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Merging Metadynamics into Hyperdynamics: Accelerated Molecular 
Simulations Reaching Timescales from Microseconds to Seconds 

Kristof M. Bal* and Erik C. Neyts 

Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, 
Antwerp, Belgium 

The hyperdynamics method is a powerful tool to 
simulate slow processes at the atomic level. Howev-
er, the construction of an optimal hyperdynamics 
potential is a far from trivial task. We here propose a 
generally applicable implementation of the hyper-
dynamics algorithm, borrowing two concepts from 
metadynamics. First, the use of a collective variable (CV) to represent the accelerated 
dynamics gives the method a very large flexibility and simplicity. Second, a metady-
namics procedure can be used to construct a suitable history-dependent bias potential 
on-the-fly, effectively turning the algorithm into a self-learning accelerated molecular 
dynamics method. This collective variable-driven hyperdynamics (CVHD) method has 
a modular design: both the local system properties on which the bias is based, as well as 
the characteristics of the biasing method itself, can be chosen to match the needs of the 
considered system. As a result, system-specific details are abstracted from the biasing 
algorithm itself, making it extremely versatile and transparent. The method is tested on 
three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane 
decomposition as examples of “reactive” processes with a bond length-based CV, and 
the folding of a long polymer-like chain, using a set of dihedral angles as CV. Boost 
factors up to 109, corresponding to a time scale of seconds, could be obtained while still 
accurately reproducing correct dynamics.  

                                                 
* Corresponding author, e-mail: kristof.bal@uantwerpen.be 
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1. INTRODUCTION 

In order to gain insight into the fundamental dynamic processes of matter, the molecular 
dynamics (MD) method has been shown to be an indispensable tool. With MD simula-
tions it is possible to study the dynamical evolution of an arbitrary system with atomic 
detail. However, MD simulations invariably suffer from severe time scale limitations. 
Indeed, whereas MD cannot be used to simulate time and lengths beyond the nanoscale, 
many relevant processes occur infrequently, beyond the µs time scale. 

Several solutions to tackle the MD time scale problem exist. The family of accelerated 
MD methods developed by Voter and coworkers operate within the basic framework of 
MD, and use elevated temperatures,1 bias potentials2,3 or parallelization4,5 to shorten the 
time between infrequent events. On the other end of the spectrum there are the various 
kinetic Monte Carlo (kMC) methods, where the full system evolution is represented as a 
coarse-grained sequence of infrequent events; the kMC event catalog must either be 
predefined,6 or is constructed on-the-fly during the simulation.7-12 Finally, force-bias 
Monte Carlo simulations13-15 can be used to accelerate relaxation processes and push 
out-of-equilibrium systems towards global minima faster than MD,13,16 although they 
generally do not reproduce exact dynamic paths.16 

A technique closely related to accelerated molecular dynamics is metadynamics.17 The 
metadynamics method was originally designed to explore reaction pathways and calcu-
late free energy landscapes by using a history-dependent bias potential. It has been 
widely used in many scientific fields.18,19 The power of metadynamics lies in its sim-
plicity: the bias potential is constructed as a function of a small number of collective 
variables (CVs) used to distinguish between all the relevant states of the system. Pro-
vided a CV can be developed for a certain process, it can be studied using metadynam-
ics. Conceptually, it is very similar to hyperdynamics, in the sense that both methods 
rely on adding a bias potential to the global potential energy surface of the system. The 

bias potential V  is used to fill energy minima and hence shorten the waiting time be-

tween minima-to-minima transitions. In hyperdynamics, it is ensured that V  becomes 
zero in the transition state region, in which case correct relative dynamics is preserved.2 

Tiwary and Parrinello later recognized that if this condition is also enforced in metady-
namics simulations, the method can also be used to accurately calculate the rates of 
slow processes,20 even in complex systems.21

 

The CV-based flexibility of metadynamics, combined with the recent notion that it is 
able to correctly describe system dynamics, makes it a promising candidate for a more 
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generally applicable bias potential-based accelerated molecular dynamics method. Vari-
ous hyperdynamics-based approaches have been developed22-30 precisely for this pur-
pose, but these are usually specifically tailored to the (sub)class of systems they were 
developed for: the bias potential directly depends on a property of the studied system. In 
contrast, the biasing in a more general CV-based method such as metadynamics only 
depends on the used CVs, and applying it to a new system only requires changing the 
CVs, rather than adapting the overall method. Moreover, a particular point of interest in 
the field of hyperdynamics is the development of self-learning variants of the algo-
rithm,31-33 in which the applied bias potential is constructed on-the-fly during the simu-
lation. This could also be achieved using the metadynamics algorithm, which is self-
learning by construction. 

However, there is a difference in scope between metadynamics rate calculations, and 
accelerated molecular dynamics in a general sense. Metadynamics rate calculations are 
used to characterize the dynamical pathways connecting a limited number of states, say, 

A  and B , which are already known (e.g., the   and   states of alanine dipeptide20 or 

the bound and unbound states of a protein-ligand complex21). In this case, the choice of 
CVs is dictated by the requirement that these can be used to distinguish between states 
A  and B , while additional CVs might be required to properly differentiate between 

other states discovered along the A B  path. Such an approach, however, is not suited 
for a more “explorative” accelerated molecular dynamics study which aims to find the 
“natural” unconstrained state-to-state dynamics over long time scales, with the only 

state known in advance being the initial state A : an example of such a process would be 
the prediction of the product composition of complex chemical process, or the outcome 
of a growth procedure. In such an application, it is very difficult to select a proper set of 
CVs capable of describing this full, a priori unknown pathway. Indeed, metadynamics 
rate calculations can be used to rigorously calculate the rates of processes in a limited 
part of the phase space, whereas it would be interesting to have a similar method that is 
capable of uncovering unknown processes throughout (in principle) the full phase 
space. 

In this paper, we describe an accelerated molecular dynamics method that combines the 
CV-based flexibility of metadynamics with the ability of hyperdynamics to track the 
natural long time scale evolution of a complex system. In Sec. 2, we describe a generic 
class of CVs that can be used to accelerate arbitrary processes in systems with many 
relevant degrees of freedom. Such a CV can then be used in a traditional hyperdynamics 
implementation with a predefined bias. Moreover, it is also possible to use these CVs in 



4 

 

a metadynamics protocol to construct the bias potential on-the-fly. To demonstrate the 
flexibility of our approach, the collective variable-driven hyperdynamics (CVHD) 
method, we apply it to three very different systems in Sec. 3. As a first example, diffu-
sion on the prototypical Cu(001) model system is used as an example of a “reactive” 
process involving bond breaking. The second process is the folding of a long polymer-
like chain is a system in which the activated process involves the rotation around bonds, 
changing the various dihedral angles in the chain structure. The third process is the full 
methane decomposition pathway on the Ni(111) surface, as an example of heterogene-
ous catalysis. 

2. THEORY 

2.1. Global structure of the CVHD method 

In hyperdynamics, simulations are not carried out on the true potential energy surface 

( )V R , but on a modified potential *( )V R , which is obtained by adding a bias potential 

( )V R :2,3
 

 *( ) ( ) ( )V V V R R R .  (1) 

A key simplification of the CVHD method is that the function ( )V R  is reduced to a 

function ( )V   of only one parameter, the CV  . The method is modular by design, as 

depicted in Figure 1. The central element of the method is  , which can be thought of 

as a global reaction coordinate and can take continuous values between 0 and 1. To 
complete the method, two additional elements must be defined. These are (a) the set of 
local degrees of freedom that are appropriate properties to gauge the state of the system, 

and (b) the bias potential ( )V   that is only a function of  . 
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Figure 1: Schematic depiction of the structure of the CVHD algorithms. See text for 
details. 

2.2. The CV 

The key point in applying a method such as metadynamics is the choice of an appropri-
ate CV to describe the relevant dynamics. For example, the coordination number (CN) 
CV34 was developed for reactive systems: 
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r d

r d





  , (2) 

in which n m  are integers, i
r  the distance between an atom pair i , and d  a parameter 

that controls the decay of the pair’s contribution when 
i

r  increases. Such type of CV is 

well-suited for the study of mechanisms and free energy profiles of individual reactions 
using metadynamics. Applying this CV, however, is only possible if the reactive centers 
or bonds are already known, and it is difficult to use it to discover new pathways. First, 
a system-wide coordination number CV will not be able to distinguish between various 
states. For example, consider the diffusion of a single adatom on a surface: every possi-
ble stable state will be represented by the exact same global CN value. Second, using 
the coordination CV would make it extremely difficult to guarantee that no bias is de-
posited in transition state regions. Every contact contributes equally to the total CV 
which, when there are many atom pairs, will lead to random fluctuations in the CN val-
ue that are larger than the change caused by a bond effectively breaking. 
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Very similar problems occur in the context of the so-called “accelerated molecular dy-
namics” (aMD) implementation of hyperdynamics,24-26 in which the bias potential de-
pends on the instantaneous value of the system’s potential energy. Although conceptual-
ly very attractive because of its simplicity, the method has severe limitations. In prac-
tice, a bias potential is added as long as the energy is below a cutoff value. If one uses a 
large cutoff, needed if energy fluctuations in the system are large, many transition states 
will lie below the cutoff, within the boosted phase space region, thereby violating the 
main requirement of hyperdynamics. Using a low energy cutoff can circumvent this 
problem, but will not be very efficient because it will result in a small average boost. 
Again, if a process of interest only makes a rather small contribution to the global CV 
that is used to construct a bias potential, it is very difficult to either guarantee the cor-
rectness of the biased dynamics, or its efficiency.  

Therefore, for this type of problems a CV must be developed in which the influence of a 
single degree of freedom on the total CV depends on its contribution to actual transi-
tions, rather than treating all contributions equally. This way, large systems in which 
many different kinds of events occur can be studied, without having to “tag” reactive 
degrees of freedom in advance. Furthermore, it is impossible to distinguish all (possibly 
unknown) states the system will encounter using a single generic CV. Therefore, we will 
drop this requirement and will use a CV of which the value can only be used to describe 
the system’s position within the current state. 

The CV we use here is inspired conceptually by the Bond Boost implementation of hy-
perdynamics,27,35 which is a quite powerful approach to accelerate reactive systems, and 
functionally by the CV introduced by Tiwary and van de Walle.36 We generalize these 
approaches to a CV based on a set of local system properties or generalized degrees of 

freedom 1( ,..., )
N

s s , which groups all the relevant degrees of freedom (or CVs) of the 

full slow system dynamics. For each local property is , a local distortion ( )i is   can 

now be defined, which is a function that can return values between 0 and 1.   must be 

designed in such a way that if a property is  is directly involved in a transition, and 

takes a value †
i

s  at the corresponding dividing surface,  † 1
i

s  . If is  is far enough 

from †
i

s  and closer to its equilibrium value, 1i  . Whenever any property is  is in-

volved in a transition somewhere in the system (and hence 1i  ), the system as a 

whole is about to cross a dividing surface, and the global CV describing the full system 

must reflect this. For this purpose, we calculate the global distortion 
t

  as:36
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in which 1p  . While the algorithm in ref. 36 did not require continuous and vanishing 

derivatives at both “edges” of the CV, this is required in a hyperdynamics implementa-

tion like CVHD. Therefore, the actual CV   is here calculated from 
t

  according to 
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1 cos if 1
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1 if 1
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 .  (4) 

In short, the exponent p  is used in the calculation of 
t

  to ensure that large distortions 

make a larger contribution to   than small ones. As a result, most of the bias energy 

flows into properties that are about to contribute directly to a transition (modulated by 

the magnitude of p ), similar to what the Bond Boost method does with the breaking of 

bonds. Hence, the CV can be used to selectively boost large changes in small parts of 
the included phase space, insensitive to smaller fluctuations in the other parts. No bias-

ing forces are applied to the system when 1
t

  : if ( )s  is properly designed, this 

means that no bias is added in a transition state region. Also, the specific form of 
t

  

does not only allow to describe transitions involving single properties ( 1
t

   because a 

single 1i  ) but also the simultaneous distortion of multiple local properties (e.g., N  

properties all having only 1(1/ ) p

i
N   such that 1

t
  ).36 The precise value of p  is 

not a critical parameter determining the accuracy of the CVHD method. Rather, it only 
controls to what extent the bias energy is distributed across the system: large values of 

p  will suppress the influence of smaller distortions on   and will thus lead to a more 

localized bias potential. To optimize the method, p  can be varied in function of how 

“concerted” events are expected to be, but its effect was found to be rather small for 
values between 4 and 12. 

The final part of our algorithm deals with transitions. In order to be able to describe 
multiple consecutive events in a single biased MD run, a criterion is added to “reset” the 

procedure: if   remains equal to 1 during a waiting time w
t , the system is assumed to 

have undergone a transition, and thermalized in its new state. Then, a new property list 
is created, and the accelerated MD procedure is resumed. 
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A practical example of a property s  is the stretch of a bond, which can be used to study 
reactive events involving bond breaking.27,36 Here, it is assumed that for every bond pair 

i  with length 
i

r , there are distances min

i
r  and max

i
r , which mark the begin and end point 

of possible reactive events. If min

i i
r r , the bond is not likely to dissociate soon, and not 

biased, whereas if max

i i
r r , the bond is about to dissociate and the system is close to a 

dividing surface. When the simulation starts, a list of bonds is created from all atomic 

pairs that are shorter apart than a cutoff cut

i
r . Then, local distortions can be calculated as 

 

min

min
min max

max min

max

0 if

if

1 if

i i

i i
i i i i

i i

i i

r r

r r
r r r

r r

r r



 


   
 

 .  (5) 

Given the relative simplicity of this implementation of  , which only has a few pa-

rameters, we expect that it is rather widely applicable. As it only requires the slow to-

be-boosted process to involve bond breaking, the CV can be readily applied to a wide 
variety of processes. It is also not necessarily restricted to accelerated MD simulations. 
It could also, for example, be applied to more “traditional” metadynamics investigations 
such as the exploration of possible reaction pathways. 

Finally, as explained above, the basic functional form of Eq. (5) could also be applied to 
properties other than bond lengths to study a wide variety of other processes. Indeed, as 
long as slow events lead to a significant distortion of a small subset in a large collection 
of local parameters, the CVHD algorithm will be efficient. In the given example, we use 

bond distances to construct the global distortion function 
t

 , but the set of system prop-

erties is  could also be something else, as we will show in Sec. 3.3. A simple modifica-

tion of Eq. (5) could be the use of an atomic strain, rather than bonds, which is a suita-
ble property to study dislocation nucleation.30 The formalism as outlined in this section 
is sufficiently general and flexible to be used a starting point for the development of 
such new CVs, without having to modify the full boosting algorithm. 

2.3. The bias potential 
If   is now used as a CV in a metadynamics simulation, the bias potential ( )V   is 

slowly “grown” at intervals of G
  by the metadynamics algorithm in the form of Gauss-

ian functions with width   and height w : 
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This means that the bias potential is history-dependent, as the Gaussian bias functions 
depend on the CV value at the moment they were deposited. The nature of the metady-
namics method ensures that this bias potential matches the underlying free energy sur-
face of the studied processes and should thus guarantee a safe and efficient bias. An 
important difference between the CVHD method and metadynamics, however, is that 

the bias deposited in a state A  is deleted once a new state is reached: even when state 
A  is visited again later, the bias potential must be generated again. This is because the 
CV   does not have to distinguish all possible states in the system, like in conventional 

metadynamics17 and metadynamics rate calculations,20 but is only required to identify 
the system’s position in the current state. Note that this  also explains the use of a crite-

rion based on 
w

t  to determine whether a new state has been reached, rather than having 

this explicitly reflected by the CV value. The CVHD method thus gains flexibility in the 
size of the phase space that can be explored, but at the same time loses some efficiency. 

The use of CVs is not limited to metadynamics, and could also be the basis of a tradi-
tional “static” hyperdynamics potential.   can satisfy the important constraint that no 

bias can be added in the transition state region, provided a proper form of   is selected 

(or max

i
r  in Eq. (5)). This means that a simple linear function of   can be an appropriate 

bias potential:   

 max( ) (1 )V V      ,  (7) 

in which max
V  is the maximal bias strength. Just as is the case for traditional hyper-

dynamics implementations, max
V  must be chosen appropriately: large enough to ob-

tain a substantial boost, but not larger than the barriers of interest. Note that this static 
approach requires some a priori knowledge of the possible events in the system, in con-
trast to the dynamic application (see below). 

The expression for the bias potential itself should preferably not be specifically tailored 
for a particular system or process. Rather, in the spirit of other CV-based methods, all 
the complexity of the investigated process should be abstracted by the proper choice of 
a CV. As a result, the simple linear function of Eq. (7) is sufficient. As such, the CVHD 
family of methods is highly flexible. Both the underlying local property (as implement-
ed by its associated distortion function) as the bias function itself can be changed to fit 
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the needs of the studied process. The only characteristic that is shared by all 

(sub)methods, as Figure 1 shows, is the CV  . 

2.4. Comparison of static and dynamic CV-based bias 

An important advantage of a metadynamics-based accelerated MD protocol (dynamical-
ly biased CVHD, dCVHD) is that it does not require the definition of an analytical bias 
potential function. Rather, a suitable bias potential is constructed on-the-fly. This means 
that as long the system dynamics can be represented by a combination of local contribu-
tions such as in Eq. (3), the algorithm can adapt to all kinds of processes with unknown 
activation barriers. As such, the algorithm can be interpreted as a self-learning imple-
mentation of hyperdynamics. However, if the studied system is reasonably well-
characterized, a predefined static CV-based bias (statically biased CVHD, sCVHD) 
could be more suitable. Such a bias can be more efficient as it will immediately start at 
its full strength and does not need to be built up during the simulation. Therefore, it can 
be expected that the performance of the dynamic bias method will not be as good as for 
the static bias in the case of relatively fast successive events. Furthermore, a static bias 
eliminates the additional simulation parameters introduced by metadynamics: the 
Gaussian hill width, height and deposition rate. Both methods do, however, share the 
same fundamental structure (see Figure 1). 

It must be stressed that although the dCVHD method uses a metadynamics protocol to 
construct the bias potential, it is strictly speaking not a metadynamics method. Indeed, 

the deposited bias is not stored during the whole simulation, as the CV   does not span 

the whole phase space, but only the current state. Once a new state is reached, all depos-
ited bias is deleted and bias deposition is initiated again. Furthermore, bias is never de-
posited in transition state regions. Therefore, the CVHD method cannot be used to cal-
culate free energy profiles, which require extensive complete sampling of a limited part 
of the phase space and for which “traditional” metadynamics is required. 

In both the static and the dynamic approach, the speed-up relative to MD (the boost fac-
tor) is an ensemble average over the biased potential energy surface involving the bias 

potential ( )V  : 

 
( )Boost V

e
   ,  (8) 

in which 1 Bk T  . The effectively simulated physical time, or the hypertime, can then 

be calculated by multiplying this boost factor with the MD time.2 It must be noted that 
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accurate hypertime calculations require good sampling of the regions with large boost, 
which limits the imposed strength of a static bias potential.27 In the case of a dynamic 
bias, however, the deposition of a large bias in a certain region of the CV space implies 
this region is frequently visited, because the number of hills deposited in a specific re-
gion depends on the time the system spends there. This means that the dynamic bias 
method can apply strong bias potentials while still maintaining a high accuracy of the 
calculated hypertime. 

2.5. Critical aspects 

When applying the CVHD method, some important considerations must be kept in 
mind. We here summarize the main critical aspects and limitations of the CVHD meth-
od in its current form. 

Every valid accelerated MD method employing a bias potential has to ensure that this 
bias vanishes in the transition state regions. In our algorithms, the key to achieving this 

is the choice of  . Our static bias approach will vanish at the transition state if for eve-

ry property is ,  † 1
i

s  . In the case of Eq. (5), this means that every max

i
r  of a bond 

should be smaller than the corresponding 
i

r  at a transition state †
i

r . Parametrizing 
i

  

functions to achieve this behavior is not a trivial task, as it requires some knowledge of 
the transition states the system will encounter: a first estimation of “safe” parameter 
choices can be obtained from some (presumed) relevant transition states that are already 
known, and verified against other transitions that are discovered during an initial simu-

lation. When using a dynamic bias, it is possible to impose the same constraint on max

i
r  

as in the static case, which will cause all bias force to vanish when max

i i
r r . The 

metadynamics algorithm, in contrast, will by default keep depositing bias at any time. 
This will become problematic when the system starts spending a large part of its time at 

the boundaries of the well ( ) once the bias is at its full strength in the minima, a 

situation that becomes more common with increasing system size.27 If this happens, a 
large bias could be deposited at the boundary of the CV, which is unphysical and will 
negatively impact the accuracy of the hypertime calculation [Eq. (8)] and the dynamics 
in general. A simple solution to avoid this bias pile-up is to restrict the metadynamics 

algorithm from depositing any bias at large   values (for example, at 0.9  ). Addi-

tional control of the magnitude of deposited bias can be achieved through the well-
tempered implementation of metadynamics.37

 



12 

 

A second phenomenon that can cause excess dynamic bias deposition is the presence of 
so-called hidden CVs. In such a situation, the used CV does not include all relevant 
“slow” degrees of freedom, which might block certain dividing surfaces, leading the 
system to cross other dividing surfaces. Especially when low-lying pathways are not 
included in the CV, this will lead to an erroneous overbiasing, a problem that is dis-
cussed in more detail in ref. 18. When using the functional form of the CVs used in the 
CVHD method, one has to ensure that all relevant local properties are included in the 
CV. This is both an inherent strength and a limitation of the CVHD method. On one 
hand, if it is possible to describe the full “slow” dynamics by a set of simple local prop-
erties, such as for example chemical reactions involving bond breaking being fully de-
scribed by bond length local properties, no hidden CVs will be present. On the other 
hand, the requirement that the system dynamics can be decomposed into contributions 
by a small number of highly localized interactions renders the CVHD method impracti-
cal to study systems in which this is not the case: especially complex biological pro-
cesses involving various types of non-bonded interactions are very difficult to study this 
way. Fortunately, the latter use case can be covered by metadynamics rate calculations, 
employing a well-tailored set of CVs,21 whereas the CVHD method is more suitable for, 
e.g., the prediction of reaction product compositions or the properties of grown materi-
als. 

An important disadvantage of CV-based methods (and many conventional hyperdynam-
ics implementations as well) is their poor scaling with the system size: in large systems, 
events will occur more frequently, leading to additional overhead. Representing all to-

be-accelerated dynamics by a single CV does not allow for a parallel treatment of 
events, leading to a deterioration of the boost in such large systems. Possibly, our meth-
od could be improved by incorporating aspects of a recently proposed “local” variant of 
the Bond Boost algorithm.38 Similarly, existing solutions to deal with the small-barrier 
problem,39 to improve the calculation of the hypertime,40 or to construct appropriate 
CVs on-the-fly41 could also be beneficial for the methods presented here. 

2.6. Related methods 

To achieve additional boost, a joint application of our method with parallel replica4,5 or 
force-bias Monte Carlo13-16 methods could be possible. Parallel replica is not restricted 
to transition state theory and is therefore very generic. It is, unlike CVHD, not limited to 
transitions that can be localized in small parts of the system. This way, parallel replica 
can be used to accelerate transitions between large superstates of the system, rather than 
the microstate dynamics on which CVHD acts. Force-bias Monte Carlo methods, on the 
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other hand, do not require the definition of “events” at all: this makes them very suited 
to study processes in which “fast”, unbiased degrees of freedom can still provide a bot-
tleneck in the case of very strongly biased “slow” dynamics. Of course, as is the case 
with conventional metadynamics simulations, bias deposition in dynamically biased 
simulations should always be sufficiently slow, in order to allow the system to equili-
brate along the “fast” degrees of freedom not included in the CV. 

A few other self-learning or adaptive hyperdynamics methods also exist. The recently 
proposed HD-MD method has a bias dependent on the system’s instantaneous potential 
energy (like the aMD method) and uses short MD runs within each local energy basin to 
parameterize a bias potential function on-the-fly.31 These parameters are chosen based 
on the desired boost, which can therefore be made equal in every new basin (this is not 
necessarily the case in CVHD). The fact that the bias potential is only a direct function 
of the system’s potential energy makes the method conceptually very simple. However, 
because the method is based on aMD and has no explicit way to detect transition states, 
the bias potential may be nonzero at dividing surfaces, in contrast to CVHD. Also with-
in the context of the aMD method, a simpler algorithm, dubbed the Adaptive Hyper-
dynamics Method (AHD) method, was proposed.32 In the AHD method, the threshold 
energy (below which biasing is allowed) is adjusted in time intervals   by comparing 
the current potential energy of the system to the minimal energy in the previous interval, 
and changing the threshold accordingly. Although very simple, the algorithm causes the 

biasing force to be discontinuous due to the stepwise modification of V , which is not 
the case when metadynamics is used to deposit bias. Finally, within the framework of 
the Bond Boost method, a self-learning hyperdynamics method was derived by Perez 
and Voter.33 This algorithm calculates an on-the-fly estimate of a pairwise potential of 
mean force (PMF), which is then used to iteratively improve the bias strength. The 
method was found to be very efficient in finding exactly the optimal boost for a given 
process, but lacks the generality and simplicity inherent to using generic CVs and a 
metadynamics-like self-learning bias. 

3. APPLICATION 

3.1. General methodology 

All simulations were carried out using the LAMMPS package42 and a modified version 
of the Colvars module.43 All modifications and their descriptions are provided in the 
Supporting Information. To control the system temperature, ensure its homogeneity, and 
allow for swift decorrelation, a Langevin-type thermostat44 with relaxation time of 1 ps 
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was employed. The equations of motion were integrated with a MD time step of 1 fs, 
except when using the ReaxFF potential, which required a 0.1 fs time step. Boost and 
hypertime were calculated by evaluating Eq. (8) at every step; we did not compensate 
for the overhead induced by the bias calculation as it was found to be insignificant com-
pared to the evaluation of the interatomic potential. 

3.2. Bond-based CV: diffusion on Cu(001) 
As an illustration of the bond-based CV in Eq. (5), we apply both the static and the dy-
namic CVHD methods to diffusion on the Cu(001) surface. Specifically, we apply the 
methods to the diffusion of adatoms, dimers and vacancies, which can all diffuse 
through simple hopping mechanisms. Copper adatom and dimer diffusion, however, can 
also occur by a two-atom exchange.45 Thus, we can assess the performance of the bias 
methods for a set of competitive mechanisms with different characteristics in terms of 

the number of atoms and bonds involved, and minimal †
i

r . The same processes have 

also been previously studied with the Bond Boost method,27 which allows us to directly 
compare the performance of our generic CV-based methods to a dedicated hyperdynam-
ics implementation. 

The studied system consisted of a six-layer slab, each layer containing 50 atoms. The 
Cu-Cu interactions were described using a standard EAM potential.46,47 The two bottom 
layers were kept fixed and, depending on the studied mechanism, an adatom or dimer 
was placed on top of the slab, or a vacancy was created by removing an atom from the 
top layer. 

Climbing Image Nudged Elastic Band (cNEB)48 calculations were used to obtain infor-

mation on the minimal †
i

r  values of breaking bonds associated with every mechanism. 

Of all the mechanisms considered, these are the smallest for adatom hopping, where the 
two partially broken bonds have a length of 3.3 Å at the transition state. Therefore, a 

global max

i
r  value of 3.3 Å was used for each bond in all simulations. The min

i
r  value for 

every bond was chosen to be the average bond length as obtained from an equilibration 

run of w
t  (after an initial waiting time w

t  before detecting a transition), and cut

i
r  was a 

global constant of 3.0 Å. We furthermore set 8p   and 5wt   ps. In the dynamic bias 

simulations, Gaussian hills with a height of 0.005 eV and width of 0.025 were added 
with an interval of 1 ps. Well-tempered metadynamics37 with a bias temperature 

2000T   K is used to deposit the dynamic bias. In the hyperdynamics simulations, we 

set max 0.3V   eV, as a compromise between boost and accurate hypertime sampling. 
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Reaction rates   for all event types were quantified by counting the observed number 

of diffusion events 
i

n  and dividing this by the calculated hypertime, hyperi i
n t  . At 

temperatures between 150 and 600 K, rates were obtained and averaged over multiple 

runs of 82 10  steps ( 81 10  for vacancies). Then, the calculated rates were fitted to the 

Arrhenius relation 0( ) AE
T e

   . The fitted prefactors 0  and activation energies 
A

E  

can be readily compared to those reported by Miron and Fichthorn in their Bond Boost 
study of the same system.27

 

It can be seen from Table 1 that both the static and dynamic biasing methods yield the 

same 0  and 
A

E , both in excellent agreement with the Bond Boost result and the static 

barriers calculated by the cNEB method. We have also explicitly compared CVHD-

obtained rates with MD results and found excellent agreement, as discussed in the Sup-
porting Information. The performance of both CV-based methods, as expressed by the 

achieved boost is, as Figure 2 shows, quite comparable, yielding a boost up to 43 10  
for adatom diffusion at a temperature of 250 K and up to 109 for vacancy diffusion at 
150 K. The methods show the same basic behavior typical for hyperdynamics methods, 
with a boost that declines with increasing temperature, due to the inverse temperature 

dependence of  . Furthermore, it can be seen that the relative efficiency of the static 

bias method compared to its dynamic counterpart improves with increasing temperature. 
This is because waiting times between events are shorter at higher temperatures which, 
as a result, puts the dynamic method at disadvantage. This difference becomes irrelevant 
at lower temperatures where waiting times, even with full-strength static bias, are much 
longer than the time needed by the metadynamics protocol to construct the dynamic 
bias. 
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Table 1: Prefactors (
0 ) and activation energies (

A
E ) for elementary diffusion process-

es on the Cu(001) surface, as obtained from dynamic boost (DB) and static boost (SB) 
simulations (see text for details). For comparison, the Bond Boost (BB) estimates27 and 
static barriers computed with the cNEB method are also included. DB and SB error bars 
reflect the 90% confidence interval. 

Process DB

0  
SB

0  
BB

0  
DB

A
E  

SB

A
E  

BB

A
E  

cNEB

A
E  

 (THz) (THz) (THz) (eV) (eV) (eV) (eV) 

Vacancy hop 0.183e


 
0.554e


 
0.554e


 0.44 0.01  0.43 0.02  0.44 0.03  0.44 

Adatom hop 0.354e


 
0.133e


 
0.540e


 0.53 0.01  0.51 0.01  0.52 0.03  0.51 

Adatom ex-
change 

1.0430e


 
1.2130e


 
0.6270e


 0.76 0.04  0.71 0.05  0.73 0.04  0.71 

Dimer hop 0.234e


 
0.221e


 
0.730e


 0.51 0.01  0.49 0.02  0.47 0.03  0.49 

Dimer ex-
change 

1.3137e


 
1.2213e


 
0.8190e


 0.74 0.06  0.76 0.05  0.71 0.06  0.70 
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Figure 2: Calculated boost factor as function of the temperature, of both the static as the 
dynamic CVHD method, for (a) vacancy and (b) adatom diffusion on Cu(001). (As ex-
plained in the text, dimer diffusion behaves essentially the same as adatom diffusion.) 

Not all processes occur at similar rates at every temperature. As Figure 2(a) shows, va-
cancy diffusion was studied at temperatures as low as 150 K, where we were able to 
observe about 60 events over a total MD time of 0.5 μs: this is because the associated 
hypertime reached about 500 s. All other processes, however, are much slower at this 
temperature. For example, according to the kinetic parameters in Table 1, adatom hop-
ping will be about 2000 times slower, with an average waiting time in the order of 

410  s , explaining why we were able to observe the latter process with an appreciable 
frequency only from 250 K and higher, as depicted in Figure 2(b). The higher barriers 
and waiting times of the adatom diffusion processes, compared to vacancy diffusion, 
also increase the relative efficiency of the dynamic bias method, as expected. Similarly, 
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exchange processes could only be observed starting from 400 K, and show the same 
boost characteristics as their respective hopping counterparts. In general, the bond-based 
CV as used in the CVHD algorithm performs about as well as the Bond Boost method, 
albeit being part of a much more generic framework. Furthermore, because all relevant 
processes were already well-characterized, use of the dynamic biasing method has no 
added advantage since an optimized static bias could be applied at lower cost. 

3.3. Dihedral-based CV: folding of a helix 

To demonstrate the flexibility of the CVHD framework, we study a process governed by 
a different local property or CV: the folding of extended chain to a helix. This process is 
very different from the Cu(001) diffusion example in two ways. First, the activated pro-
cesses underpinning the system evolution are not bond breaking, but rotation around 
bonds, changing the dihedral angles. Second, whereas the Cu(001) system remained in 
equilibrium, and every state was associated with the same handful of possible escape 
pathways, a folding chain may visit a much larger number of different states, all of 
which may have wildly different and unpredictable kinetic and thermodynamic stabili-
ties. The dihedral angle is also a four-atom local property, setting it apart from the pair-
wise properties that are commonly used in hyperdynamics methods such as the Bond 
Boost method. 

We use a simple model system, consisting of a chain of 50 connected beads, interacting 
with harmonic bond and angle functions. The dihedral potential energy term49 is de-

signed in such a way that there are three minima, of which the g
  state is preferred to 

the t  and g
  states. In our parameterization, the barrier for the t g

  transition of a 

single dihedral is about 0.37 eV (or ~ 8  kcal/mol), and the g
  state is about 0.7 eV 

more stable than the two other options, thus favoring a helix over an extended chain. 
Further details are provided in the Supporting Information. Similar to the bond-based 
system property of Eq. (5), the local distortion function can be calculated from a dihe-

dral angle i  as 

 

ref
refif

1 if otherwise

i i
i i i

i i

    
 

       



 .  (9) 

Here, ref

i
  is a reference dihedral angle, which is determined as the dihedral angle of the 

closest local minimum (here, 60   or 180  ) at the moment the property list is created. 
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i  is the maximal deviation from ref

i
  that keeps 

i  far enough from transitions, 

which we set to be 40°. The choice of 
i , like all parameterizations of a local distor-

tion  ,  requires some a priori knowledge of the system; in our case, we use a well-

defined model potential, but in more complicated systems one should always verify that 

for all observed events the requirement that 1   at the transition state is satisfied. The 

other parameters do not depend on the local property used, and we set 8p   and 

5wt   ps. In the dynamic bias simulations, Gaussian hills with a height of 0.005 eV and 

width of 0.05 were added with an interval of 1 ps and a bias temperature 1000T   K. 

In the case of the static bias, we use max 0.15V   eV. 

We start every simulation from a fully extended chain, with all dihedrals in the t  con-
formation (see Figure 3(a)), and run unbiased MD, static and dynamic bias simulations 
at 300 K, while monitoring the number of dihedral rotations. Because of the way our 
bias potential is designed, it is highly unlikely any other transitions will occur before 

there are no more t g
  events possible. Therefore, 47 transitions were always found 

to be sufficient to reach a perfect helix [Figure 3(b)]. 

 

Figure 3: Some possible states of the helix model system: (a) fully extended, (b) perfect 
helix, (c) half-folded after 23 folding events and (d) after 46 (or, rather, 46 2n ) events. 
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Figure 4: (a) Number of transitions as a function of simulation time in the helix folding 
test system, and (b) hypertime as a function of simulation time in the helix folding test 
system, for both static and dynamic bias (see text for details). 

Examples of the system evolution in terms of the number of transitions are depicted in 
Figure 4(a) for both static and dynamic bias. It can be seen that initially, using a static 
bias is initially more efficient than a dynamic bias. As discussed before, a well-tailored 
static bias has the advantage of starting at its full strength, whereas a dynamic bias takes 
time to be constructed. However, we notice that after 42 transitions, the dynamically 
biased simulation surpasses the statically biased case. Indeed, because the studied pro-

cess obeys first order kinetics in the number of t  dihedrals, the waiting time between 
events increases the closer the system is to the fully folded state. The choice of 

max 0.15 eVV   was calibrated to the initial phase of the folding process, and is very 
well-suited for this first stage with relatively short waiting times, but becomes less effi-
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cient when the number of t  dihedrals is low and the waiting time is increased. The dy-
namic biasing scheme, on the other hand, will keep strengthening the bias potential 
while waiting for a transition to occur. The dCVHD method thus dynamically uses a 
larger bias in the case of long waiting times.  

A different look at this subject is given by Figure 4(b), which compares the hypertime 
reached by both methods as a function of the simulation time. Whereas this quantity 
linearly increases for the static bias, indicating a constant boost, it shows an exponential 
increase in the case of the dynamic bias. Because of this property, the dynamic biasing 
scheme resulted in a perfect helix about two times faster than the static scheme. 

The achieved boost factors of both biasing methods are, as Figure 4(b) shows, quite 
different. On one hand, the static biasing scheme provides a constant boost of about 
200. On the other hand, the dynamic scheme adapts itself to match the boost require-
ments of the current state in which the system resides – arriving at an accumulated boost 
of about 500 when completing the folding process. This also explains the different be-

havior of both methods after the perfect helix is formed: any transition from the g
  

state has a barrier that are about twice as high as the one associated with the t g
  

transition, which means that the statically biased simulation will not be able to escape 
from the helix state within a reasonable computational time. However, in the dynamical-
ly biased simulation, the bias will slowly be increased until a transition to a less favora-
ble state [Figure 3(d)] can occur. Such a process only takes place after about 0.1 ms, 
much longer than the 5 μs required to obtain the folded helix. The escape pathways 
from this unfavorable “kinked” helix have lower barriers than from the perfect helix. As 
a result, the construction of a suitably strong bias to return to the latter state requires 
fewer simulation steps than the reverse reaction, explaining the successive occurrence of 
short and long “steps” in the dynamic transitions curve in Figure 4(a). 

Table 2: Average folding and half-folding times (µs) for the helix model system, as ob-
tained from unbiased MD and CV-based simulations with static and dynamic bias, re-
spectively. All error bars are at the 90% confidence level. 

Process Unbiased MD Static bias Dynamic bias 

Half folding  0.45 0.08  0.38 0.05  0.39 0.04  

Full folding 6 2  7 2  6 1  
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Although the general performance characteristics of both accelerated methods in the 
case of the folding model system have now been established, their accuracy must still be 
ascertained. Table 2 therefore collects the average times for full folding (47 transitions) 
and obtaining a half-folded structure, such as the one depicted in Figure 3(c) (23 transi-
tions), as obtained by biased simulations but also long unbiased MD runs. For both pro-
cesses, all considered methods are in excellent agreement with each other. 

3.4. A complex, realistic process: methane dissociation on Ni(111) 
Finally, as an example of the kind of complex dynamics that can be accessed with 
CVHD simulations, we consider the catalytic dissociation of methane on the Ni(111) 
surface. This process is important not only in methane reforming processes, but also in 
chemical vapor deposition growth of carbon nanostructures. The initial dissociative ad-
sorption of CH4 has an activation energy in the order of 20 kcal/mol,50 rendering direct 
MD simulations of this process difficult; to observe appreciable CH4 dissociation, pre-
vious simulation attempts were required to use elevated temperatures51-53 (up to 
1500 K), instead of experimental temperatures of 800-1000 K, or only focus on plasma-

activated species (CHx radicals).54,55 From a technical point of view, this type of reaction 
is a useful additional test case for the CVHD method, being both an example of a sys-
tem with a phase boundary, and of heterogeneous catalysis in general. 

The methane dissociation process is modeled starting from a single CH4 molecule above 
a six-layer nickel slab (64 atoms per layer), with the two bottom layers held fixed. A 
reflective wall is used at a z-height of 20 Å, leading to a gas phase volume of about 

19.9 17.4 8   Å3. The interatomic interactions are described by the ReaxFF potential56 
as implemented in LAMMPS57, using the Ni/C/H parameter set of Mueller et al.58 and 
the QEq method59 to calculate atomic charges. 

The simulations are carried out at 800 K, applying the bond-based CV of Eq. (5) with 

6p   and 0.1
w

t   ps to C-H bonds, and dynamic biasing with a deposition stride of 

10 fs, a hill width of 0.025, a hill height of 0.25 kcal/mol and a bias temperature of 
4000 K. Compared to the previously discussed processes, metal-catalyzed methane de-
composition poses two additional challenges. First, the general problem of thermostat-
ting gas phase species is that it is a poor model of energy exchange in such a system: in 
reality, this only occurs at discrete moments in time during collisions. Also, a Langevin 
thermostat distorts the diffusion path of gas-phase particles. However, thermostatting 
the methane molecule is necessary to dissipate the excess energy introduced by the dy-
namic bias procedure, and to avoid unphysical heating of the molecule. As a compro-
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mise, we apply a separate Langevin thermostat to the CH4 molecule that only acts on 
the vibrational and rotational degrees of freedom, and leaves its translational motion 
untouched. The second problem is specific to the successive dehydrogenation pathway 
of methane, in which the separate steps have very different bond lengths at the transition 

state ( †
r ) for the dissociating bonds, ranging from 1.55 Å for CH → C + H to 1.80 Å 

for CH3 → CH2 + H on the Ni(111) surface.60 Safe max
r  values for the former were 

found to perform very poorly when attempting to boost the latter process. Therefore, we 

used a global max
r  value of 1.8 Å and min 0.9r   Å. Although the safety of such a set-

ting is not completely guaranteed, we found that little to no bias was effectively depos-
ited in the transition state regions of the “unsafe” cases. 

Table 3: Average reaction time for all elementary reaction steps of the full methane de-
hydrogenation process CH4(g) → C(ad) + 4H(ad), on Ni(111) at 800 K, as obtained 
from ReaxFF dCVHD simulations. Reaction times are given as a 90% confidence inter-
val. 

Process Reaction time 

CH4(g) → CH3(ad) + H(ad) 4–9 µs 

CH3(ad) → CH2(ad) + H(ad) 0.09–0.22 µs 

CH2(ad) → CH(ad) + H(ad) 37–91 ps 

CH (ad) → C(ad) + H(ad) 0.3–0.8 ms 

 

We carried out 15 independent simulations of 106 steps, corresponding to a MD time of 
100 ps each, and were always able to observe the full methane decomposition process. 
For every elementary step in the reaction, we calculated the average reaction time, 
summarized in Table 3. These results demonstrate the usefulness and power of a dynam-
ic biasing method. Indeed, methane decomposition at 800 K is a process that consists of 
rather fast steps such as the dissociation of a C-H bond of adsorbed CH2 (which takes 
about 50 ps), to the very slow decomposition of adsorbed CH, which requires more than 
0.1 ms. Studying this reaction sequence with a static bias would therefore not be 
achievable; the vast time scale spread of the various elementary processes is illustrated 

in Figure 5. Boosts of 62 10  are achieved. 
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Figure 5: Hypertime evolution in a dCVHD simulation of methane decomposition on 
Ni(111), at 800 K. The observed elementary steps are shown at the time step at which 
they occurred. 

The very long reaction time of the various reactions means that we cannot verify the 
accuracy of the values in Table 3 by direct comparison to MD simulations: even at a 
temperature of 1000 K we did not observe any reaction within 100 ps. It is, however, 
possible to compare the relative rates of the elementary steps to estimations based on 
differences between their respective activation energies.60 The barrier for C-H dissocia-
tion in adsorbed CH3 is 10 kcal/mol higher than for adsorbed CH2, meaning that the 
latter is about 1000 times faster than the former, in agreement with our findings. Simi-
larly, the dissociation of adsorbed CH has a barrier that is 14 kcal/mol higher than the 
dissociation step involving adsorbed CH3, leading to a rate that differs by an order of 
magnitude of 104, again in agreement with the results in Table 3. Finally, according to 
kinetic theory, the initial CH4 pressure is about 40 bar, with a flux to the surface of 
0.3 ps−1. Considering a dissociation barrier of 19 kcal/mol,58 we can make a crude esti-
mation of the average reaction time to be 0.5 µs, which is also in line with our observa-
tions. 

4. CONCLUSION 

We have developed a theoretical framework, the collective variable-driven hyperdynam-
ics (CVHD) method, which is an implementation of the hyperdynamics method that 
includes some of the strengths of metadynamics. The CVHD method is intended to be 
used as an accelerated molecular dynamics method, in which the waiting time between 
infrequent events is shortened by adding a bias potential to the energy minima in the 
system, without requiring a priori knowledge of the pathways and states that will be 
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encountered. From metadynamics, the method borrows the concept of using collective 
variables (CVs) to describe the system’s dynamics and to express the bias potential as a 
simple function of the CV, essentially a generalized reaction coordinate, giving rise to 
the statically biased CVHD (sCVHD) method. However, the metadynamics algorithm 
can also be used to dynamically build up a suitable bias potential for every new poten-
tial energy basin the system encounters. This dynamically biased CVHD (dCVHD) 
method is effectively a self-learning hyperdynamics implementation and does not re-
quire an a priori knowledge of the activation barriers the system can encounter during 
its long time scale evolution. 

A key point of the CVHD methods is its modular design. All relevant dynamics is repre-

sented by a single global CV  , which measures the distortion associated with an arbi-

trary set of local degrees of freedom. Both the biasing method, which depends on the 
CV, as the local properties on which the CV depends can be chosen independently to be 
optimal for the system studied. In this work, we have demonstrated the applicability of 
the bond length and dihedral angle local properties, in the study of solid state diffusion 
and heterogeneous catalysis, and chain folding, respectively.  

If the studied process is already well-characterized and all relevant activation barriers 
are known, using a static bias (the sCVHD method) is the optimal choice: a well-
optimized static bias can be constructed, and the on-the-fly construction of a dynamic 
bias will only cause additional overhead. On the other hand, in systems undergoing a 
more complex evolution, using a dynamical metadynamics-based bias may be the more 
optimal choice, as it is generally not possible to construct a single static bias that is both 
safe and efficient for every process encountered. This ability of the dCVHD method to 
adapt its bias to the specific requirements of the system at any time is an important ad-
vantage of the method. Irrespective of their relative efficiency, however, both biasing 
methods give rise to a correct sequence of state-to-state transitions. 

Although the CVHD method is inherently flexible in the kind of local properties it can 
use to calculate its global CV, its performance does not seem to suffer from this generic-
ity. For example, in the case of low-temperature diffusion on the Cu(001) with the bond 
length local property, accelerations as large 109 can be obtained, corresponding to phys-
ical times up to several seconds. In general, the CVHD method is about as efficient as 
the Bond Boost implementation of hyperdynamics, but has the added advantage of be-
ing more general. The local distortion functions developed so far already span a large 
range of processes and systems, and additional ones can be incorporated to further ex-
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tend the scope of the method. We therefore believe that the CVHD method will be a 
valuable tool in the study of slow or activated processes in a wide range of scientific 
fields including growth, conformational sampling, and catalysis. 
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