,0,1) 3 3 1 3 3
0,0,1,00 2 2 1 1 2
0,0,1,1) 2 2 2 2 2
0,1,0,00 2 2 1 1 2
0,1,0,1) 2 2 2 2 2
0,1,1,00 1 1 2 0 2
(0,1,1,1) 1 1 3 1 3
(1,0,0,00 2 2 1 2 2
(1,0,0,1) 2 2 2 3 3
(1,0,1,00 1 1 2 1 2
(,0,1,1) 1 1 3 2 3
(1,1,0,00 1 1 2 1 2
(1,1,0,1) 1 1 3 2 3
(1,1,1,00 0 0 3 0 3
(1,1,1,1) 0 0 4 1 4

DEFINITION 4.9
Let ¥ be a belief set and letbe a distance between interpretations. Supfose{y, ... ¢, }.
For each interpretatiohwe build the list(d! .. . d!) of distances between this interpretation
and the n belief bases i, i.e.d! = d(I,;). Let L} be the list obtained frontd] . .. d!)
by sorting it in descending order. We will denate .. (I, ¥) the list L}I’. Let <., be
the lexicographical order between sequences of integers (of the same length). We define the
following total pre-order:
I<§Mer Jiff LY <per LY

and the operatof Va7 s defined by:

Mod(AGM (%)) = min(mod(p), <GM).

By definition it is easy to show that thA “Me= gperator is a refinement of thaMaz
operator.

REMARK 4.10
Aij”(\I!) - Aﬂ/f”(\l!).

We have to state some results in order to prove in an easy manner that the of\€r&ter
has good properties.

DEFINITION 4.11

Let L, andL> be two lists of numbers sorted in descending order. We défine L, the list
obtained by sorting in descending order the concatenati@n afith L.

LEMMA 4.12

Let Ly, L}, Lo, L} be four lists of integers sorted in descending order suchethal( L ;) =
card(L}) andcard(Ls) = card(L}). If Ly <jep L} andLs <je, L} thenL; @ Ly <jen
L} ® L.
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PROOF. Suppose thal; <;., L} andL, <., L). Itis easy to see that the two following
inequalities hold:Ly ® Ly <jep L} ® Ly and L] ® Ly <je, L ® Li. So by transitivity
Li©® Ly <lex LI1 © LI2 .

LEMMA 4.13

Let Ly, L}, Lo, L), be four lists of integers sorted in descending order suchcthal(L ;) =
card(L}) andcard(Ls) = card(L}). If Ly <jep L} andLs <je, L thenL; @ Ly <jep
L) © L.

PROOF With the assumptions it is easy to see that> Lo <., L] ® Ly andL] ® Ly <je,
L ® L},. We conclude by transitivity o ;... [ |

Now we can show that th& M4z gperators are arbitration operators.

THEOREM4.14
AGMaz is an arbitration operator that satisfies ()C

PROOF. In order to show\ “Mez satisfies postulates (ICO-IC8) and (Arb) we use the repre-
sentation theorem and we show that the assignnient <2 is a fair syncretic assign-
ment.

1LIfI E ¥andJ = ¥, thenVy, € ¥ I | ¢, andJ = ¢;, thenL; = (0,...,0) and
L;= (0,...,0),50_[ ~y J.

2.f T =¥ andJ £ ¥, thenL; = (0,...,0)andL; # (0,...,0),s0l <y .J.

3. If ¥y <+ ¥,, thenitis obvious that ¢, =<y,.

4. We want to show thatl |= ¢ 3J |= ¢ J <,upy I. We have thatl(l,¢) = 0 and
d(I,¢') = min;_y d(I,J), so choose/ |= ¢ such thatd(I,J) = d(I,¢'). Then
d(J,¢) = minp_,d(J,I') < d(J,I), andd(J,¢) = 0. S0dGras(J,o U @) <iea
damas (I, U ). So by definition] <.,y I.

5.1fLY" <jr LY @ndL}? <., L?. By Lemma 4.12, we have'""2 <., L7772

6.1f L} <o, LY andL}?* <., L}?, by Lemma 4.13 followd. ;"> <., L7772

8. Suppose that <GMaz J, [ <GMaz J' and.J ~Gar J'. We want to show that

I <GMar J. FromL{" <., LT we getd(I,¢,) < d(J,¢,) and in the same way

d(I,p,) < d(J',p,). FromLSY? ~; . L1772 it is easy to see that eithé(.J, ;) =
d(']lacpl) andd(‘]a (102) = d(‘]l,(pZ)! or d(‘L 301) = d(']l,(pZ) andd(‘]a (102) = d(']lacpl)'
In the first case we gett{*> <., L7> and sinceL}" <, L' we have by Lemma 4.13
that L7 <., L%97%2. In the second case we gétl, p,) < d(J,¢) and since
d(I,¢,) < d(J,¢,), we obtain easily. 72 <., L7%2.

Finally the proof that postulate (1) holds forAGMea« is similar to the one for\ 2=, [l

Let us return to the block of flats example (Example 4.4).

EXAMPLE 4.15
Table 3 sums up the calculation for the”*+* operator (using the Dalal distance).

As we have seen in the previous section th& ** operator is not an IC merging operator
because it is not sharp enough. Th& M= gperator narrows th& +* choices and then we
havemod(AﬁM”(\If)) = {(0,0,1,0), (0,1,0,0)}, so the decision that best fits the group
and that is allowed by the integrity constraints is to build either the tennis court or the private
car park, without increasing the rent.
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TABLE 3. AGMaz gperator
1 P2 Y3 2 diStGMax

(0,0,0,00 3 3 0 2 (3320
(0,0,0,1) 3 3 1 3 (3331)
0,0,1,00 2 2 1 1 (2211
0,0,1,1) 2 2 2 2 (2222
0,1,0,00 2 2 1 1 (2211
0,1,0,1) 2 2 2 2 (2222
0,1,1,00 1 1 2 0 (2110
(0,1,1,1) 1 1 3 1 (3111)
(1,0,0,0) 2 2 1 2 (2221)
(1,0,0,1) 2 2 2 3 (3222
(1,0,1,00 1 1 2 1 (2111)
(1,0,1,1) 1 1 3 2 (3211
(1,1,0,00 1 1 2 1 (2111)
(1,1,0,1) 1 1 3 2 (3211)
(1,1,1,00 0 0 3 0 (3,0,00)
(1,1,1,1) 0 O 4 1 (410,0)

The majority ‘vote’,a la A*, seems to be more ‘democratic’ than the others methods. But
in this case it works only ifp, agrees to conform to the majority wishes that are strongly
opposed to his own. In this cagg could decide to quit the co-owners committee, and the
work will perhaps not carry on because of lack of money. So if a decision, as in this example
orin a peace agreementor in a price agreement in a competitive market, requires the approval
of all the members, an arbitration method lik&”** seems more appropriate.

5 Connection with belief revision

We show in this section that IC merging operators are a generalization of revision operators
[1, 16, 18] to multiple belief bases and how to build an IC merging operator from a revision
operator.

First we recall the Katsuno and Mendelzon [18] postulates for belief revision operators:
let p be a belief base andbe a new informationy o i denotes the belief base result of the
revision ofy by p. The operatos is a revision operator if it satisfies the following postulates:

(R1) ¢ o uimpliesp.

(R2) If ¢ A pis consistentthem o u <> ¢ A .

(R3) If v is consistent thep o y is consistent.

(RA) If o1 <> @2 @andpuy < po thenp o py < o 0 s,

(R5) (pop) A ¢impliesp o (uA ).

(R6) If (p o u) A ¢is consistent thew o (u A ¢) implies(p o u) A ¢.

When one works with a finite propositional language Katsuno and Mendelzon postulates
are equivalent to AGM ones [1, 16], see [18] for a full justification. In this paper they give
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also a representation theorem for revision operators.

DEFINITION 5.1
A faithful assignment is a function mapping each belief base a pre-ordex ,, over inter-
pretations such that:

1LIfI |=ypandJ = ¢ thenl ~, J.
2.If I = pandJ £ ¢ thenl <, J.
3. Ifp & ¢, then<,=<,.

THEOREMb.2
An operatom is a revision operator if and only if there exists a faithful assignment that maps
each belief base to a total pre-ordex ,, such that

mod(p o p) = min(mod(p), <,).

5.1 From IC merging to revision

Intuitively revision operators select in a formula (the new evidence) the closest information
to a ground information (the old belief base). Identically, IC merging operators select in a
formula (the integrity constraints) the closest information to a ground information (a set of
belief bases).

So following this idea it is easy to make a correspondence between IC merging operators
and belief revision operators.

THEOREMS5.3
If A'is an IC merging operator (it satisfies (IC0-IC8)), then the operatbefined ago u =
A, (p), is an AGM revision operator (it satisfies (R1-R6)).

PrROOF The proof is straightforward. (R1) comes from (1C0), (R2) comes from (IC2), (R3)
comes from (IC1), (R4) comes from (IC3), (R5) comes from (IC7), and (R6) comes from
(IC8).

Conversely, we can wonder if we can build a merging operator from a given revision oper-
ator.

5.2 From revision to IC merging

We have seen in the previous section that each IC merging operator defines a revision oper-
ator. We can try to connect more deeply these two kinds of operators, so the point is now to
determine if each revision operatodefines an IC merging operatar.

First, it is important to note that, thanks to representation theorem (Theorem 3.7), we can
identify a belief setl with a preference relatiorbetween valuations, that is, the pre-order
<y associated to belief sd@t via the syncretic assignment. In particular, each belief base
(formula) belonging to a belief set can be seen as a singleton belief set and therefore as a
preference relation between valuations. Because of this, the problem of defining a merging
operator from a revision operator can be reduced to the problem of merging agent (individual)
preferences — given by the revision operator via the representation Theorem 5.2 — into the
group (global) preferences. Thus, a way to build a merging operator from a revision operator



794 Merging Information Under Constraints: A Logical Framework

is to choose the method to combineividual preferences in global preference. As we will
see, we can choose a methinth A > or AGMaez among others.

We will examine here the properties of the pdimvision operator, merging method

We propose the following definition of a merging operator from a given revision operator

DEFINITION 5.4
e Considers the faithful assignment corresponding to the revision operator
e Define f;(I) = n wheren is the level where the interpretatidrappears in the<, pre-
order. More formallyn is the length of the longest chain of strict inequalitigs< ... <
I, with I = pandl,, = I.
e Define f§ (I) with the merging method chosen (for exampig(l) = Z(f;([)) if ¥

pew
is the chosen method).

e Definel <y Jiff fg(I) < f3(J).
e Finally mod(Aj,(V)) = min(mod(p), <w ).

Now the question we try to address is the following one: given a merging method, what
are the properties required of the operatan order to get good properties for the operator
N°?

For example if we choosgg, (1) = Z (f2(I)) as merging method we get the following

peET
result, without any additional property requiredoof
THEOREMS5.5
If a merging operaton ° is defined from a revision operatoand from the merging method

f5(I) = >_(f3(1)), according to Definition 5.4, then the operatof satisfies (ICO-IC3),
peWY
(IC5-I1C8) and (Maj).

PROOF Let's verify the conditions on the assignment, then we conclude by Corollary 3.8 and

Remark 3.12:

1. IfI =¥ andJ =¥, thenfy () =0andfg(J) =0,s0l ~g J.

2.1f I =V andJ [£ ¥, thenfs (I) =0andfy(J)) > 0,s0l <y J.

3. Straightforward.

5.1f I <y, JandI <y, J, thenfy (I) < fg, (J) andfg (1) < fg,(J), so trivially
Foriw, () < £, 00, ()

6. Straightforward (similar to 5).

7.0f I <y, J, thenfg (I) < fg,(J). We want to show that

In fo,(I) +nx fy,(I) < fo,(]) +nx* fg,(])

fo, (D—fg,(J)

so simply choose > T e ("

Unfortunately condition 4 of the syncretic assignment is not always satisfied as we will
see at the end of this section. We extend the definitiofiJif) to belief bases by putting
fol¢) =min{f5(I) : I = '} and we consider the following condition sgmmetry

(Sym) f2(¢') = fo (¢) for any belief baseg andy'.
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This condition characterizes the revision operators generating IC merging operators. More
precisely we have the following:

THEOREMS5.6
If a merging operatoA ° is defined from a revision operatoaccording to Definition 5.4 us-

ing the merging methogls, (I) = Z fo(I), then the operatoh ° is an IC majority merging
pew
operator if and only if the condition (Sym) holds.

PrROOF From Theorems 5.5 and 3.11 it remains simply to show that condition 4 of the as-
signment corresponds to condition (Sym).

First we show that condition 4 implief;(¢/) = £ (¢). Condition 4 is equivalent to
VIE o3l B fo()) + fo () < fo(I) + f,(1). Butif I = pandJ | ¢ we have
fo(I) =0andf (J) = 0, so condition 4 is equivalent ¥l |= ¢ 3.J = ¢ fo(J) < 3, (1).
From this we deduce easily thAt () < £ (¢) and as the role opand’ in condition 4 is
symmetrical we also obtaifi; (p) < f5(¢). ThereforefZ(¢) = f5 ().

Conversely, suppose thif (¢) = fg () holds. Towards a contradiction suppose that
condition 4 does not hold, that 8/ |= ¢ VJ = ¢'J >,upy I. Thendl = o VJ E
¢ foun (1) > foup(I). From this, sincef, (J) = fo(I) = 0, we haved! | ¢ V.J |
¢ fo(J) > fo(I). Thereforef2(¢') > f2 (). Contradiction. |

Actually this condition of symmetry works for other merging methods. In particular if we
modify the Definition 5.4 as follows

e Definefg (1) as the list off; (1) sorted in descending order, i.e.

fod) = (f5,(I),.... 3 (I)) whereW = {o, ..., ¢, } and fg (1) > f (I) for
1< <n.

o Definel <y Jiff £(I) <tew £3(J).

The operator\° defined in this way will be termed th&max operator associated to For
this kind of operator we can prove in a similar way to Theorem 5.6 the following result.

THEOREMS5.7

Let A° be the Gmax operator associatedotoThen the operatof © satisfies (ICO-IC3),
(IC5-IC8) and (Arb). Furthermore the operattf is an IC arbitration operator if and only
if the condition (Sym) holds.

Actually the condition (Sym) is satisfied if and only if the revision is defined from a dis-
tance. More precisely a revision operatois said to be defined from a distandeff the
following conditions hold:

e d is a distance, that ig is a functiond : W x W — N that satisfiesd(I, J) = d(J,I)
andd(I,I)=0iff I =J.

e Let ¢ be a belief base anfibe an interpretationi(I, ) = min{d(I, J) : J |= ¢}.

o [ <, Jiff d(I,p) < d(J, ).

o mod(ipo 1) = min(mod(p), <,).

Notice that ifo is defined from a distance, theand theGmaxz methods will give respec-
tively the operatorg\> and A“Mae* defined in Section 4.
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PROPOSITIONS.8
Let o be a revision operator. Then the condition (Sym) holds iff defined from a distance.

PrROOF Theif part is straightforward. For thenly if part define the following distance:
d(1,J) = f; (J). Lety —<, the assignment representing We want to prove that
I <, Jiff d(I,¢) < d(J,¢). Notice that by definitioni(I,¢) < d(J, ) if and only if
min{f; (I):I' E¢} < min{fS (J):I'E¢} which by (Sym) is equivalent to
min{f5 (I') : I' E ¢} < min{f] (I'):I' = ¢}. This is exactlyfS (v) < f7 (o) that
is equivalent, using (Sym) once againto(7) < f(.J), which is exactlyl <, J. [ |

As a corollary of Theorems 5.6, 5.7 and Proposition 5.8 we have the following result.

THEOREMS5.9
A merging operato\ defined from a revision operatorand theX or theGmaz methods is
an IC merging operator if and only éfis defined from a distance.

In particular, as it is well known that there are revision operators which are not defined
from a distance, the operatofs® associated to them are not fair, i.e. they do not satisfy
(IC4).

6 Connectionswith related work

In this section we study the connections between this work and related work. We first in-
vestigate the case where there are no integrity constraints for the merging and show that this
work extends that of [22]. Then we deal with the relationship between our operators and
Liberatore and Schaerf’s ones [24, 25], showing that those operators can be seen as a special
case of IC merging operators. And finally, we briefly address Lin and Mendelzon’s theory
majority merging operators [28, 26], and Revesz’s model-fitting operators [31, 32].

Concerning the connection with important work on schema integration, we will simply say
a few words. The aim of this community is merging information in which the representationis
heterogeneous. They do not address the problem of merging contradictory information. Even
work about integration of deductive databases (see [35, 38]) does not consider the problem of
inconsistency. Our work on merging inconsistent information uses the fact that the different
sources have homogeneous representation. This can be used as a final stage in a complete
process of merging heterogeneous information.

6.1 Pure merging

A logical definition of merging operators in the case where there is no integrity constraints
was proposed in [22]. From now on, we will call those operapmrse mergingperators,
but often simply refer to this case as merging, majority merging and arbitration operators
(without the IC). Although the characterization of pure merging operators was simpler, the
representation theorem was not fully satisfactory because in this case we have a very coerced
definition of the pre-orders associated to a given belief set. An interesting point is to study
the behaviour of the postulates of IC merging operators when there is no integrity constraints,
which is simulated by putting = T. Actually we will see that the properties of this special-
ization are compatible with the characterization given in [22].

The definition proposed in that paper was the following:
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DEFINITION 6.1
Let A be an operator mapping a belief detto a belief base\(¥). A is said to be a pure
merging operator if and only if it satisfies the following postulates:

(A1) A() is consistent.

(A2) If A\ T is consistent, thel\(T) = A .

(A3) If Ty > Ty, thenA(T,) < A(T,).

(A4) If A ¢ is not consistent, thei (o U ¢') ¥ ¢.

(A5) A(T ) AA(Ty) FA(T, UT,).

(AB) If A(T 1) A A(T,) is consistent, thed\ (¥ LI ¥y) E A(T) AA(T,).

Moreover, a pure merging operator is said to be a pure majority operator if it satisfies the
following postulate:

(M7) Voan A (T UE") F o

And finally, a pure merging operator is said to be a pure arbitration operator if it satisfies
the following postulate:

(WMI) Vo Jpd ¥ oV¥n A(JU¢") = A¢ Ug).

The characterization of IC merging operators is a generalization of this characterization, as
we will see easily below. Actually, it is enough to study the shape of the postulates of Section
3whenu = T. We will note A+ (¥) = A().

(I1COT) A(P) F T.
(IC1+) A(®) is consistent.
(IC27) If ¥ is consistent, thel\ (¥) = A .
(IC37) If U} & Wy, thenA(T;) < A(Ty).
(IC4AT) AlpU ) Np¥F L= AlpUd)ANGF¥F L.
(IC57) A(T1) A A(To) B A(T, U Ty).
(1C67) If A(¥1) A A(T2) is consistent, thed (U LI ¥y) F A(Tq) A A(Ts).
(IC7T) A(D) AT E A(D).
(1C87) If A(¥) AT is consistent, thed\ (¥) - A(P).
(Maj1) 3In A (T, UT") F A(D,).
Alpy) & Alpy)
(Arbr) SLEHE) O o A L) & Al).

TFT
TFT

(WMIT) V¢ Jp g ¥ pVn A (¢ Ug") = A Uy).

(ICO7), (IC71) and (IC8r) are trivially true. (Arbr) is also trivially true because the
premiss of the implication is always false. Actually, the meaning of (Arb) is not expressible
without integrity constraints. It is easy to see that the other postulates are nearly the same that
those given in [22]. The main differences is that postulate ({r% stronger than (A4) and
that postulate (Maj) is stronger than (M7).
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Concerning (WMI), let us remark that this rule expresses only a kind of non-majority
rule and thus is not a direct characterization of arbitration, whereas (Arb) defines in a more
positive manner the arbitration behaviour.

The previous observations lead to the following result:

PROPOSITIONG.2
If A is an IC merging operator (i.e. it satisfies (IC0-IC8)), ther is a merging operator
(i.e. it satisfies (A1-A6)).

Furthermore ifA is an IC majority merging operator, theh + is a majority merging
operator.

6.2 Liberatore and Schaerf commutative revision operators

Liberatore and Schaerf [24, 25] have defined merging operators that they call arbitration oper-
ators or commutative revision operators. In this section we establish some links between our
operators and Liberatore and Schaerf’s. In the sequel we will call commutative revision the
Liberatore and Schaerf’s operators since the authors used the two names and since arbitration
operators have already been defined in our framework.

They consider operatoksmapping a couple of belief bases into a belief base. Next we
give their definition of commutative revision operators.

An operatoro is said to be a commutative revision operator if the following postulates
hold:

(LSY) pop <+ o

(LS2) ¢ A pimpliesy o p.

(LS3) If ¢ A pis consistent thep o i impliese A p.

(LS4) ¢ o pis inconsistent iff bothy andy are inconsistent.

(LSH) If 1 <> o @anduy <> s thenyy o py <> 2 © s,
@wouor

(LSB) po(uVvl)=< pobor
(pop)V(pod).

(LS7) p o pimpliesy V p.

(LS8) If pis satisfiable the A (¢ ¢ 1) is also satisfiable.

Now suppose thaf\ is an IC merging operator. We would like to define a commutative
revision operator fronf\. Because of postulates (LS1), (LS2) and (LS7) there are two natural
choices for the operatera which we want to define. One option is by putting oA ¢, =
Ny ve, (0 Uwy). The other one is by putting; oa ¢, = (¢, 0 @,) V (¢, 0 ), Where
o is the revision operator associated/oas in Theorem 5.3. Although the two definitions
coincide as we will see below, we prefer the first formulation because it can be generalized
to more than two belief bases in an obvious way.

DEFINITION 6.3
If A'is an IC merging operator we define a commutative revision opesatdoy ¢ oa p =
Ay U ). We will say thate o is the commutative revision operator associated with

The following theorem shows that the two ways of defining a commutative operator from
an IC merging operator agree.
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THEOREMG6.4
If A'is an IC merging operator then it satisfies

Dpvu(pUp) < Dy(p) V Au(ep)-

Recall thatp o p = A, (¢) is the AGM revision operator associated with Thus the
previous equivalence can be written in the following way:

DpvulpUp) > popVpop.

PROOF Let ¢ —<,, be a syncretic assignment representihg If ¢ A p is consistent the
result follows trivially. Now suppose thatA p is inconsistent. We have

min (g, <euy) OF
min(@ \4 H, Snpl_lu) - m%n(,u, Stpuu) or ‘
mln((p’ S<PUH) U mln(,u, S(puu)-

But the first two cases are not possible from condition 4 (fairness) and the fagt that
is inconsistent. So only the last case is possiblenso(y V 1, <) = min(p, <euu)
V min(u, <,,), which can be rewrittemin (¢ V g, <,1,) = min(p, <,) Umin (g, <)
which is, by definition A v, (¢ U i) < Ay (1) V Au(p). ||

In order to prove that the operatoss, defined in such a way are commutative revision
operators we need some additional properties for the opetatdhis will be seen easily after
setting a new formulation of the representation theorem for commutative revision operators.

THEOREMG6.5
If Ais an IC merging operator, then the operater associated with it satisfies (LS1-LS5),
(LS7) and (LS8).

PROOF (LS1) direct by definition. (LS2) direct from (IC2). (LS3) direct from (IC2). (LS4)
direct from (IC0) and (IC1). (LS5) direct from (IC3). (LS7) direct by definition. (LS8) direct
from (IC4) and (IC2). [ |

In order to prove that the commutative operators associated to IC merging operators are
indeed commutative revision operators in the sense of Liberatore and Schaerf, we need some
additional properties derived from an analysis of their representation theorem.

We begin by recalling that their representation theorem is formulated in terms of families
of pre-orders over sets of interpretations.

A mappingF’ — < from subsets of interpretations into total pre-orders over sets of inter-
pretation is said to be good assignmenif the following properties hold:

L1if A<pgp BandB <p CthenA <g C.
L2 if AC BthenB <p A.

L3A<p AUBorB<p AUB.
L4 B <p C foreveryC' iff FN B # 0.

C<aupDandA<c B or

L5A§CUDB<:>{ D <up CandA <p B.

Following [25], if 4 is a set of interpretations] will denote the se{{I}|I € A}. Libera-
tore and Schaerf’s representation theorem is stated next.
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THEOREM®G6.6
An operatore is a commutative revision operator if and only if there is a good assignment
F —<pg such that

— —

mod(p o p) = {I|{I} € min(mod(v), <pod(y)) U min(mod(u), <pmod(,s)) }-

An analysis of the proof of this theorem shows that any commutative revision operator
is defined from a revision operator having some additional properties. What is not totally
straightforward is to establish which are exactly these properties in terms of the revision
operator. We do that next. Then it will be easy to characterize IC merging operators which
generate commutative revision operators.

Lety —<,, be a faithful assignment. We define tiféng of this as a mag” — <  where
F'is a set of interpretations andp is a total pre-order over sets of interpretations which
satisfies

A<pBiff A€ AVJeBI<,J

wherey is a formula such thatod(p) = F'.

The following result is implicit in the work of Liberatore and Schaerf. That is in fact the
kernel of their proof of the representation theorem. We think that it is quite important to state
it explicitly.

OBSERVATION 6.7
© IS a commutative revision operator iff there is a unique revision opesatoch that
(i) the lifting of the faithful assignment representings a good assignment and

(i) po b =(nob)Vv(6op)

Now we are ready to give our characterization of revision operators inducing commutative
revision operators.

THEOREM®6.8
An operator defined from a revision operatoby o = po uV o p satisfies (LS1-LS8)
if and only if o satisfy the following condition:

pow ifoo(uve)k o

(V) op=3 bogp ifoo(uve)t-p (6.1)
(o) V (6oyp) otherwise.

PROOF First notice that by using the representation theorem for belief revision [18] we get
easily that condition (6.1) corresponds to the following condition on the faithful assignment
representing:

min(mod(), <,) i<, 0
min(mod(¢), <uve) = { min(mod(), <p) t0<,n (62
min(mod(y), <,) Umin(mod(p),<y) otherwise

whereu <, 6 is defined, as the lifting, in the natural way:
p<,0iff A =puvVJiE=01<,J.

(If part) Assume that is a revision operator satisfying condition (6.1) andlée defined
by puttingy o 1 = (p o u) V (o ). We want to show that is a commutative revision
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operator. Let us consider — <, the faithful assignment representingand letF' —<p
the lifting associated with it. By Theorem 6.6 it is enough to prove that: < r is a good
assignment.

The verification that the assignméht— < - satisfies L1-L4 is straightforward. It remains
to verify L5. We will in fact show the following (that is clearly equivalent to L5):

(1) C <aup DandA <¢ B or
A<cup B& (15) D <aup CandA <p B or
(i) D ~aup Cand(A <¢c BorA <p B).

Lety, i, 8 be formulas such thatod(y) = AUB, mod(p) = C andmod(8) = D. From
right to left we consider the three cases:
(i) holds. For reductio suppose that<.,p B does not hold, the® < p A. From this
we havemin(A U B, <,vg) N A = 0. FromC <aup D aliasp <, 6 and condition (6.2)
we get thaimin(A U B, <,vp) = min(AU B, <,,). FromA <o B we getmin(AU B, <,,)
NA#0. Somin(AU B, <,vp) N A # (. Contradiction.
(ii) holds. The proof is similar to the one of the case (i).
(iii) holds. Suppose thatt <-_,p B does not hold, thatisl >c,p B. FromD ~ 4, C
aliasy ~, 6 and property (6.2), we get

(%) min(AU B, <,vs) = min(AU B, <,) Umin(A U B, <y).

By hypothesis we know that <- BorA <p B, suppose w.l.g thal < B, then
min(AU B, <,) N A # 0. From this and equatiofx) we getmin(A U B, <,vg) N A # 0.
But A >cup B implies thatmin(A U B, <,v¢) N A = (). Contradiction.

From left to right we consider also three cases: eitiek o4y D or D <,up C or
C ~AUB D.
CaseC' < up D: we want to show thatl <~ B. Suppose towards a contradiction that it is
not the case, i.eB < A. FromA <cup B we have thatnin(A U B, <,vs) N A # (. But
from C <aup D we havemin(A U B, <,vg) = min(A U B, <¢). Now fromB <c A we
havemin(A U B, <¢) N A = (). Contradiction.
CaseD < 4up C: This case is similar to the first one.
CaseC ~4up D: Suppose thatl <o BorA <p B does not hold, that ist >~ B
andA >p B, thenmin(A U B,<,)N A = § andmin(A U B,<p) N A = (. From
C ~aup D we havemin(A U B, <,vp) = min(A U B, <,) Umin(A U B, <p). From
A <cup B we have thainin(A U B, <,vp) N A # (). But from the supposition we have
(min(AU B, <,,) Umin(A U B, <y)) N A = ). Contradiction.

(Only if) Assume that we dispose of a commutative revision operagatisfying (LS1—
LS8), which is defined from a revision operatoby p o u = (p o u) V (i o ). We want to
show that satisfies condition (6.1). From (LS6) we get by definition that

(o) V(noy) or
(po )V (Boy) or  (6.3)

(pop) V(ow)V(pob)V(0oyp).

Remember the following classical property of revision operator [16]:

(300(u\/9))\/((uv0)o<p):{

@Yo or
po(uVvel) =< pob or (6.4)
(pop)V (pob).
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We consider the three cases of condition (6.1).
Case 1:Assume thapo (V) - —6. In this case the two last alternatives of (6.4) are clearly
impossible, thus necessarily we have (u V ) = ¢ o u. The assumption also implies that
@A 6+ L and from this and the assumption it is easy to see that the two last cases of (6.3)
are impossible, thus necessarily we have

(po(uV o)V ((uVe) oy = (pop)V(noyp). (6.5)

Now suppose thap A u = L. From this,p A § - L and the equation (6.5) we obtain
(1 V 0) oo = o Otherwise, suppose thatA p I L. Then, by the revision properties
and the factthap A 6 + L, we have(u V 8) o o = u A ¢ = o . That is the first case of
condition (6.1) holds.

Case 2:Assumepo (V) F —p. Inthis case we follow the reasoning of case 1 but changing
the role ofy, andd. Then we obtairiu V 6) o ¢ = 6 o . That is the second case of condition
(6.1) holds.

Case 3:In this case is easy to see that

po(uVh)=(pop)V(pob). (6.6)

We consider two sub-cases. First assume that (uV 6) I/ L. Thengpo (uV 0) =
(pAp)V(eAd)withpApt/ Lande A6t/ L. From this it follows(p V 8) o ¢ =
(LAP)V(ONAP)=(nop)V(0op).

Now suppose thap A (2 v 6) | L. From this and the following instance of (LS6)

(pop)V(noyp) or
(po(uVve)V((uVve)op)=1q (pod)V(foyp) or (6.7)
(pou)V(pol)V(nop)V(fop)

it is easy to see thatiod((u V ) o ) C mod(p o p) U mod(# o ). In order to see the
converse inclusion take € mod(u o ¢) (the other case is analogous). Thep <, ¢. From
this and the fact that ~,, 6 (which is a consequence of (6.6)), we have byd b<,v¢ ¢,
that is7 is minimal inmod(ip) for <,,ve. [ |

REMARK 6.9

Actually, itis not hard to see thatdfis defined from a distance, then property (6.1) is verified.
In that case the operatorassociated by o u = (¢ o u) V (1 0 @) is indeed a commutative
revision operator.

From Theorem 6.8 it is easy to state a representation theorem for commutative revision
operators.

DEFINITION 6.10
A commutative faithful assignment is a function mapping each belief bdeea total pre-
order<,, over interpretations such that:

1LIfI |=ypandJ = ¢ thenl ~, J.
2.If I = pandJ £ ¢ thenl <, J.
3. o+ ¢, then<,=<,.

min(mod(y), <,) i<, 0
4. min(mod(p), <,ve) = { min(mod(y), <g) if 0 <,
min(mod(p), <,) U min(mod(p), <s) otherwise



Merging Information Under Constraints: A Logical Framewor&03

whereu <., 6 is defined in the natural way:
p<,0iff A =puvVJE=01<,J.

THEOREMG6.11
An operatore satisfies (LS1-LS8) if and only if there exists a commutative faithful assign-
ment that maps each belief baseo a total pre-ordex ,, such that:

mod(ip o ) = min(mod(y), <) Umin(mod(), <,).

PROOF Theif part is a consequence of Theorem 6.8. Forahéy if partnotice that from a
commutative revision operatorwe can define a revision operatoand from Theorem 6.8
conclude that this operator satisfies condition 4 of the commutative faithful assignmdht.

We have seen in Theorem 6.8 how to characterize the revision operators inducing commu-
tative revision operators. Then it is obvious that commutative revision operators defined from
IC merging operators do not automatically satisfy (LS6). Actually, from Theorem 6.4 one
can easily see that the property corresponding to equation 6.2 is the following

D (1) it Auve (p) -0
Dyp(pVO) =9 Ly(0) it Auve (@) F - (6.8)
Dy(p) vV AL0)  otherwise.

Thus by Theorems 5.3 and 6.4 the following theorem can simply be seen as a reformulation
of Theorem 6.8.

THEOREM6.12
If A'is an IC merging operator (it satisfies (ICO-IC8)), then the opetadefined as> o i =
Ay U ) satisfies (LS1-LS8) if and only i\ satisfies property (6.8).

As we knowA> and AGMaer families are defined from a distance, so in particular the
revision operators associated to them are also defined from a distance. Therefore, by Remark
6.9 operators> defined from theA* and A“Me* families satisfy all the Liberatore and
Schaerf’s postulates.

It is interesting to note that property (6.8) implies the following property.

LEMMA 6.13
Property (6.8) implie\ ,(¢) = A, (Ap(p))-

ProoFR Considery’ = min(mod(y), <,), thatisy’ = A,(r). And definey” asmod(¢") =
{I E ypandl E ¢} From property (6.8) we getmin(mod(u),
<gvyr) = min(mod(u), <), since by hypothesig’ <, ¢/'. So we havenin(mod(pu),

<,) = min(mod(p), <y ). ThusA,(p) = A,(¢), and from the definition of’ this is

D) = Bu(Bp(p))- i

This property is maybe not very natural but it is very expressive in the framework of belief
revision, since the corresponding revision operator satisfies

pop=(nopop. (6.9)

That is to say that the result of the revisiony 1 depends only on the models gthat
are the closest tp.



804 Merging Information Under Constraints: A Logical Framework

A serious drawback of commutative revision definition is that it does not allow one to
merge more than two belief bases since it is not associative (see [24, 25]), but the idea that
the result of the merging has to imply the disjunction of the belief bases can be very useful
in a lot of applications. So in order to generalize Liberatore and Schaerf operatobelief
bases, we could then define the merging of a beliefgetl ... U ¢, } as

Awlv...vwn (‘P1 u...u ‘Pn)~

6.3 Lin and Mendelzon majority merging operator

Lin and Mendelzon have defined a kind of merging operator, denatettiat they call a
majority merging operator [28, 26].
The postulates given by Lin and Mendelzon for these operators are:

(LM1) A(T) is consistent.
(LM2) If A ¥ is consistent thea (¥) = A T.
(LM3) If ¥ U’ thena(¥) < A(T).

(LM4) For a literal sentenckif |[{p; € U, =1} > {p; € ¥ : ¢, = I} + [{p; € P -
@; > i} thena () implies!.

v, > -l means that the belief bage partially supports-l, that is, there exists &, which
mentions no atom appearing-d, such thatp, |= =l Vv 3 buty; = -l andy; [~ 5. Whereas
@; |E —lis called afull supportof —I. Then the postulate (LM4) simply expresses the idea of
a vote for or againdt, that isi is ‘elected’ if there is more explicit supportstdhan explicit
and implicit supports te-l. It is necessary to take into account implicit supports in order to
avoid some incoherent answers (see [28] for full justification).

Lin and Mendelzon provide an example of operator satisfying these properties. higan
operator with the Dalal’s distance as chosen distance. They give in particular an interesting
definition of this operator when the belief bases are expressed in Disjunctive Normal Form.

We can note that postulates (LM1), (LM2) and (LM3) correspond respectively to postulates
(A1), (A2) and (A3) for pure merging. Note also that if an operator satisfies (LM4) then it
satisfies a weak version of (M7), i.e. at the level of literals. So a Lin and Mendelzon operator
is a sort of weak pure majority merging operator, provided that it has some good properties
(i.e. it satisfies (A4—AB)).

6.4 Revesz model-fitting operators

Revesz proposes in [31, 32] a kind of operators he called model-fitting operators that are very
close to IC merging operators. One important difference between his approach and ours is
the notion of belief set and the notion of equivalence of belief sets. He defines equivalence as
follows:

DEFINITION 6.14

Let U, ¥, be two belief sets¥; = U, iff Voo € U, Jp1 € ¥, St.pg > 1. ¥ & U,

iff U, = ¥, and¥, = ¥,.

In particular for Revesz all belief set can be reduced to a set of formulas. That is false in
our approach.

Let U be a belief set ang be a belief basey > 1 denotes the belief base result of the
model-fitting of ¥ by . The postulates he gives for these operators are:
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(M1) ¥ > p implies .

(M2) If ¥ A pis consistent, the® >y <> U A p.

(M3) If i is consistent, the® > p is consistent.

(M4 If ¥, & U, andu <> ¢, thenl | >y < Uy > ¢,

(M5) (T > pu) A ¢ implies > (u A @).

(M6) If (T > ) A ¢ is consistent the® > (u A ¢) implies (P > u) A ¢.
M7) (T, > p) A (Ty > p) implies(T, U, > p).

Revesz provides also a representation theorem for these operators, see [31, 32] for more
details about this theorem and the justifications of the postulates. Note the following:

THEOREM6.15
Postulate (M4) is equivalent to postulates (IC3) and (MI).

Then it is straightforward that Revesz’s postulates correspond directly to the following
set of postulates: (IC0-IC3),(IC5),(IC7),(IC8) and (MI). Remember that the set of postu-
lates (ICO-IC8) and (M) is inconsistent (Theorem 3.3), so Revesz postulates are inconsistent
with IC merging postulates. We have also show in Section 4.2 that the set of postulates
(ICO-ICh),(IC7),(IC8),(MI) is consistent, model-fitting operators are a subset of this set of
postulates (all but (IC4)). In particular note that™** family operators are model-fitting
operators.

7 Conclusion

In this paper we have presented a logical framework for belief base merging in the presence
of integrity constraints when there is no preference over the belief bases. We stated a set
of properties an IC merging operator should satisfy in order to have a rational behaviour.
This set of properties can then be used to classify particular merging methods. In particular,
we have made a distinction between arbitration and majority operators, arbitration opera-
tors striving to minimize individual dissatisfaction and majority operators trying to minimize
global dissatisfaction.

We have provided a model-theoretic characterization for IC merging operators. This char-
acterization is much more natural than the one in [22], due to the presence of integrity con-
straints. Especially, we have defined three families of merging operators that illustrate the
logical characterization. We defined, in particular, th& M2z family that is, in the logical
context, a new merging method. The difference of behaviour between these three families is
shown on a concrete example.

We have studied the connections of this work with previous ones. First we show that
this work consistently extends the work of [22] that merges belief bases in the pure case,
i.e. without integrity constraints. We have also shown the strong connection between belief
revision operators and IC merging operators. In particular our IC merging operators are a
generalisation of AGM revision operators. An interesting result is that we can use revision
operators for building merging operators if and only if the revision operator is defined from a
distance. Concerning the Liberatore and Schaerf’'s commutative revision operators we have
shown that they can be seen as a special case of IC merging operators. We have made a brief
comparison between our proposal and the Lin and Mendelzon’s one for theory merging by
majority and the Revesz’s one for model-fitting operators.
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In many situations, in a committee, all the protagonists do not have the same weight on
the final decision, so one generally needs to weight each belief base to reflect this. The idea
behind weights is that the higher weight a belief base has, the more importantitis. If the belief
bases reflect the view of several people, weights could represent, for example, the cardinality
of each group. We want to characterize logically the use of these weights. Majority operators
are close to this idea of weighted operators since they allow one to take cardinalities into
account. But a more subtle treatment of weights in merging is still to be done, in particular
the notion of weighted arbitration operators is missing.

Another point of interest is to study practical merging operators, in particular syntacti-
cal merging operators, i.e. operators that do not satisfy (IC3), in order to find which is the
best compromise between logical properties and calculability. In [21] merging operators that
adopt a coherence approach to theory merging are studied. These operators are based on a
union of all the belief bases and on the selection of some maximal subsets due to a given or-
der (not necessarily the inclusion). Once the union of the belief bases is settled, the problem
becomes one of finding a coherent belief base from an inconsistent one [9, 6, 7]. A lot of
work on belief base merging adopts this coherence approach [3, 4]. An important drawback
of coherence merging operators is that the source of each belief is lost in the merging pro-
cess. So the problem is to take into account the source of each piece of information in order
to allow subtler behaviours for merging operators, for example define majority or arbitration
operators.

We would like to conclude with two open questions. The first one concerns distances.
Notice that all examples of IC merging operators we have given are built from a distance.
The question that naturally arise is the following: Are all the IC merging operators built from
a distance?

The second question concerns the relationships between the postulates (Maj) and (Arb).
It is not hard to see that if we consider only one propositional variable the operators
and AMaz gre equal. Indeed, we know that (Maj) and (Arb) together are consistent with
IC merging postulates. Actually, if we fix the cardinality of the language, we can build a
generalization of the\> operators’ that is both an arbitration and majority operator. So
the question is to find if there is another property that captures the arbitration behaviour and
such that the class of operators satisfying this property is disjoint of the class of IC majority
merging operators.
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