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We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components
using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and
provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust,
especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of
distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application
in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell
subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis.
We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge
package through the Bioconductor project.
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1. Introduction

Flow cytometry (FCM) can be applied in a high-throughput
fashion to process thousands of samples per day. However,
data analysis can be a significant challenge because each data
set is a multiparametric description of millions of individual
cells. Consequently, despite widespread use, FCM has not
reached its full potential due to the lack of an automated
analysis platform to assist high-throughput data generation.

A critical bottleneck in data analysis is gating, the
identification of groups of similar cells for further study.
The process involves identification of regions in multivariate
space containing homogeneous cell populations of interest.
Generally, gating has been performed manually by expert
users, but manual gating is subject to user variability, which
can potentially impact results [1–3].

A number of methods have been developed to automate
the gating process [4–7]. These include model-based meth-
ods such as multivariate mixture models that describe the
joint density of the flow cytometry data as a mixture of
simpler distributions [5, 6]. The simplest of these methods

utilizes a mixture of multivariate gaussian distributions [5].
However it is not sufficiently flexible to model the outliers
or asymmetrical cell populations frequently found in flow
cytometry data [6].

A more recent approach compensates for these effects by
applying a data transformation during the model fitting pro-
cess [6, 8]. This transformation makes data more symmetric,
while the use of a multivariate t distribution allows the model
to handle outliers [6, 8, 9].

These model-based gating methods effectively amount
to clustering of the data and generally employ likelihood-
based measures such as the Bayesian information criterion
(BIC) or Akaike information criterion (AIC) to select an
appropriate model (number of clusters) from a range of
possibilities [10]. While these measures are effective for
choosing a model that provides a good fit to the underlying
data distribution, they are problematic for clustering flow
cytometry data, where the goal is to determine the correct
number of distinct cell populations. BIC favors models with
more mixture components in order to provide a better fit
to the data distribution [11]. However, this comes at the
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Table 1: Distributional assumptions, data transformation, and model selection criteria for the five clustering models compared in this study.

Distribution Transformation Model selection criteria Model name

Multivariate-t

Box-Cox BIC flowClustBIC

Box-Cox ICL flowClustICL

Box-Cox Fixed K flowClustK

Box-Cox BIC, entropy flowMerge

Box-Cox BIC, entropy, fixed K flowMergeK

Gaussian

None BIC GMMBIC

None ICL GMMICL

None fixed K GMMK

cost of overestimating the number of well-separated clusters,
particularly when clusters are asymmetric and/or nonconvex.

An alternative measure recently proposed for model
selection is the Integrated Complete Likelihood (ICL)[11].
The ICL is an entropy-penalized BIC criterion, wherein
the BIC is penalized by an entropy term, which increases
as a function of the overlap between model components.
Consequently, ICL favors models with fewer components
and provides a better estimate of the number of well-
separated populations; however this generally comes at the
cost of a poor fit to the empirical data distribution, especially
if clusters are asymmetric, nonconvex, or otherwise not
readily fit by a simple parametric distribution [12].

In flow cytometry, where the shapes of cell populations
can be asymmetric and nonconvex, neither of the above
model fitting criteria are well suited to the clustering
problem. An ideal model would allow multiple mixture
components to represent an individual cluster or cell
population, thus providing a good fit to the data and a
good estimate of the number of distinct clusters. Such an
algorithm has recently been proposed for Gaussian mixture
models (GMMs) [12]. The algorithm starts with the best
model selected by the BIC criterion and iteratively merges
pairs of overlapping clusters in order to minimize the entropy
of the model [12]. Because it is based on the best fitting BIC
model, this approach retains the good distributional fitting
properties of the best BIC model, while simultaneously
allowing multiple mixture components to represent a single
cluster. Like the ICL measure, it also provides a reasonable
estimate of the number of well separated clusters in the data
[12]. Merging clusters to improve fitting of nonconvex cell
population has also recently been suggested by Pyne et al.
[13].

Here we extend the work of Baudry et al. to subpopula-
tion identification in flow cytometry data [12]. We combine
the cluster merging algorithm with the more flexible model
classes provided by a multivariate t-mixture with Box-Cox
transformed data and develop a method for summarizing
merged clusters that is compatible with the flowClust
framework [6]. Additionally, we automate the choice of the
number of clusters in the cluster merging algorithm, making
it suitable for application in a high throughput FCM analysis
pipeline. We propose a method for the identification of
borderline cases where the merging algorithm fails, which
can be flagged for manual analysis. In Table 1 we list the

distributional assumptions, model selection criteria, and the
abbreviations used to refer to the five models compared
throughout this paper.

Employing the cluster merging algorithm under the flow-
Clust framework provides a better fit and a better estimate of
the number of distinct cell populations for complicated flow
cytometry data distributions, than either the flowClustBIC,
flowClustICL, GMMBIC, or GMMICL models. The cluster
merging algorithm provides a simpler visual representation
of the data that is more amenable to interpretation. We
demonstrate the performance of our algorithm on simulated
and real FCM data. The software is available through the
Bioconductor project.

2. Materials and Methods

2.1. The flowClust Framework. We embed the cluster merg-
ing algorithm within the flowClust framework available in
BioConductor [6, 14]. The flowClust package is used to
fit mixture models of multivariate t distributions to flow
cytometry data. Additionally, the model allows the data to be
Box-Cox transformed during model fitting, with the goal of
making the data distribution more symmetric and bringing
it closer to “normality”. The model allows a number of
parameters to be estimated from the data, including the
degrees of freedom ν of the multivariate t distributions
being fitted and the Box-Cox transformation parameters λ
(Table 1). While flowClust does allow independent degrees of
freedom and independent Box-Cox transformation parame-
ters to be estimated for each mixture component, we chose
to use a common degrees of freedom and common Box-Cox
transformation parameter, estimated from the data, across
all mixture components in a model. This was done in order
to have closed form estimates of summary statistics for the
merged components. Note also that this additional flexibility
is not necessary in our framework as subpopulations can be
represented as mixtures of multiple components. In the rest
of this paper, we refer to this as the flowClust model.

2.2. The Cluster Merging Algorithm. We have implemented
the cluster merging algorithm described in [12], with several
modifications allowing its use with flow cytometry data
within the flowClust framework. Briefly, we begin with
the optimal flowClustBIC solution of K clusters. At the
first iteration of the algorithm, two clusters are chosen
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for merging in order to minimize the entropy of the data
under the new cluster assignments, as described in [12]. The
entropy of clustering for a K cluster mixture model is defined
as

ENT(K) = −2
K
∑

k=1

N
∑

i=1

piklog2

(

pik
)

, (1)

where pik is the probability of data point i belonging to
cluster k. Thus for two overlapping clusters k, k + 1, the
probability of a data point i in the overlapping region
belonging to either cluster is nonzero, and the entropy is
high. If the clusters overlap very little or not at all, then
the entropy is zero or near zero. Consequently, by iteratively
merging overlapping components, the entropy of clustering
is reduced. At each successive iteration, two more clusters are
merged until, at the Kth iteration, the data is defined by a
single cluster.

Baudry et al. suggest two data-driven approaches for
choosing the optimal k-cluster solution [12]. The first
involves identifying an “elbow” in a plot of the entropy of
clustering versus the number of clusters in a solution. The
second involves identifying peaks in a plot of the number of
clusters versus the change in entropy obtained by merging
two clusters in the k + 1 cluster solution into a single cluster
to form the k cluster solution (see [12] for details). Here, we
propose an automated approach for choosing the optimal k-
cluster solution based on changepoint analysis of the entropy
versus number of clusters plot, making the cluster merging
algorithm suitable for inclusion in an automated workflow
for flow cytometry data analysis [8].

2.3. Parameter Representation of Merged Mixture Components.
It is important to be able to have a parametric representation
of merged clusters in order to summarize characteristics of
the population. To this end, we model a merged cluster
as a multivariate t distribution with degrees of freedom, ν,
equal to the degrees of freedom of its component clusters.
We let Xi and X j be random variables that represent the p
dimensional measurements of cells in clusters i and j. We let
X∗ be the random variable that represents the p dimensional
measurements of cells in the cluster created by merging
clusters i and j (i.e., any two clusters). We let f∗, fi, and f j
be the distributions of X∗, Xi, and X j , respectively, and ni, n j

the number of events in clusters i and j, respectively. Thus f∗
can be written as a mixture of fi and f j (see [12] for details)
as follows:

p∗ f∗ = pi fi + p j f j . (2)

Thus, by definition, the proportion of cells p∗ in the
merged cluster is equal to the sum of the proportions of the
components pi and p j , given by

p∗ = pi + p j . (3)

Because we model the merged cluster as a single multivariate
t distribution we can summarize merged components with
individual sets of parameters describing their locations and
scales. To estimate the mean and covariance matrix of the

merged component, we match the first two moments of the
distributions in (2) (see [15]), giving

µ∗ =

(

piµi + p jµ j

)

p∗
,

Σ∗ =
(ν∗ − 2)pi

[

(νi/(νi − 2))Σi + µiµ
′
i

]

p∗ν∗

+
(ν∗ − 2)p j

[(

ν j/
(

ν j − 2
))

Σ j + µ jµ
′
j

]

p∗ν∗

−
(ν∗ − 2)p∗µ∗µ

′
∗

p∗ν∗

.

(4)

The expressions in (4) are the mean vector and covari-
ance matrix of the merged distribution, which is approxi-
mated by a multivariate t model with ν∗ = νi and νi = ν j

degrees of freedom. As previously mentioned, a common
Box-Cox transformation parameter allows us to estimate the
parameters of the merged clusters on the transformed scale.

2.4. Estimating the Number of Clusters/Cell Subpopulations.
Our stopping criteria for merging are based on analysis of the
number of clusters in a solution versus the clustering entropy
of that solution. Intuitively, when mixture components
overlap significantly, the entropy of clustering will be a large
value. As components are combined in subsequent iterations
of the merging algorithm, the entropy will decrease. When
only well separated components are left in the clustering
solution, further merging will have little impact on the total
entropy of clustering. This is reflected in a change of slope in
the plot of the clustering entropy versus the number of com-
ponents at the point, where the remaining clusters are well
separated. We refer to this as the optimal flowMerge solution.

We formalize this idea by fitting piecewise linear regres-
sion to the entropy versus the number of clusters in the
series of flowMerge model and allow the regression to have
either one or two segments (i.e., one or no changepoint).
Furthermore, we force the location of the changepoint to
be an integer, thus reflecting the discrete nature of the
clustering. Formally, if we have K models with an increasing
number (1 · · ·K) clusters, we fit a series of two-segment
piecewise linear regressions to the entropy versus the number
of clusters in the mixture models. The first segment is fit to
the data points for mixture models 1 · · · k and the second
segment to the data points for models k · · ·K , where k ∈
{2 · · ·K − 1}, assuming K > 3. The position of the change
point, k, is chosen to minimize the residual sum of squares
between the observed data and the piecewise regression line.
Once we have selected the location of the changepoint, we
choose between the presence and absence of a changepoint
(i.e., two-segment piecewise regression versus simple linear
regression) using the BIC criterion.

When K = 3, there are not enough data points to fit a
changepoint model, therefore we determine the presence or
absence of a changepoint by computing the angle θ between
the two component regression lines, given by θ = arctan(|a−
b|/(1 + ab))(180/π) where a and b are the slopes of the
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two lines. We set an empirical cutoff of θ = 1 degree for
identification of a changepoint. Another borderline case is
for K = 2 clusters, in which case we always return the two
component solution. For these borderline cases, the sample
is flagged with a warning. In practice, however, we have
rarely found cases where the flowClustBIC fit has K < 4
components.

2.5. Identifying Borderline Cases. We flag potential cases
where the merging algorithm fails to identify a good solution
through several different criteria.

(1) If the number of clusters in the flowMerge solution
is equal to the number of clusters in the flowClustBIC

solution.

(2) If the number of clusters in the flowMerge solution
is less than the number of clusters in the flowClustICL

solution.

(3) If no changepoint is detected (BIC chooses no change
point model).

(4) If the entropy of the flowMerge solution is unusually
high (an outlier) compared to the entropy of the
flowMerge solution for comparable samples using the
same markers.

In the above cases, samples are flagged for manual inspection
of the automated gating. To facilitate the comparison in
(4), we normalize the entropy by the number of events in
the sample as well as the number of clusters in the merged
solution:

ENTN (K) =
−2
∑K

k=1

∑N
i=1 piklog2

(

pik
)

NK
. (5)

2.6. The CLL Data Set. We applied the cluster merging algo-
rithm to a real-world data set consisting of 137 samples from
18 individuals with CLL (chronic lymphocytic leukemia)
provided by the BC Cancer Agency. The data set is composed
of between six and seven samples per individual. Each sample
is labeled with three fluorescent markers. The entire panel of
markers is designed for immunophenotyping of lymphomas
in a clinical setting (Table 2).

We performed automated gating using flowClust on the
forward scatter and side scatter channels, followed by cluster
merging of the optimal flowClustBIC solution. We com-
pared the number of clusters obtained by the flowClustBIC,
flowClustICL, and flowMerge solutions. The lymphocyte
subpopulation was selected from the merged solution
and automated gating was applied to this subpopulation
in the fluorescence dimensions. Again, the flowClustBIC,
flowClustICL, and flowMerge solutions were compared, as
well as the GMMBIC solution.

2.7. Simulation. We simulated data from the empirical
distribution of a real FCM data set. Based on the CD8 versus
CD4 projection of a CLL sample, we estimated the empirical
distribution using a two-dimensional kernel density
estimator on a 100 by 100 point grid, and sampled 100 data
sets of size N = 9198 equal to the original number of events.

Table 2: Summary of the antibody markers used in the CLL data.

Antibody
combination

Ab1 Ab2 Ab3
No.

tubes

1 CD10 CD11 CD20 18

2 CD45 CD14 CD19 18

3 CD5 CD19 CD3 18

4 CD5 CD19 CD38 5

5 CD5 ZAP70 CD19 1

6 CD5 ZAP70 CD3 1

7 CD57 CD2 CD8 4

8 CD57 CD56 CD3 4

9 CD7 CD4 CD8 13

10 FMC7 CD23 CD19 18

11 IgG IgG IgG 1

12 IgG1 IgG1/IgG2a IgG2 13

13 Kappa Lambda CD19 18
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Figure 1: flowClustBIC, flowClustICL, flowMerge solutions for auto-
mated gating of forward versus side scatter across 137 clinical sam-
ples of CLL. The flowClustBIC fit: black solid curve. The flowClustICL

fit: red dashed curve. The flowMerge fit: green dashed curve.

Events were simulated in a two-step process, first we sampled
according to the CD8 marginal density derived from the
two-dimensional kernel density estimate on a 100 × 100
point grid, then sampled in the CD4 dimension, conditional
on the sampled CD8 value, defined by the 100 × 1 element
bin of the kernel density estimate. The simulated data sets
were gated using the manual gates established on the original
data for CD8+/CD4−, CD8−/CD4+, and CD8−/CD4− cell
populations (Figure 6(a)). These manual gates were used to
calculate misclassification rates for automated gating using
the flowClustBIC, flowClustICL, flowMergeK, and GMMBIC

models with the number of clusters fixed at the true number
(K = 3) and with the number of clusters chosen by the
optimal model.

3. Results

3.1. CLL Data Set. We compared the number of clusters
identified by the flowClustBIC, flowClustICL, flowMerge
models used for automated gating of 137 lymph node-
derived CLL samples in the forward versus side scatter
dimensions (Figure 1). The forward and side scatter data for



Advances in Bioinformatics 5

0

200

400

600

800

1000

SS

200 400 600 800 1000

FS

(a)

0

200

400

600

800

1000

SS

200 400 600 800 1000

FS

(b)

0

10000

20000

30000

40000

E
n

tr
o

p
y

1 2 3 4 5 6 7

Number of clusters

(c)

0

200

400

600

800

1000

SS

200 400 600 800 1000

FS

(d)

Figure 2: Examples of the flowClustBIC, flowClustICL, flowMerge cluster solutions for forward versus side scatter in a sample of CLL flow
cytometry data. (a) The flowClustBIC solution with seven clusters. (b) The flowClustICL solution with two clusters. (c) The entropy versus
number of clusters plot, fit to a two-component piecewise linear regression model. The best fitting model has a changepoint at three clusters.
(d) The flowMerge solution corresponding to K = 3 clusters provides a better fit to the lymphocyte population than either the flowClustBIC

or flowClustICL solutions and provides a good estimate of the true number of cell populations.

these samples contain between two and three predominant
cell populations that correspond to lymphocytes, debris,
and outliers. The number of clusters identified by the
flowClustBIC solution shows large variability across all
samples. This solution generally required more mixture com-
ponents than the true number of cell populations (median
6 clusters, range 3–15). Importantly, multiple components
were often required to model the lymphocyte population
(Figure 2(a)), which is the cell population of interest.

In contrast, the flowClustICL fit is better but tends to
underestimate the true number of cell populations. Across
the 137 CLL samples, ICL identified a median of two
populations per sample (range from 1 to 3). The ICL also
provides a poor fit to the data, inadequately modeling the
lymphocyte population (Figure 2(b)).

The flowMerge solution derived from the flowClustBIC

solution provides both a good fit to the underlying data,
including the lymphocyte cell population, as well as an
improved estimate of the true number of cell populations
(Figures 2(c) and 2(d)). The number of clusters estimated
through merging is generally between the flowClustBIC and
flowClustICL solutions (median of 4 populations, range 2 to
8 clusters).

We performed automated gating in the fluorescence
channels on the lymphocyte subpopulation derived from
the previous autogating step. In 60/137 cases (43%),
the GMMBIC solution returned more clusters than the
flowClustBIC solution. In 95% of those cases the GMMBIC

fit was within 5 components of the flowClustBIC fit. These
two models returned an equal number of clusters in 29/137
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cases (21%), and in 48/137 (35%) of cases, the GMMBIC fit
had fewer components. However, in the latter cases, 95% of
the samples differed by only a single component (Figure 3,
black curve). In general, for the fluorescence dimensions, the
flowClustBIC model estimated fewer cell subpopulations than
the GMMBIC model, in accordance with what is expected,
given that the former is a more robust and flexible model.

The flowClustICL fit generally underestimated the num-
ber of cell subpopulations and provided a poor fit to the
data distribution (Figure 3, red curve and Figure 4(a)). In the
example shown, the flowClustICL solution identifies two cell
subpopulations in the CD8/CD4/CD7 dimensions and fails
to discriminate between the CD4+/CD7+ and CD4+/CD7−
cell subpopulations. Additionally, it entirely fails to capture
the CD8+ cell subpopulation (Figure 4(a)).

In contrast, for the same sample, the flowClustBIC fit
requires 13 components and clearly overestimates the
number of cell subpopulations. Specifically, the CD4−/
CD7−/CD8− cells require multiple mixture components to
model a single subpopulation (Figure 4(b)).

The choice of the number of clusters for the flowMerge
solution is automated by fitting a piecewise linear model
to the entropy versus number of clusters (Figure 4(c)). This
solution is derived from the flowClustBIC fit and provides
a good compromise between model fit and subpopula-
tion identification. It correctly discriminates between the
different unique cell subpopulations that were missed by
the flowClustICL solution, while combining the overlapping
mixture components required to model the CD8/CD4/CD7
negative cell subpopulation in the flowClustBIC solution
(Figure 4(d)).

We identify cases where cluster merging fails by examin-
ing the distribution of the entropy of the flowMerge solution
across multiple comparable samples (Figures 5(a)–5(d)). In
the forward versus side scatter dimensions, cell populations
tend to be complex and overlapping. This is reflected in the
distribution of the normalized entropy (Figure 5(a), left).
The normalized entropy of the merged solution has a broad
distribution (90% of the samples below 0.4, median 0.2) and
the solution itself may have many clusters. In contrast, for the
fluorescence dimensions, the merged solution identifies well
separated populations, reflected by a normalized entropy
distribution that is tightly distributed around zero (90% of
samples below 0.2, median 0.03) (Figure 5(a), right). We
correct for the relationship between the entropy and the
number of clusters in the merged solution as well as the
number of events by normalizing the entropy (Figure 5(b)).
Normalization reduces the correlation of the entropy with
the number of clusters (ρ = 0.38 versus ρ = 0.77 for
FS versus SS, and ρ = 0.08 versus ρ = 0.49 for fluores-
cence dimensions) (Figure 5(b)). This allows us to identify
flowMerge solutions where the entropy is unusually large (in
the right tail of the distribution), independent of the number
of clusters or events. For forward versus side scatter and for
fluorescence channels, we can identify samples where the
merged solution contains highly overlapping components
(Figure 5(c)). None the less, for forward versus side scatter,
the lymphocyte population is sufficiently dense that it can
be readily identified visually. Such cases are therefore flagged
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Figure 3: The number of clusters chosen by the flowClustBIC,
flowClustICL, flowMerge, and GMMBIC solutions for automated
gating of CD8, CD4, and CD7 across 137 samples of CLL. The
flowClustBIC solution: solid black curve. The flowClustICL solution:
dashed red curve. The flowMerge solution derived from the
flowClustBIC solution: dashed green curve. The GMMBIC solution:
dashed blue curve.

for manual analysis. Importantly, this criterion allows us to
identify general classes of samples where merging fails. We
note several sets of markers (notably CD10/CD11c/CD20
and Kappa/Lambda/CD19), where the normalized entropy
of clustering is high for all, or a majority of samples
(Figure 5(d)). This type of outlier detection is suitable for a
high throughput setting to quickly assess flowMerge model
fit across groups of parameters and identify those where
the automated merging algorithm is problematic. In these
cases, again, manual inspection may be required to find an
appropriate merged solution. More careful analysis of these
cases could suggest strategies to improve automated gating
techniques for flow cytometry data.

3.2. Simulation. We simulated 100 data sets of CD8 versus
CD4 fluorescence based on the empirical distribution of
real CD8 versus CD4 CLL data. This simulation approach
ensured that the simulated data was not biased towards any
of the models under investigation. This data had three cell
subpopulations defined based on the contours in the CD4
versus CD8 dimensions. These included CD4+/CD8− cells,
CD8+/CD4− cells, CD4−/CD8− cells, (outliers were defined
by events outside these gates) (Figure 6(a)). No CD4+/CD8+
cell subpopulation could be discerned from the kernel
density estimate of this particular sample. We simulated 9198
events per sample (equal to the number of events in the
original data) and assigned them to populations based on
the manually defined gates from the original data. Kernel
density estimates based on simulated data are comparable to
the original data (Figure 6(b)).

We compared the number of clusters selected under the
optimal flowClustICL, flowClustBIC, GMMBIC, and flowMerge
solutions (Figure 6(c)). The flowClustICL solution system-
atically underestimated the true number of subpopulations
(2 clusters estimated in all simulations). The GMMBIC

and flowClustBIC solutions both significantly overestimated
the true number of cell subpopulations in all simula-
tions (median 10 and 9, resp., Figure 6(c)). The median
flowClustBICsolution (K = 9 clusters, Figure 6(d)) required
two components to model the CD4+/CD8− subpopulation,
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Figure 4: Example of flowClustICL, flowClustBIC, and flowMerge solutions fitted to a CLL sample in the CD8, CD4, and CD7 dimensions.
(a) Three projections of the flowClustICL solution. (b) Three projections of the flowClustBIC solution. (c) Entropy versus number of clusters
for a series of flowMerge model fits with a piecewise linear regression fitted to the data. The changepoint located at K = 5 clusters is selected
automatically. (d) Three projections of flowMerge solution with K = 5 clusters derived from the flowClustBIC solution.

one for the CD8+/CD4− subpopulation, three for the
CD4−/CD8− subpopulation, and three components for
modeling various outlier low-frequency subpopulations.
Although the flowMerge solution overestimated the true
number of clusters on average, it provided the closest
estimate of the true number of cell subpopulations (median
5). In 16% of simulations, the flowMerge solution estimated
the correct number of clusters. In 51% of simulations
it overestimated the true number by only one cluster.
Closer examination reveals that the extra clusters serve
predominantly to model outlier populations (Figure 6(e)).
These results are summarized in Table 3.

We also compared the misclassification rates for the
different models, relative to class assignments from manual
gating. This was done in two ways. First, we fixed the number
of clusters to the true number (K = 3) for the flowClustK,

GMMK, and flowMergeK models (Figure 6(f)). Note that the
former three sets of models are distinct from their “optimal”
counterparts by virtue of fixing the number of clusters.
Alternately, we compute the misclassification rate between
the optimal flowClustBIC, flowMerge or GMMBIC solutions,
choosing the three components from each that minimize
the misclassification rate (Figure 6(g)). When the number of
components was fixed to the true number, the GMMK model
had the highest misclassification rate (12.3%) (Figure 6(h)),
flowClustK had the second highest misclassification rate
(10.5%) (Figure 6(i)), while the flowMergeK solution (with
fixed K) derived from the optimal flowClustBIC model, had
the lowest misclassification rate (4.2%) (Figure 6(j) and
Table 3). Both the GMMK and the flowClustK solutions with
a fixed number of components failed to correctly identify
the rare CD8+/CD4− cell subpopulation in the simulated
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Figure 5: Detecting failed cluster merging. (a) Distribution of the entropy (normalized for the number of events and clusters) of the
flowMerge solution for forward versus side scatter (left) and fluorescence channels (right) across 137 samples. (b) The relationship between
the normalized entropy and the number of clusters in the flowMerge solution for forward scatter versus side scatter (left) and fluorescence
channels (right). (c) Example of flowMerge solutions with unusually high normalized entropy from the right tail of the distribution for
forward versus side scatter (left) and fluorescence (right). (d) A plot of the normalized entropy versus samples grouped by antibody labels
identifies antibody combinations that are problematic for automated gating with the automated merging algorithm.

Table 3: Mean, standard deviation, 95% coverage, and bias of the estimated number of clusters for each model, as well as the mean, standard
deviation and 95% coverage for the misclassification rate of each model. CI: coverage interval.

Statistic Model Mean SD 95% CI Bias

Number of clusters

flowClust BIC 9.03 1.59 6–12 6.03

flowClustICL 2.00 — 2-2 −1.00

GMMBIC 10.41 1.31 8–12 7.14

flowMerge 5.45 0.97 4–7 2.45

Misclassification rate (K = 3)

flowClust 0.103 0.00826 0.0937–0.112 —

GMM 0.124 0.00537 0.114–0.134 —

flowMergeK 0.0445 0.0104 0.0312–0.0669 —

Misclassification rate (best model)

flowClustBIC 0.398 0.101 0.230–0.613 —

GMMBIC 0.499 0.0756 0.339–0.625 —

flowMerge 0.0685 0.0223 0.0383–0.121 —

data (Figures 6(h) and 6(i)). In contrast, the flowMergeK

solution correctly identified this subpopulation as a distinct
entity.

The misclassification rates for the optimal flowClustBIC,
flowMerge, and GMMBIC solutions were calculated as
described, relative to the manually derived gates
(Figure 6(g)). These followed a pattern similar to the
misclassification rates with a fixed number of components
(GMMBIC was the highest, followed by flowClustBIC,
followed by flowMerge). However, in contrast to the fixed
component solutions, the misclassification rates for the

flowClustBIC and GMMBIC solutions were significantly
higher than the flowMerge solution (Table 3). This is due
to the fact that multiple model components are required
to represent distinct cell populations, something only
permitted within the cluster merging framework.

4. Discussion

Model-based automated gating of flow cytometry data is
difficult when cell subpopulations are nonconvex, or have
complicated multidimensional shapes that are not readily
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Figure 6: Continued.
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Figure 6: Simulation results for CD4 versus CD8 dimensions of a CLL sample. (a) The 2D kernel density estimate of the real CD4 versus CD8
data. Gates for the CD4+/CD8−, CD8+/CD4−, and CD4−/CD8− subpopulations are represented by light coloured lines. Events outside the
gates are considered outliers. (b) An example of the kernel density estimate of simulated data drawn from the distribution defined by the real
data. (c) The number of clusters selected by the flowMerge solution, the GMMBIC solution, the flowClustBIC, and flowClustICL solutions over
100 realizations of simulated data. (d) The median flowClustBIC flowClust solution with 9 components. (e) The median flowMerge solution
with 5 components. (f) The misclassification rate (MCR) for the flowMergeK solution, the GMMK solution, and the flowClustK solution with
the number of clusters fixed to the true number of cell subpopulations (K = 3). (g) The misclassification rates for the three components
from the optimal GMMBIC, flowClustBIC, and flowMerge solutions minimizing the MCR. (h) A GMM, (i) flowClust, (j) and flowMergeK

solution with a fixed number of clusters.

modeled by single components of simpler multivariate
distributions. This issue is resolved, in part, by allowing
multiple mixture components to represent the same cell
subpopulation. However, for further analysis, cell subpopu-
lations are generally summarized by a variety of statistics; this
requires one to summarize an arbitrary number of mixture
components for a single cell subpopulation. Consequently
the cluster merging algorithm is not suitable for application
to flow cytometry data without further modifications. By
taking advantage of the fact that a merged cluster is itself a
mixture (see (2)), and approximating the merged distribu-
tion as a density from the same family as its components, we
use moment matching to summarize the merged cluster with
a single set of parameters that provides a good approximation
to the underlying data (see (3) and (4)). This simple
representation of otherwise complicated distributions allows
downstream data analysis to proceed in the usual manner
and fits within the existing flowClust framework, allowing
for easy visualization of automated gating results.

Comparison of the cluster merging algorithm with other
automated gating models (Table 1) using both simulated
and real data demonstrate that merging provides a better
fit and better estimate of the true number of cell subpop-
ulations than the other models. Estimates of the number
of cell populations derived from standard model-selection
measures such as BIC or ICL are not entirely suitable for
flow cytometry data (Figures 2 and 4). BIC, while providing a
good fit to the data, requires many more clusters than actual
number of cell subpopulations, while ICL underestimates
the number of cell subpopulations and provides a poor
fit to the data, missing both rare cell subpopulations and
poorly fitting those that have complicated structure (Figures
4(a), 4(b) and Table 3). The flowMerge solution provides a
good compromise between these two extremes. It is based

on the flowClustBIC solution, thus retaining the property of
good fit to the distribution, while simultaneously eliminating
ambiguity associated with multiple overlapping components
representing the same cell subpopulation. Merging decreases
the entropy of clustering by making local changes to the
model without compromising the global fit.

We use a changepoint model to estimate the optimal
number of clusters in the merged solution. This allows the
cluster merging algorithm to be implemented in a high-
throughput pipeline for flow cytometry data analysis. In
general, this approach provides satisfactory results, both
for forward versus side scatter dimensions as well as for
fluorescence dimensions (Figures 1 and 3). The number
of clusters chosen by flowMerge is generally between the
flowClustBIC and flowClustICL solutions, and although it still
tends to overestimate the number of cell subpopulations
by several components, these generally model outlier cell
subpopulations (Figure 2(d) and 6(e)). Interestingly, our
simulation results also show that our framework for sum-
marizing merged components allows some of these outlier
subpopulations to be merged with clusters representing more
dense cell subpopulations, of interest, without adversely
affecting the fit of the model. This is due to the fact
that the parameters of merged clusters are weighted linear
combinations of the parameters of the component clusters.
Therefore components of lower density contribute less to the
mean and covariance parameters of merged clusters (Figures
6(e)–6(g)).

Our results on real flow data demonstrate that the
cluster merging algorithm improves our ability to identify
the lymphocyte cell subpopulation from the forward versus
side scatter dimensions. This high density subpopulation
is often represented by multiple mixture components in
the flowClustBIC and GMMBIC solutions. Merging allows
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this subpopulation to be represented by a single model
component (Figure 2). Even in cases where merging fails,
the algorithm is sufficiently robust that prior information
about the expected number of cell populations could be used
to identify an appropriate merged solution manually, while
retaining a good fit to the data distribution (Figures 6(d)
and 6(j)). Others have suggested incorporating information
from the repeated-measures design of some flow cytometry
data sets to help make gating decisions [16]. The application
of cluster merging for identification of cell populations in
the fluorescence dimensions is also beneficial. It reduces the
complexity of subpopulations represented by multiple com-
ponents. A comparison of the flowClustBIC and flowClustICL

solutions shows that these two criteria tradeoff model
fit against a simpler representation of cell subpopulations
(Figures 4(a) and 4(b)). The flowClustICL solution frequently
fails to correctly identify all but the highest density regions;
whereas the flowClustBIC solution often overestimates the
number of clusters in high density regions.

Our cluster merging framework provides a robust mod-
eling approach for automated gating of flow cytometry data.
It provides a good compromise between the flowClustBIC

and flowClustICL solutions by combining the good model
fitting characteristics of BIC-based model selection with a
more modest estimate of the true number of clusters, a char-
acteristic of the ICL-based model selection. It allows us to
represent complicated cell populations using single mixture
components for which we can readily obtain closed-form
parameter estimates for use in further analysis. Additionally,
these estimates are robust to outlier cell populations. The
cluster merging approach to gating has a lower misclassifica-
tion rate than other models considered here, irrespective of
whether the number of clusters was fixed at the true number
or chosen from amongst the components in the optimal
fitting model. Together, these factors make cluster merging a
powerful tool for automated gating of flow cytometry data.
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