

Merging of Opinions with Increasing Information Author(s): David Blackwell and Lester Dubins
Source: The Annals of Mathematical Statistics, Vol. 33, No. 3 (Sep., 1962), pp. 882-886
Published by: Institute of Mathematical Statistics
Stable URL: http://www.jstor.org/stable/2237864
Accessed: 08/12/2010 11:08

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ims.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematical Statistics.

MERGING OF OPINIONS WITH INCREASING INFORMATION ${ }^{1}$

By David Blackwell and Lester Dubins
University of California, Berkeley

1. History. One of us [1] has shown that if $Z n, n=1,2, \cdots$ is a stochasticprocess with D states, $0,1, \cdots, D-1$ such that $X=\sum_{n=1}^{\infty} Z_{n} / D^{n}$ has an absolutely continuous distribution with respect to Lebesgue measure, then the conditional distribution of $R_{k}=\sum_{n=1}^{\infty} Z_{k+n} / D^{n}$ given Z_{1}, \cdots, Z_{k} converges . with probability one as $k \rightarrow \infty$ to the uniform distribution on the unit interval, in the sense that for each $\lambda, 0<\lambda \leqq 1, P\left(R_{k}<\lambda \mid Z_{1}, \cdots, Z_{k}\right) \rightarrow \lambda$ with probability 1 as $k \rightarrow \infty$. It follows that the unconditional distribution of R_{k} converges to the uniform distribution as $k \rightarrow \infty$. If $\left\{Z_{n}\right\}$ is stationary, the distribution of R_{k} is independent of k, and hence uniform, a result obtained earlier by Harris [3]. Earlier work relevant to convergence of opinion can be found in [4, Chap. 3, Sect. 6].

Here we generalize these results and also show that the conditional distribution of R_{k} given Z_{1}, \cdots, Z_{k} converges in a much stronger sense. All probabilities. in this paper are countably additive.
2. Statement of the theorem. Let \mathbb{B}_{i} be a σ-field of subsets of a set X_{i}, $i=1,2, \cdots$; and let $\left(X, ®_{3}\right)=\left(X_{1} \times X_{2} \times \cdots, ®_{1} \times ®_{2} \times \cdots\right)$. Suppose (X, \mathscr{B}, P) is a probability space and let P_{n} be the marginal distribution of $\left(X_{1} \times \cdots \times X_{n}, \mathbb{B}_{1} \times \cdots \times \mathbb{ß}_{n}\right)$; that is, $P_{n}(A)=P\left(A \times X_{n+1} \times \cdots\right)$ for all $A \in \bigotimes_{1} \times \cdots \times \oiint_{n}$. The probability P is predictive if for every $n \geqq 1$, there exists a conditional distribution P^{n} for the future $X_{n+1} \times \cdots$ given the past X_{1}, \cdots, X_{n}; that is, if there exists a function $P^{n}\left(x_{1}, \cdots, x_{n}\right)(C)$ where $\left(x_{1}, \cdots, x_{n}\right)$ ranges over $X_{1} \times \cdots \times X_{n}$ and C ranges over $\mathbb{B}_{n+1} \times \cdots$ with the usual three properties: $P^{n}\left(x_{1}, \cdots, x_{n}\right)(C)$ is $\mathbb{B}_{1} \times \cdots \times \mathbb{B}_{n}$-measurable for fixed C; a probability distribution on ($X_{n+1} \times \cdots$; $\circledR_{n+1} \times \cdots$) for fixed $\left(x_{1}, \cdots, x_{n}\right)$; and for bounded ©-measurable ϕ

$$
\begin{align*}
\int \phi d P=\int\left[\left(\phi (x _ { 1 } , \cdots , x _ { n } , x _ { n + 1 } , \cdots) d P ^ { n } \left(x_{n+1}, \cdots\right.\right.\right. & \left.\left.\mid x_{1}, \cdots, x_{n}\right)\right] \tag{1}\\
& \cdot d P_{n}\left(x_{1}, \cdots, x_{n}\right)
\end{align*}
$$

holds.
The assumption that P is predictive is mild and applies to all natural probabilities known to us. It is easy to verify that any probability which is absolutely continuous with respect to a predictive probability is also predictive.

[^0]For any two probabilities μ_{1} and μ_{2} on the same σ-field \mathcal{F}, the well known distance $\rho\left(\mu_{1}, \mu_{2}\right)$ between μ_{1} and μ_{2} is the least upper bound over $D \varepsilon \mathfrak{F}$ of $\left|\mu_{1}(D)-\mu_{2}(D)\right|$. Of course μ_{i} is absolutely continuous with respect to ($\mu_{1}+$ $\left.\mu_{2}\right) / 2=m$ and has a density ϕ_{i}, so that $\rho\left(\mu_{1}, \mu_{2}\right)=\int_{A}\left(\phi_{1}-\phi_{2}\right) d m=$ $(1 / 2) \int\left|\phi_{1}-\phi_{2}\right| d m$ where A is the set where $\phi_{1}-\phi_{2}>0$.

Main Theorem. Suppose that P is a predictive probability on ($X,(\mathbb{B}$) and that Q is absolutely continuous with respect to P. Then for each conditional distribution P^{n} of the future given the past with respect to P, there exists a conditional distribution Q^{n} of the future given the past with respect to Q such that, with the exception of a set of histories ($x_{1}, \cdots, x_{n}, x_{n+1}, \cdots$) of Q-probability 0 , the distance between $P^{n}\left(x_{1}, \cdots, x_{n}\right)$ and $Q^{n}\left(x_{1}, \cdots x_{n}\right)$ converges to 0 as n converges to ∞.
3. Martingale preliminaries. The proof of the theorem requires a slightly generalized martingale convergence theorem. Say that a sequence $\left\{y_{n}\right\}$ of random variables is dominated in the sense of Lebesgue if $\sup _{n}\left|y_{n}\right|$ has a finite expectation.

Theorem 2. Suppose that $\left\{y_{n}\right\}, n=1,2, \cdots, a$ sequence of random variables dominated in the sense of Lebesgue, converges almost everywhere to a random variable y. Then for every monotone increasing or monotone decreasing sequence of σ-fields $\cdot \mathcal{u}_{j}, j=1,2, \cdots$ converging to $a \sigma$-field \mathfrak{U},

$$
\begin{equation*}
\lim _{\substack{i \rightarrow \infty \\ n \rightarrow \infty}} E\left[y_{n} \mid \mathcal{u}_{j}\right]=E[y \mid \text { u], } \tag{2}
\end{equation*}
$$

almost everywhere and in L_{1}.
In this note we are primarily interested in the weaker conclusion that $\lim _{n \rightarrow \infty} E\left[y_{n} \mid \mathfrak{u}_{n}\right]=E[y \mid \mathcal{U}]$. The two important special cases in which either y_{n} or \mathcal{U}_{n} is independent of n are in [2].

Proof of Theorem 2. Let $g_{k}=\sup y_{n}$ for $n \geqq k$. Equalities and inequalities below are asserted to hold with probability 1 . Fix k for a moment and let $n \geqq k$. Then $y_{n} \leqq g_{k}$ and

$$
\begin{equation*}
E\left[y_{n} \mid \mathcal{U}_{i}\right] \leqq E\left[g_{k} \mid \mathcal{U}_{i}\right] \tag{3}
\end{equation*}
$$

Letting

$$
\begin{align*}
& z=\lim _{j} \sup _{\substack{i \geq j \\
n \geqq j}} E\left[y_{n} \mid \mathfrak{U}_{i}\right], \tag{4}\\
& x=\lim _{j} \inf _{\substack{i \geq j \\
n \geqq j}} E\left[y_{n} \mid \mathfrak{u}_{i}\right],
\end{align*}
$$

you conclude from (3) and a usual form of martingale convergence theorem [For example, see 2, Theorem 4.3, Chap. VII] that

$$
\begin{equation*}
z \leqq \lim _{j} \sup _{i \geqq j} E\left[g_{k} \mid \mathcal{U}_{i}\right]=\lim _{i} E\left[g_{k} \mid \mathcal{u}_{i}\right]=E\left[g_{k} \mid \mathcal{U}\right] . \tag{5}
\end{equation*}
$$

Therefore $z \leqq \lim E\left[g_{k} \mid \mathfrak{u}\right]=E[y \mid \mathcal{U}]$ by Lebesgue's theorem suitably generalized so as to apply to conditional expectations. [See, for example, $2, \mathrm{CE}_{5}$ Section 8, Chap. 1]. Similarly, $x \geqq E[y \mid \mathcal{u}]$, and the proof of almost everywhere convergence is complete. The proof of L_{1} convergence is routine and omitted.

Corollary 1. Suppose that with probability 1, only a finite number of the events E_{1}, E_{2}, \cdots occur. Then for any monotone sequence of σ-fields $\mathfrak{u}_{1}, \mathfrak{u}_{2}, \cdots$

$$
\begin{equation*}
P\left[\bigcup_{k \geqq n} E_{k} \mid \mathcal{U}_{j}\right] \quad \text { and } \quad P\left[E_{n} \mid \mathcal{U}_{j}\right] \rightarrow 0 \tag{6}
\end{equation*}
$$

almost surely as n and $j \rightarrow \infty$.
Corollary 2. If f_{n} is any sequence of random variables that converges almost everywhere to 0 and \mathcal{U}_{j} is a monotone sequence of σ-fields, then with probability 1 , for all $\epsilon>0$,

$$
\begin{equation*}
P\left[\sup _{k \geqq n}\left|f_{k}\right|>\epsilon \mid \mathcal{U}_{j}\right], \quad \text { and } \quad P\left[\left|f_{n}\right|>\epsilon \mid \mathcal{U}_{j}\right] \tag{7}
\end{equation*}
$$

converge to 0 as n and j converge to ∞.
Corollary 3. Let $q \geqq 0$ be a density function for which $Q(B)=\int_{B} q d P$ for all $B \varepsilon$ B; let

$$
\begin{equation*}
q_{n}\left(x_{1}, \cdots, x_{n}\right)=\int q\left(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots\right) d P^{n}\left(x_{n+1}, \cdots \mid x_{1}, \cdots, x_{n}\right) \tag{8}
\end{equation*}
$$

and let
(9) $d_{n}\left(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots\right)=q\left(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots\right) /$

$$
q_{n}\left(x_{1}, \cdots, x_{n}\right) \quad \text { or } \quad 1,
$$

according as $q_{n}\left(x_{1}, \cdots, x_{n}\right) \neq 0$ or not. Then, with P-probability 1 , for all $\epsilon>0$,

$$
\begin{equation*}
P\left[d_{n}-1>\epsilon \mid x_{1}, \cdots, x_{n}\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{10}
\end{equation*}
$$

and with Q-probability 1 , for all $\epsilon>0$,

$$
\begin{equation*}
Q\left[\left|d_{n}-1\right|>\epsilon \mid x_{1}, \cdots, x_{n}\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

Proof of Corollary 3. With respect to P measure,

$$
\begin{equation*}
E\left[q \mid x_{1}, \cdots, x_{n}\right]=q_{n}\left(x_{1}, \cdots, x_{n}\right) \tag{12}
\end{equation*}
$$

so that according to Doob's martingale convergence theorem, $q_{n}\left(x_{1}, \cdots, x_{n}\right)$ converges to $q\left(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots\right)$ almost surely with respect to P. Consequently, $\varlimsup d_{n} \leq 1$ a.s. P and $d_{n} \rightarrow 1$ a.s. Q since $q>0$ a.s. Q. An application of Corollary 2 completes the proof.
4. Proof of main theorem. Define

$$
\begin{align*}
& Q^{n}\left(x_{1}, \cdots, x_{n}\right)(C) \\
& \quad=\int_{C} d_{n}\left(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots\right) d P^{n}\left(x_{n+1}, \cdots \mid x_{1}, \cdots, x_{n}\right) \tag{13}
\end{align*}
$$

for all $C \varepsilon \otimes_{n+1} \times \cdots$.

It is routine to verify that Q^{n} is a conditional distribution for the future given the past. Let $u=\left(x_{1}, \cdots, x_{n}\right)$ and $v=\left(x_{n+1}, \cdots\right)$, and compute thus:

$$
\begin{align*}
\rho\left(P^{n}\left(x_{1}, \cdots, x_{n}\right)\right. & \left., Q^{n}\left(x_{1}, \cdots, x_{n}\right)\right) \\
& =\rho\left(P^{n}(u), Q^{n}(u)\right) \\
& =\int\left(d_{n}(u, v)-1\right) d P^{n}(v \mid u) \text { over } v: d_{n}(u, v)-1>0 \\
& \leqq \epsilon+\int d_{n}(u, v) d P^{n}(v \mid u) \text { over } v: d_{n}(u, v)-1>\epsilon \tag{14}\\
& =\epsilon+Q^{n}(u)\left(v: d_{n}(u, v)-1>\epsilon\right) \\
& =\epsilon+Q\left[d_{n}-1>\epsilon \mid x_{1}, \cdots, x_{n}\right] \\
& =\epsilon+\epsilon
\end{align*}
$$

for all but a finite number of n with Q-probability 1 , according to (11). This completes the proof.
5. Interpretation. Usually, there is essentially only one conditional distribution Q^{n} of the future given the past. Therefore, our theorem may be interpreted to imply that if the opinions of two individuals, as summarized by P and Q, agree only in that $P(D)>0 \leftrightarrow Q(D)>0$, then they are certain that after a sufficiently large finite number of observations x_{1}, \cdots, x_{n}, their opinions will become and remain close to each other, where close means that for every event E the probability that one man assigns to E differs by at most ϵ from the probability that the other man assigns to it, where ϵ does not depend on E. Leonard J. Savage observed that our theorem applies to the particularly interesting case in which P and Q are symmetric (or exchangeable). That is, if the measures P and Q on the sequences x_{i} are those that arise when the x_{i} are, for a fixed parameter value, independent and identically distributed observations, with prior distributions p and q on the parameter, then the relations of absolute continuity between P and Q are precisely those between p and q.
6. Caution. Though the conditional distributions of the future P^{n} and Q^{n} merge as n becomes large, this need not happen to the unconditional distributions of the future. That is, let $P(n)(D)=P\left(X_{1} \times \cdots \times X_{n} \times D\right)$ for all $D \varepsilon \oplus_{n+1} \times \cdots$, and let $Q(n)$ be similarly defined. The following is a simple example of two probabilities P and Q absolutely continuous with respect to each other for which $P(n)$ and $Q(n)$ do not merge with increasing n. Let R be the probability on infinite sequences x_{1}, x_{2}, \cdots of 0 's and 1 's determined by independent tosses of a coin which has probability r of success, and let S be the probability determined if the coin has probability s for success, with $0 \leqq r \leqq 1$, $0 \leqq s \leqq 1$, and $r \neq s$. Now let $0<p<q<1$ and let P and Q be mixtures of R and $S: P=p R+(1-p) S, Q=q R+(1-q) S$. Since $P(n)=P$ and $Q(n)=Q$ for all n, there is no tendency for $P(n)$ and $Q(n)$ to merge.
7. An application. By viewing the unit interval as a product of two point spaces, the interested reader will see that the main theorem yields information about the local behavior of positive integrable functions $q(x)$ defined for $0 \leqq x \leqq 1$.

REFERENCES

[1] Blackwell, David (1957). On discrete variables whose sum is absolutely continuous. Ann. Math. Statist. 28 520-521.
[2] Dоов, J. L. (1953). Stochastic Processes. Wiley, New York.
[3] Harris, T. E. (1955). On chains of infinite order. Pacific J. Math. 5 707-724.
[4] Savage, Leonard J. (1954). The Foundations of Statistics. Wiley, New York.

[^0]: Received December 12, 1961.
 ${ }^{1}$ This paper was prepared with the partial support of the Office of Naval Research (Nonr-222-43) for Mr. Blackwell; and with the partial support of the National Science Foundation, Grant G-14648 for Mr. Dubins. This paper in whole or in part may be reproduced for any purpose of the United States Government.

