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ABSTRACT

Blind steganalysis based on classifying feature vectors derived from images is becoming increasingly more power-
ful. For steganalysis of JPEG images, features derived directly in the embedding domain from DCT coefficients
appear to achieve the best performance (e.g., the DCT features10 and Markov features21). The goal of this paper
is to construct a new multi-class JPEG steganalyzer with markedly improved performance. We do so first by ex-
tending the 23 DCT feature set,10 then applying calibration to the Markov features described in21 and reducing
their dimension. The resulting feature sets are merged, producing a 274-dimensional feature vector. The new fea-
ture set is then used to construct a Support Vector Machine multi-classifier capable of assigning stego images to
six popular steganographic algorithms—F5,22 OutGuess,18 Model Based Steganography without ,19 and with20

deblocking, JP Hide&Seek,1 and Steghide.14 Comparing to our previous work on multi-classification,11, 12 the
new feature set provides significantly more reliable results.

1. INTRODUCTION

Steganography is the art of undetectable communication in which messages are embedded in innocuous looking
objects, such as digital images. In the process of embedding, the original (cover) object is slightly modified to
embed the data. The modified cover object is called the stego object. The embedding process usually depends
on a secret stego key shared between both communicating parties. The main requirement of steganographic
systems is statistical undetectability of the hidden data given the knowledge of the embedding mechanism and
the source of cover objects but not the stego key (so called Kerckhoffs’ principle).

Steganographic security was formalized by Cachin 7 who introduced the concept of ǫ-security. Let X be the set
of all possible cover objects. A steganographic scheme is a pair of mappings Embk : X → X and Extk : X → M
both parametrized by a secret key k such that Extk(Embk(x,m)) = m for all x ∈ X , m ∈ M , and k ∈ K,
where M and K are spaces of all communicable messages m and secret keys k, respectively. Assuming X can
be endowed with a probability distribution function fC , the “natural” distribution of covers, the stego objects
will be distributed according to pdf fS . The Kullback-Leibler distance D(fC ||fS) is taken as the measure of
statistical detectability. If D(fC ||fS) < ǫ, we say that the steganographic scheme is ǫ-secure.

Because the dimensionality of X is too large, in practice, the objects of X are represented using a simplified
model. One possibility is to project each object x ∈ X onto a space of a much smaller dimension formed by
“features” that, in some sense, capture everything important about x. One could then attempt to map out the
distributions of features fC and fS from a large database of cover and stego objects. For steganalysis, machine
learning techniques are used to train a classifier capable of distinguishing cover and stego feature sets in the
feature space.4, 5, 9, 10 Such steganalytic methods are called blind. Their biggest advantage is that there is
no need to construct specific targeted steganalytic methods whenever a new method appears. Blind methods
can also classify objects to known steganographic schemes (so called multi-class steganalysis) providing valuable
feedback to forensic examiners towards the goal of extracting the secret message.

The idea to use a trained classifier to detect data hiding was first introduced in a paper by Avcibas et al.,4

where image quality metrics were proposed as features and the method was tested on several robust watermarking
algorithms as well as least significant bit embedding (LSB) in the spatial domain. Avcibas et al.3, 5 later proposed
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a different set of features based on binary similarity measures between the LSB plane and the second LSB plane
capitalizing on the fact that most steganographic schemes use the LSB of image elements as the information-
carrying entity. Farid8, 9, 16 constructed the features from higher-order moments of distribution of coefficients
obtained using quadrature mirror filters and the coefficient prediction errors from several high-frequency sub-
bands. Other authors have investigated the problem of blind steganalysis using trained classifiers.13, 17, 23

For best results, the features for steganalysis should react sensitively to embedding changes but be otherwise
insensitive to image content. Virtually all steganographic methods for the most common image format—JPEG
work by manipulating the quantized DCT coefficients. Since the embedding changes are lumped in the DCT
domain, constructing the features in the same domain will likely lead to a more sensitive feature set. The first
feature set targeted to JPEG images that also employed the concept of calibration was proposed by Fridrich.10

The calibration is a procedure through which one can estimate the features of the cover image from the stego
image. In this paper, we will call this feature set “DCT features.” Recently, Shi et al.21 proposed another
feature set for JPEG images based on Markov models of DCT plane. This feature set will be called “Markov
features.” Previous comparisons of performance of blind steganalyzers11 based on different feature sets indicated
that feature sets targeted to JPEG images have remarkably better performance than general purpose feature
sets.

The contribution of this paper is three fold. First, we compare the performance of classifiers employing DCT
features10 and Markov features.21 Second, by analyzing both classifiers, we propose a new merged feature set,
whose detection accuracy is remarkably better than the detection accuracy of both of its predecessors. Third, we
use the proposed feature set to construct a general blind multi-classifier for single-compressed JPEG images with
a wide range of quality factors. We report its performance by classifying images to 6 known JPEG steganographic
techniques (F5, OutGuess, Steghide, JP Hide&Seek, Model based steganography with and without deblocking)
for 34 JPEG quality factors.

The paper is organized as follows. In the next section, we briefly review the construction of DCT and
Markov features, and describe the new merged feature set. In Section 3, we give the implementation details
of the SVMs used in this paper and describe the training and testing methodology. In the same section, we
compare the performance of all three features sets on binary and multi-classification problems. In Section 4,
we construct a seven-class multi-classifier for detecting steganographic algorithms for single-compressed JPEG
images embedded with six popular JPEG steganographic algorithms and various quality factors. The paper is
concluded in Section 5.

2. FEATURES

In this section, we describe the new feature set for steganalysis of JPEG images. We start with the description
of the original and extended DCT feature set and a short review of the recently proposed Markov features.21

Then, we present the new Merged feature set created as a combination of the extended DCT and calibrated
Markov feature sets.

All features in the merged set will be calibrated. Calibration is a process used to estimate macroscopic
properties of the cover image from the stego image. We quickly review the inner workings here, since it forms an
essential part of the feature calculation. More detailed description of calibration can be found in.10–12 During
calibration, the stego JPEG image J1 is decompressed to the spatial domain, cropped by a few pixels in both
directions, and compressed again with the same quantization matrix as the stego image J1. The newly obtained
JPEG image J2 has most macroscopic features similar to the original cover image. This is because the cropped
image is visually similar to the original image. Moreover, the cropping brings the 8× 8 DCT grid “out of sync”
with the previous compression, which effectively suppresses the influence of the previous JPEG compression and
the embedding changes. The calibrated feature is obtained as the difference between the features calculated for
J1 and J2. This calibrated feature will be less sensitive to the image content and more sensitive to embedding
changes.



2.1. Extended DCT feature set

The original DCT features (originally published in10) were constructed by use of 23 functionals F that produce
a scalar, vector, or a matrix when applied to the stego image. Each functional F is evaluated for the stego image
J1 and its calibrated version J2. The calibrated feature f is obtained as the difference F(J1) − F(J2), if F is a
scalar, or as an L1 norm ‖F(J1)−F(J2)‖L1

if F is a vector or a matrix. The functionals F are defined as follows.

Let the luminance of a stego JPEG file be represented with a DCT coefficient array dij(k), i, j = 1, . . . , 8,
k = 1, . . . , nB, where dij(k) denotes the (i, j)-th quantized DCT coefficient in the k-th block (there are total of
nB blocks).

The first functional is the histogram H of all 64 × nB luminance DCT coefficients

H = (HL, . . . , HR), (1)

where L = mini,j,k dij(k), R = maxi,j,k dij(k).

The next 5 functionals are the histograms

hij = (hij
L , . . . , hij

R), (2)

of coefficients of 5 individual DCT modes (i, j) ∈ {(1, 2), (2, 1), (3, 1), (2, 2), (1, 3)} , L.

The next 11 functionals are dual histograms represented with 8×8 matrices gd
ij , i, j = 1, . . . , 8, d = −5, . . . , 5

gd
ij =

nB
∑

k=1

δ(d, dij(k)), (3)

where δ(x, y) = 1 if x = y and 0 otherwise.

The next 6 functionals capture inter-block dependency among DCT coefficients. The first functional is the
variation V

V =

8
∑

i,j=1

|Ir|−1
∑

k=1

|dij(Ir(k)) − dij(Ir(k + 1))| +
8

∑

i,j=1

|Ic|−1
∑

k=1

|dij(Ic(k)) − dij(Ic(k + 1))|

|Ir| + |Ic|
, (4)

where Ir and Ic denote the vectors of block indices 1, . . . , nB while scanning the image by rows and by columns,
respectively.

Two next two blockiness functionals are scalars calculated from the decompressed JPEG image representing
an integral measure of inter-block dependency over all DCT modes over the whole image:

Bα =

⌊(M−1)/8⌋
∑

i=1

N
∑

j=1

|c8i,j − c8i+1,j |
α +

⌊(N−1)/8⌋
∑

j=1

M
∑

i=1

|ci,8j − ci,8j+1|
α

N ⌊(M − 1)/8⌋+ M ⌊(N − 1)/8⌋
. (5)

In (5), M and N are image height and width in pixels and ci,j are grayscale values of the decompressed JPEG
image, α = 1, 2.

The remaining three functionals are calculated from the co-occurrence matrix of neighboring DCT coefficients

N00 =C0,0(J1) − C0,0(J2)

N01 =C0,1(J1) − C0,1(J2) + C1,0(J1) − C1,0(J2) + C−1,0(J1) − C−1,0(J2) + C0,−1(J1) − C0,−1(J2) (6)

N11 =C1,1(J1) − C1,1(J2) + C1,−1(J1) − C1,−1(J2) + C−1,1(J1) − C−1,1(J2) + C−1,−1(J1) − C−1,−1(J2),



Functional Dimensionality

Global histogram Hl 11

5 AC histograms h
ij
l 5×11

11 Dual histograms gd
ij 11×9

Variation V 1
2 Blockiness Bα 2

Co-occurrence matrix Cst 25

Table 1. Extended DCT feature set with 193 features.

where

Cst =

8
∑

i,j=1

|Ir|−1
∑

k=1

δ (s, dij(Ir(k))) δ (t, dij(Ir(k + 1))) +
8
∑

i,j=1

|Ic|−1
∑

k=1

δ (s, dij(Ic(k))) δ (t, dij(Ic(k + 1)))

|Ir| + |Ic|
. (7)

The original motivation for using the L1 norm to form the DCT features is the reduction of their dimension-
ality. It is apparent, however, that by using the L1 norm, some information potentially useful for steganalysis
is lost. By replacing the L1 norm with a higher-dimensional alternative, we will preserve more information and
obtain better classification results at the expense of increased dimensionality. Replacing the L1 norm directly
with the difference, however, is not feasible because the feature set dimensionality would substantially increase
and there would be too many features holding little information (e.g., histogram bins for large values of DCT co-
efficients). This would eventually negatively affect the performance and increase the complexity of the classifier.
In order to alleviate the information loss due to using the L1 norm and to keep the dimensionality of features
“reasonable,” we replaced the L1 norm by the following differences.

For the global histogram functional H and for 5 histograms of individual DCT modes hij , (i, j) ∈ L, we take
the differences of elements in the range [−5, +5]. Thus, the histogram features are

Hl(J1) − Hl(J2), l ∈ {−5, . . . , 5},

h
ij
l (J1) − h

ij
l (J2), l ∈ {−5, . . . , 5}.

For the dual histogram functionals gd, d ∈ {−5, . . . ,+5}, we take the difference of the 9 lowest AC modes

gd
ij(J1) − gd

ij(J2), (i, j) ∈ {(2, 1), (3, 1), (4, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (1, 4)}.

For the co-occurrence matrix functionals, we use the central elements in the range [−2, +2] × [−2, +2]. This
yields 25 features

Cst(J1) − Cst(J2), (s, t) ∈ [−2, +2]× [−2, +2].

The rationale behind restricting the range of the differences between functionals to a small interval around zero
is that DCT coefficients follow a generalized Gaussian distribution centered around zero. Thus, the central part
of the functionals holds the most useful information for steganalysis.

After we replace the L1 norm by the proposed differences, the dimensionality of the feature set (further
referred to as the extended DCT feature set) becomes 193 (see Table 1).



2.2. Original, calibrated, and reduced Markov features

The Markov feature set as proposed in21 models the differences between absolute values of neighboring DCT
coefficients as a Markov process. The feature calculation starts by forming the matrix F (u, v) of absolute values
of DCT coefficients in the image. The DCT coefficients in F (u, v) are arranged in the same way as pixels in
the image by replacing each 8 × 8 block of pixels with the corresponding block of DCT coefficients. Next, four
difference arrays are calculated along four directions: horizontal, vertical, diagonal, and minor diagonal (further
denoted as Fh(u, v), Fv(u, v), Fd(u, v), and Fm(u, v) respectively)

Fh(u, v) = F (u, v) − F (u + 1, v),

Fv(u, v) = F (u, v) − F (u, v + 1),

Fd(u, v) = F (u, v) − F (u + 1, v + 1),

Fm(u, v) = F (u + 1, v) − F (u, v + 1).

From these difference arrays, four transition probability matrices Mh,Mv,Md,Mm are constructed as

Mh(i, j) =

∑Su−2
u=1

∑Sv

v=1 δ(Fh(u, v) = i, Fh(u + 1, v) = j)
∑Su−1

u=1

∑Sv

v=1 δ(Fh(u, v) = i)
,

Mv(i, j) =

∑Su

u=1

∑Sv−2
v=1 δ(Fv(u, v) = i, Fv(u, v + 1) = j)
∑Su

u=1

∑Sv−1
v=1 δ(Fv(u, v) = i)

,

Md(i, j) =

∑Su−2
u=1

∑Sv−2
v=1 δ(Fd(u, v) = i, Fd(u + 1, v + 1) = j)
∑Su−1

u=1

∑Sv−1
v=1 δ(Fd(u, v) = i)

,

Mm(i, j) =

∑Su−2
u=1

∑Sv−2
v=1 δ(Fm(u + 1, v) = i, Fm(u, v + 1) = j)
∑Su−1

u=1

∑Sv−1
v=1 δ(Fm(u, v) = i)

,

where Su and Sv denote the dimensions of the image and δ = 1 if and only if its argument(s) are satisfied.
Since the range of differences between absolute values of neighboring DCT coefficients could be quite large, if
the matrices Mh,Mv,Md,Mm were taken directly as features, the dimensionality of the feature set would be
too large. Thus, the authors proposed to only use the central [−4, +4] portion of the matrices with the caveat
that the values in the difference arrays Fh(u, v), Fv(u, v), Fd(u, v), and Fm(u, v) larger than 4 were set to 4 and
values smaller than −4 were set to −4 prior to calculating Mh,Mv,Md,Mm. Thus, all four matrices have the
same dimensions 9 × 9 and the number of features is 4 × 81 = 324.

The Markov features as proposed in21 were uncalibrated. Because calibration is known to improve features’
sensitivity to embedding while reducing image-to-image variations, we incorporated the calibration into the
process of calculating the features. As expected, this significantly improved the performance of Markov features.
Let M denote the transition probability matrix in a specific direction. The calibrated Markov features are formed
by differences M(c) = M(J1)−M(J2), where J1 is the stego image and J2 its calibrated version. The dimension

of the calibrated Markov feature set, M
(c)
h ,M

(c)
v ,M

(c)
d ,M

(c)
m , remains the same as its original version.

2.3. Merged feature set

Even though different DCT modes in one 8×8 block are orthogonal, neighboring DCT coefficients may still exhibit
mutual correlations. Markov features capture this residual intra-block dependency among DCT coefficients of
similar spatial frequencies within the same 8 × 8 block. Because the extended DCT features model inter-block

dependencies between DCT coefficients, it makes sense to merge them. Another incentive for merging is our
observation (see sections 3.1 and 3.2) that both feature sets complement each other in performance. For example,
the extended DCT feature set is better in detecting JpHide&Seek, while the calibrated Markov feature set is
better in detecting F5.

A direct combination of both feature sets would produce a 517-dimensional feature vector. To reduce the

resulting dimensionality, we used the average M = (M
(c)
h +M

(c)
v +M

(c)
d +M

(c)
m )/4 of all four calibrated matrices,

instead. This feature vector has dimensionality 81. We observed that the averaged features M produced very



similar performance as their full version M
(c)
h ,M

(c)
v ,M

(c)
d ,M

(c)
m . After merging the 193 extended DCT features

with the 81 averaged calibrated Markov features, the dimension of the resulting merged feature set became
193 + 81 = 274.

3. COMPARISON OF FEATURES

3.1. Binary classifiers

In this section, we compare the performance of tree sets of binary classifiers employing the original 23 DCT
features, the original 324 Markov features (without calibration), and 274 Merged features. We do this on single-
compressed JPEG images with quality factor 75 embedded by one of the following algorithm: F5, JP Hide&Seek,
Model Based Steganography without deblocking (MB1), Model Based Steganography with deblocking (MB2),
OutGuess, and Steghide. We chose quality factor 75, because it is the default quality factor in OutGuess. For
each feature set and embedding algorithm, we constructed a binary classifier detecting cover and stego images,
which yields the total of 3 × 6 = 18 binary classifiers.

For classification, we used soft-margin support vector machines (C-SVM) with Gaussian kernel.6 The training
parameters of the C-SVMs were determined by grid-search performed on the following multiplicative grid

(C, γ) ∈ {(2i, 2j)|i ∈ Z, j ∈ Z}.

To overcome the problem that this grid is unbounded, we exploit the fact that for most practical problems, the
error surface of SVMs estimated using cross-validation is convex. The grid-search for a particular SVM started
by evaluating all grid points common to all trained SVMs. After that, we checked if the best point (determined
by the smallest cross-validation error) was at the boundary of the grid. If so, we enlarged the grid for this
machine in the direction perpendicular to the boundary the best point laid on. We kept doing this until the
best point ended up within the explored grid (not on the boundary). This simple algorithm ensured that the
distance between the best point and the optimal point was small (within the size of the grid) under the convexity
assumption.

The training set for every classifier contained 3400 examples of cover images and 3400 examples of stego
images embedded with a random bitstream. With the exception of MB2, examples of three message lengths
100%, 50%, and 25% of embedding capacity of a given algorithm were equally included in the training set. For
MB2, we only embedded messages of one length equivalent to 30% of the embedding capacity of MB1 to minimize
cases when the deblocking algorithm fails. For JP Hide&Seek, in compliance with the directions provided by its
author, we calculated the embedding capacity as 10% of the JPEG file size.

The testing images were prepared in the same way (the same embedding algorithm and relative message
length) as the training images, but from a disjoint set of 2500 raw images. The testing set contained images with
completely different scenes, taken by different cameras, and by different photographers. As mentioned earlier,
all images in the testing and training sets were single-compressed JPEGs with quality factor 75.

Table 2 shows the performance of all 18 binary classifiers. Note that the performance of the 23 DCT
and original Markov features is complementary. The DCT features are better in detecting JP Hide&Seek and
OutGuess, while the Markov features can better detect Steghide. The comparison on Model based steganography
with and without deblocking, and F5 algorithms is less clear, since the DCT features have a lower false positive
rate. Also note that the original Markov features are almost unable to detect short messages embedded using
JP Hide&Seek.

Table 2 also shows us that the new Merged feature set outperforms both its predecessors. Its false positive
rate is below 0.5% on all algorithms, while the detection accuracy is higher than 99% except for JP Hide&Seek
(92.01%) and F5 (98.36%) with 25% message length.



Message Detection accuracy
cover vs. length DCT Markov Merged

F5

100% 99.49% 99.80% 99.92%
50% 98.80% 99.20% 99.84%
25% 84.54% 86.94% 98.36%
cover 99.80% 91.53% 99.64%

JP Hide&Seek

100% 99.88% 98.08% 99.52%
50% 98.56% 84.38% 99.60%
25% 86.46% 27.16% 92.01%
cover 99.32% 97.00% 99.56%

MB1

100% 99.64% 99.96% 99.96%
50% 98.92% 99.96% 99.92%
25% 86.94% 99.72% 99.72%
cover 97.72% 97.20% 99.88%

MB2
30% 92.29% 99.92% 100.00%
cover 98.92% 98.48% 99.92%

OutGuess

100% 99.92% 99.92% 100.00%
50% 99.64% 99.68% 99.96%
25% 98.36% 97.84% 99.48%
cover 99.48% 98.04% 99.76%

Steghide

100% 99.84% 99.96% 100.00%
50% 99.48% 99.92% 99.92%
25% 90.93% 98.88% 99.32%
cover 97.40% 98.00% 99.92%

Table 2. Comparison of detection accuracy of binary classifiers employing 23 DCT, original Markov, and new Merged
features. All classifiers were trained and tested on single-compressed JPEG images with quality factor 75. The reported
results were calculated for images from the testing set only.

3.2. Multi-classifier

The task of multi-classification is more difficult than the binary classification presented in the previous section.
In this section, we compare performance of multi-classifiers employing the original 23 DCT features, the original
Markov features, and the new Merged feature set. This comparison better demonstrates the advantages and
weaknesses of a particular feature set. Multi-classifiers were trained to classify into 7 classes: cover, F5, OutGuess,
JP Hide&Seek, MB1, MB2, and Steghide.

To classify images into n = 7 classes, we chose the “max-wins” method which employs
(

n
2

)

binary SVM
classifiers for every pair of classes. During classification, the feature vector is presented to all binary classifiers
and the histogram of their answers is formed. The class corresponding to the highest peak in the histogram is
selected as the target class. According to,15 the “max-wins” is one of the best current approaches to multiple
class problems for practitioners.

Thus, each multi-classifier consists of
(

7
2

)

= 21 binary classifiers. The training and testing sets were prepared
in exactly the same way, as in Section 3.1. Also, the grid-searches used to find the training parameters of
individual binary classifiers were performed in the same fashion.

Tables 3–5 show the confusion matrices of all three classifiers. We again observe the complementary per-
formance of 23 DCT features and the Markov features. The Markov features perform poorly in detecting JP
Hide&Seek, F5, and OutGuess, while their detection accuracy of Model Based Steganography is very good.

The multi-classifier employing the new Merged feature set (Table 5) significantly outperformed the other two.
Its false positive rate (cover image classified as stego) is 0.84%. The detection of steganographic algorithms on
images with longer messages (messages at least 50% long) is highly accurate with the error rate less than 3%.
As can be expected, with decreasing message length, the detection accuracy decreases but stays above 90%.



Classified as
Embedding algorithm Cover F5 JP Hide&Seek MB1 MB2 OutGuess Steghide

F5 100% 0.32% 97.40% 1.04% 0.60% 0.00% 0.12% 0.52%
JP Hide&Seek 100% 0.00% 0.52% 98.32% 0.56% 0.00% 0.12% 0.48%

MB1 100% 0.08% 0.16% 0.72% 94.44% 0.32% 1.56% 2.72%
OutGuess 100% 0.00% 0.04% 0.52% 0.08% 0.04% 99.08% 0.24%
Steghide 100% 0.04% 0.04% 1.68% 2.96% 0.24% 1.52% 93.53%

F5 50% 0.96% 91.65% 0.92% 4.12% 0.28% 0.76% 1.32%
JP Hide&Seek 50% 0.32% 0.88% 90.46% 5.23% 0.04% 0.40% 2.68%

MB1 50% 0.80% 0.52% 0.16% 87.57% 2.20% 1.92% 6.83%
OutGuess 50% 0.08% 0.16% 0.20% 0.48% 0.08% 98.64% 0.36%
Steghide 50% 0.28% 0.44% 0.16% 3.99% 3.47% 2.84% 88.82%

MB2 30% 6.75% 0.40% 0.36% 1.76% 88.46% 0.56% 1.72%
F5 25% 10.99% 63.60% 1.04% 16.98% 2.56% 0.68% 4.16%

JP Hide&Seek 25% 6.15% 1.28% 74.96% 12.74% 0.92% 0.24% 3.71%
MB1 25% 11.02% 1.68% 0.56% 69.17% 6.63% 1.12% 9.82%

OutGuess 25% 1.32% 0.76% 0.24% 2.80% 3.23% 89.14% 2.52%
Steghide 25% 7.07% 1.36% 0.24% 12.42% 11.14% 1.96% 65.81%

Cover 96.45% 0.12% 0.20% 1.44% 0.40% 0.08% 1.32%

Table 3. Confusion matrix of the multi-classifier employing the original DCT feature set (23 features).

Classified as
Embedding algorithm Cover F5 JP Hide&Seek MB1 MB2 OutGuess Steghide

F5 100% 0.16% 98.08% 0.08% 0.92% 0.00% 0.48% 0.28%
JP Hide&Seek 100% 1.32% 2.84% 95.41% 0.08% 0.00% 0.32% 0.04%

MB1 100% 0.00% 0.08% 0.04% 98.48% 0.24% 0.80% 0.36%
OutGuess 100% 0.00% 0.08% 0.04% 0.72% 0.16% 98.04% 0.96%
Steghide 100% 0.00% 0.12% 0.04% 0.76% 0.12% 2.40% 96.57%

F5 50% 2.04% 95.29% 0.32% 1.12% 0.04% 0.68% 0.52%
JP Hide&Seek 50% 12.50% 4.51% 81.71% 0.40% 0.04% 0.44% 0.40%

MB1 50% 0.00% 0.44% 0.04% 97.28% 0.68% 0.76% 0.80%
OutGuess 50% 0.12% 0.68% 0.08% 0.68% 0.16% 95.17% 3.12%
Steghide 50% 0.04% 0.76% 0.00% 1.56% 0.40% 6.47% 90.77%

MB2 30% 0.04% 0.32% 0.08% 1.92% 96.96% 0.12% 0.56%
F5 25% 16.26% 80.42% 0.76% 1.16% 0.12% 0.76% 0.52%

JP Hide&Seek 25% 68.17% 5.15% 25.16% 0.40% 0.12% 0.48% 0.52%
MB1 25% 0.16% 1.40% 0.04% 88.74% 3.00% 2.20% 4.47%

OutGuess 25% 0.84% 2.56% 0.36% 2.00% 0.40% 84.90% 8.95%
Steghide 25% 0.60% 1.72% 0.24% 5.43% 1.36% 14.06% 76.60%

Cover 91.61% 5.51% 1.40% 0.48% 0.12% 0.44% 0.44%

Table 4. Confusion matrix of the multi-classifier employing the original Markov feature set (324 features).

4. MULTI-CLASSIFIER FOR SINGLE-COMPRESSED IMAGES

In the previous sections, we showed that the new Merged feature set enables markedly better blind steganalysis
and classification of JPEG images. In this section, we use this feature set to construct a multi-classifier for
single-compressed JPEG images for a broad range of 34 quality factors from the set

Q34 = {63, . . . , 94, 96, 98}.

This multi-classifier can be constructed in two fundamentally different ways. We can either add the quality



Classified as
Embedding algorithm Cover F5 JP Hide&Seek MB1 MB2 OutGuess Steghide

F5 100% 0.00% 99.52% 0.04% 0.08% 0.04% 0.08% 0.24%
JP Hide&Seek 100% 0.32% 0.00% 99.64% 0.00% 0.00% 0.04% 0.00%

MB1 100% 0.00% 0.00% 0.04% 98.76% 0.44% 0.04% 0.72%
OutGuess 100% 0.00% 0.04% 0.04% 0.08% 0.00% 99.64% 0.20%
Steghide 100% 0.00% 0.00% 0.04% 0.12% 0.08% 0.44% 99.32%

F5 50% 0.16% 99.36% 0.00% 0.00% 0.04% 0.24% 0.20%
JP Hide&Seek 50% 0.28% 0.04% 99.60% 0.00% 0.00% 0.08% 0.00%

MB1 50% 0.00% 0.00% 0.04% 97.04% 1.36% 0.08% 1.48%
OutGuess 50% 0.04% 0.08% 0.00% 0.20% 0.12% 99.28% 0.28%
Steghide 50% 0.04% 0.00% 0.00% 0.36% 0.12% 0.76% 98.72%

MB2 30% 0.00% 0.04% 0.04% 1.08% 98.48% 0.00% 0.36%
F5 25% 1.84% 97.12% 0.20% 0.00% 0.16% 0.36% 0.32%

JP Hide&Seek 25% 8.23% 0.32% 91.45% 0.00% 0.00% 0.00% 0.00%
MB1 25% 0.12% 0.12% 0.04% 90.10% 1.92% 0.36% 7.35%

OutGuess 25% 0.52% 0.28% 0.04% 0.20% 0.08% 98.08% 0.80%
Steghide 25% 0.60% 0.04% 0.00% 0.76% 0.20% 1.44% 96.96%

Cover 99.16% 0.24% 0.44% 0.00% 0.08% 0.08% 0.00%

Table 5. Confusion matrix of the multi-classifier employing the new Merged feature set (274 features).

factor as an additional feature or we can prepare a dedicated multi-classifier for each quality factor from the set
Q34. Because of the following reasons, we opted for the latter design.

1. Since the statistics of DCT coefficients varies greatly with the quality factor, the influence of the additional
feature (the quality factor), whose purpose is to “shift” the classification hyperplane in the feature space,
might fade out among the other 274 features. Consequently, the features for images with different quality
factors might get mixed up, which will confuse the detector. The collection of dedicated multi-classifiers
will perform better because this mixing is prevented by design.

2. The complexity of training of binary C−SVMs is O(n3
im), where nim is the number of training examples.

Thus, training the collection of multi-classifiers is faster, which allows us to use more examples for training.
For the same number of examples for training, the ratio between the training complexity for one classifier
and for separate 34 classifiers is proportional to the square of the number of quality factors 342 = 1156.

For each quality factor, the training and testing sets as well as the multi-classifiers were prepared in exactly the
same way as in Section 3.2. We had to modify the implementation of OutGuess ver. 0.22 to produce JPEGs
with quality factor lower than 75, since the original version was only able to produce JPEG images with quality
factor 75 or higher.

The total number of images used for training was 34×17×3400 = 1, 965, 200 and for testing 34×17×2500 =
1, 445, 000.

4.1. Discussion of results

One of the benefits of the analysis reported in the previous section is mutual comparison of statistical detectability
of the steganographic algorithms. Which algorithm offers the best security? This comparison cannot be done
directly, however, because we embedded a fixed percentage of embedding capacity for each algorithm and these
capacities vary significantly across algorithms. Figure 3 shows the absolute embedding capacity (in bits per
non-zero DCT coefficient) for each steganographic algorithm averaged over 6000 images. We can see that F5, JP
Hide&Seek, and MB1 are high-capacity algorithms when compared to OutGuess, Steghide, or MB2. Interpreting
the detection results of Figure 1 while taking into account the absolute embedding capacity of each algorithm,
we can conclude that OutGuess is by far the most detectable algorithm, while MB1 is the least detectable.
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Figure 1. Detection accuracy in percents for the multi-classifiers trained for each JPEG quality factor for all 6 tested
steganographic methods. The false positive rate is shown in Figure 2.
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Figure 2. False positive rate in percents for the multi-classifiers trained for each JPEG quality factor.
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Figure 3. Capacities of five popular steganographic algorithms as a function of JPEG quality factor averaged over 6000
images. We consider the capacity of MB2 as 30% of capacity of MB1.

Also, with the exception of JP Hide&Seek, the detection is slightly more reliable for larger quality factors
than for lower quality factors. We do not know the reason for the dip in detectability of 25% messages for JP
Hide&Seek around the quality factor 90.

Note that the detection accuracy on MB2 embedded images containing 30% messages (30% capacity of MB1)
is better than the detection accuracy on MB1 images containing 50% messages. To better see the difference in
detectability, we plot the detection rate for both algorithms in Figure 4. This means that the steganalyzer is
more successful in detecting shorter messages embedded by MB2 than in detecting longer messages in images
embedded by MB1. Thus, based on this steganalysis engine, MB1 is less detectable than its more advanced
version, MB2. MB2 introduces more embedding changes into the JPEG file with the goal to preserve a selected
higher-order inter-block statistics, the blockiness. As a result, however, it disturbs other statistics and eventually
becomes more detectable. In other words, MB2 has lower embedding efficiency† than MB1. This finding is
consistent with what was recently reported in21 and is in contrast with older experiments using the original 23
dimensional DCT feature set and a simple linear classifier.10

5. CONCLUSIONS

In this paper, we present and test a new set of features for steganalysis of JPEG images with a wide range of
quality factors. The feature set was obtained by merging and modifying two previously proposed feature sets
with complementary performance (the 23 DCT feature set10 that captures inter-block dependencies among DCT
coefficients and Markov features21 which capture intra-block dependencies). In particular, we expanded the

†The average number of bits embedded per one embedding change.
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Figure 4. Detection accuracy of the multi-classifier described in Section 3.2 on images embedded by MB1 with 50%
message length and MB2 embedded with 30% message length.

DCT features by replacing the L1 norm in their calibration by differences and we added calibration to Markov
features and reduced their dimensionality by a factor of 4. According to our experiments on multi-classification
of single-compressed JPEG images, the new merged feature set provides significantly better results than previous
art.

We have determined that the more advanced version of Model Based Steganography with deblocking is more
detectable than the version without deblocking. This indicates that embedding efficiency is a more influential
attribute for steganographic security than was previously thought. This finding also puts a new perspective on
the design principle that strives to preserve selected statistics by introducing more embedding changes (e.g., the
mechanism of embedding in OutGuess and in MB2).

Right now, images that underwent double compression will be with high probability misclassified by our
steganalyzer. This is because double JPEG compression drastically changes the statistics of DCT coefficients.
We intend to extend our work to correctly handle double compressed JPEG images by first analyzing each image
for signs of double compression and estimating the previous quality factor. This will be a pre-processing step
applied before blind steganalysis. Double-compressed images will then be handled separately through a different
SVM multi-classifier that will only classify to algorithms capable of producing double compressed images (F5
and OutGuess) and to the cover class. Single compressed images will be sent to the classifier constructed in
Section 3.2.
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