
Merging Ranks from Heterogeneous Internet Sources *

Luis Gravano

Computer Science Department

Stanford University

Stanford, CA 94305-9040, USA

gravanoQcs.stanford.edu

H&tor Garcia-Molina

Computer Science Department

Stanford University

Stanford, CA 94305-9040, USA

hectorQcs.stanford.edu

Abstract

Many sources on the Internet and elsewhere
rank the objects in query results according
to how well these objects match the origi-

nal query. For example, a real-estate agent
might rank the available houses according to

how well they match the user’s preferred lo-

cation and price. In this environment, “meta-
brokers” usually query multiple autonomous,

heterogeneous sources that might use varying
result-ranking strategies. A crucial problem
that a meta-broker then faces is extracting
from the underlying sources the top objects for

a user query according to the meta-broker’s
ranking function. This problem is challeng-
ing because these top objects might not be
ranked high by the sources where they appear.
In this paper we discuss strategies for solv-
ing this “meta-ranking” problem. In particu-

lar, we present a condition that a source must

satisfy so that a meta-broker can extract the
top objects for a query from the source with-

out examining its entire contents. Not only

is this condition necessary but it is also suf-

ficient, and we show an algorithm to extract

the top objects from sources that satisfy the
given condition.

1 Introduction

Increasingly, sources on the Internet and elsewhere
rank the objects in the results of selection queries ac-
cording to how well these objects match the original

condition. For such sources, query results are not flat
sets of objects that match a given condition. Instead,
query results are sorted starting from the top object
for the query at hand.

A typical example of this kind of sources is a source
that indexes text documents and answers queries using
some variation of the uector-space model of document

retrieval [l].

*This material is based upon work supported by the Na-
tional Science Foundation under Cooperative Agreement IRI-
9411306. Funding for this cooperative agreement is also pro-
vided by DARPA, NASA, and the industrial partners of the
Stanford Digital Libraries Project. Any opinions, finding, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or the other sponsors.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requirea a fee
and/or special permission from the Endowment.

Example 1: Consider a World-Wide Web search en-
gine like Excite (http: //vuw. excite. corn). Given a
query consisting of a series of words, like “distributed
databases,” Excite returns the matching documents

sorted according to how well they match the query.

This way, Excite might return a given WWW page as
the top match for the query with a score of 82%, some
other page as the second top match with a score of

80%, and so on. I

Although text sources are probably the best known

example, sources with multimedia objects like im-
ages are also becoming common. Matches between
query values and objects in such sources are inherently
“fuzzy” [2]. Even sources with more “traditional” and
structured data that rank their query results are ap
pearing on the Internet. These sources rank the high-
est those objects that match the user’s specification

the best.

Proceedings of the 23rd VLDB Conference Example 2: Consider a real-estate agent that accepts

Athens, Greece, 1997 queries on the Location and Price attributes of the

196

available houses. This agent could treat query condi-

tions as if they were regular Boolean conditions. This
way, the agent (or the user) could determine an accept-

able radius around the preferred location, and an ac-
ceptable price range, and simply return all the houses
with a location and price within these limits. How-
ever, there could be too many matching houses, mak-
ing the user’s task of going over them tedious. Also,
houses with, say, a very good price but slightly out-
side of the acceptable location area might be missed.
Therefore, some on-line real-estate agents already rank
their query results (e.g., CyberHomes, at http://-

wuu . cyberhomes . corn/). Thus, the top house returned
to the user would be one that is closest to the specified
location and is relatively inexpensive. As we will see,
sources might choose to weigh these two criteria for
their rankings in different ways. I

As the popularity of this type of sources increases,
so does the number of meta-brokers. A meta-broker is
a service that receives a user query, queries several rele-
vant sources, and merges the query results into a single
query result for the user that issued the query. Such

meta-brokers also provide ranked query results. A key
problem that a meta-broker has to address is how to

extract the top matches for a query from sources that
might use widely different ranking algorithms, as the

following examples illustrate.

Example 3: A service like SavvySearch (http: //-

guaraldi . cs . colostate . edu: 2000/) queries multi-
ple WWW search engines at once, including Excite.

It then combines the results into a single ranked re-
sult. If a page p is returned only by Excite with a
score of 82%, and a page p’ is returned only by HotBot

(http: //www . hotbot . corn/) with the same score, then

both pages would be judged by SavvySearch as equally
good for the query at hand. However, Excite and Hot-
Bot may use radically different scoring algorithms, so
it is really not meaningful to merge the results based

on the source scores. 1

The solution is to have the meta-broker have its

own scoring function that it uses to rank and merge
the retrieved objects. With this scheme, each page or
object retrieved is given a new target score, regardless

of its source score, and these target scores are used to

merge the results. For this to work, the meta-broker

needs to retrieve enough information about the source
objects to evaluate its target function on them. As we
discuss in Section 4, in some cases it is not possible
to retrieve all the necessary target scoring attributes,
thus making it simply impossible to merge the results
in a reasonable way. However, even if the meta-broker

can retrieve the necessary attributes for each object,

there is still the very important problem of extracting
the right source objects, i.e., of extracting the source

objects that will yield the highest target scores, with-
out having to examine all of the source objects.

Example 4: Suppose that the score that the real-
estate agent of Example 2 assigns a house for a query
is 0.1 . I + 0.9 . p, where 1 is a number between 0 and
1 that indicates how close the house is to the target
location (higher values of 1 are better), and p is a num-
ber between 0 and 1 that indicates how close the price

of the house is to the target price (higher values of p
are better). Now, suppose that a meta-broker would
like to weigh location and price equally, and it does so
by assigning houses a score of 0.5 .I + 0.5 . p.

Suppose that a user is looking for houses with pre-
ferred location in Palo Alto and a target price of
$lOOK. Furthermore, suppose that the agent has only

one house in Palo Alto, with 1 = 1 (perfect location)

and p = 0.2 (high price). All the remaining houses
available to the agent are located in Mountain View,

with 1 = 0.6 (not as good a location) and p = 0.4
(moderate price).

Using the definitions above, the real-estate agent
would assign a score of 0.1 . 1 + 0.9.0.2 = 0.28 to the

Palo Alto house, whereas the me&broker would as-

sign such a house a higher score of 0.5 1 1 + 0.5 aO.2 =

0.6, since the meta-broker weighs location and price
equally. Also, the agent would assign a score of
0.1.0.6 + 0.9.0.4 = 0.42 to any Mountain View house,
whereas the meta-broker would assign any such house
a score of 0.5.0.6+0.5.0.4 = 0.5. Consequently, the an-

swer to the user’s query from the meta-broker should
be the Palo Alto house, because it has the highest

score for the query according to the meta-broker’s scor-

ing algorithm. However, the real-estate agent, where
the record of the Palo Alto house resides, ranks all of
the other houses, which are all Mountain View houses,

higher than the Palo Alto house, so the meta-broker
would have to retrieve all of the agent’s contents before

extracting the top house, i.e., the Palo Alto house. 1

Example 4 illustrates that it may be hard for
a meta-broker to extract the best objects from au-
tonomous sources when they use scoring functions that
are different, or even slightly different, from the target

function used by the meta-broker. This raises some

important questions. For example, for what types of
source and target scoring functions is it possible to re-
trieve results “efficiently,” without having to retrieve
full source contents? In these cases, what is the right
strategy for obtaining and ranking results? For in-
stance, given an end-user query, what types of queries,
and in what order, should we submit to the sources?

197

Also, how much does the meta-broker need to know

about the source scoring function? Turning to a neg-
ative scenario, are there “uncooperative” source scor-

ing functions for which there is no strategy whatsoever
that avoids an “exhaustive” full retrieval of the source
contents?

In this paper we address these and other related
questions. We start by proposing an Internet search-
ing and ranking model (Section 2). Within this model,
we then precisely characterize the classes of source and

target functions that make retrieval “efficient” or “ex-
haustive” (Section 5). In the former case, we present

an algorithm for searching sources and finding the top-
ranking objects according to the meta-broker’s target
function (Section 3). We also describe variations to
our model, and their impact on search and ranking

(Section 4).

Our goal in this paper is to explore the fundamen-
tal complexity and limitations of meta-brokers. We be-

lieve that our results can guide implementors of search
engines, making it clear what scoring functions may

make it hard for a client meta-broker to merge infor-
mation properly, and making it clear how much the
meta-broker needs to know about the scoring function.

This last point is important since typically search en-

gine builders wish to keep their scoring function secret

because it is one of the things that differentiates them

from other sources. At the meta-broker end, we be-
lieve that our results can also be helpful in the design
of the target scoring function, and in distinguishing
cases where merging results is meaningful and cases
where it is not.

2 Our search model

The previous section presented examples of sources
and meta-brokers, and illustrated the problems that

meta-brokers face when querying autonomous sources.

In this section we define our searching model more pre-
cisely, and revisit the real-estate agent example in light

of the new definitions.
A source S contains a single relation Rs with at-

tributes AI, . . . , A,. S accepts queries over Rs. A
query over S simply specifies target values for some of

the attributes of Rs. Thus, a query Q is an assignment
of values 2)1, . . . , V, to the attributes AI,. . . , A, of Rs.
Some of the vi values might be don’t care values (noted
“*“). The rest of the vi values are the significant values

in the query.

Given a query, source S responds with the ob-
jects (i.e., tuples) of Rs that “best match” the query
values [3]. The query results contain the values for

AI,..., A, for every object returned. (In Section 4 we
discuss sources for which this property does not hold.)

Property 1: Information in query results: The

record for an object t in the quey results returned by a

source S contains all the oalues t[l], . . .,t[n] for the
attributes AI,. . . ,A, that can be used to formulate
queries over S.

Each object t in the result for query Q is ranked ac-
cording to the source score Source(S, Q, t) that source
S computes for Q and t. These scores range from 0 to

1. Since sources are autonomous, these scores could be
computed in a completely arbitrary way. However, we
expect them to be a function of the significant values
of Q, as discussed below.

Example 5: Consider the real-estate agent S of Ex-
ample 4, with relation Rs(Location, Price). As men-

tioned above, a query to this agent may specify a
target location L = Palo Alto and some target price

P = $lOOK, for example. In other words, such a query
Q=(L,P) k f h as s or ouses located close to Palo Alto,
and with a price not too much higher or lower than

$lOOK.
The answers that the agent gives the user are the

objects of RS ranked according to S’s source score

for Q ‘. This source score is arbitrary, as mentioned

above. For example,

{

1 ifP=*
Source(S, (L, P), t) = p ifL=*

0.1 . 1 + 0.9 . p otherwise

where 1 is some number between 0 and 1 that is in-
versely proportional to the distance between t and the
preferred location L, and p is some number between
0 and 1 that is inversely proportional to the distance
between the price oft and P, as mentioned above. 1

A meta-broker receives a user query Q and returns
the top objects for Q that appear in any of the avail-

able sources, according to the target score. The target

score Target(Q, t) for query Q and object t is some
known function of the significant values in Q. The

values of Target range from 0 to 1.

Example 5: (cod .) Continuing with the example

above, we can define:

1

1 ifP=*

Target((L,P),t) = P ifL=*
0.5 .I + 0.5 . p otherwise

Consequently, Target is quite similar to Source: these
two functions just differ in the weight that they assign
to each of the two query attributes when they are both

significant. I

11n the remainder of the paper, we refer to both source S
and its relation Rs as source S, for simplicity.

198

To extract the objects for a query Q with the high-
est Target scores (i.e., the top Target objects), a meta-
broker queries multiple sources that hold different in-

stances of the same relation R and that use different
source score functions. The meta-broker extracts from
each source S all of the objects t with Source(S, Q, t) 2
g, for some score 0 5 g 5 1. (We will discuss how to
find g in Section 3.) The meta-broker then computes
the Target score of these objects without accessing the
objects themselves, using the attribute values returned
in the query results (Property 1). Finally, the meta-
broker returns the top Target objects for the query.

Example 5 : (cont.) Consider the top result that
source S returns for the query Q above:

Location: Mountain View; Price: $150K;

Source score: 0.42

The meta-broker can then simply discard the Source

score for this house, and compute the Target score us-

ing its own algorithm. The meta-broker does this for
all of the objects extracted from the sources, and re-
turns the objects with the highest Target scores. m

The Source and Target scores for a query may vary

widely, as we have seen. The following definition cap
tures those Source scores that are reasonably close to a
given Target score. This definition will be useful later
to characterize the sources for which we can extract

the top Target objects efficiently.

Definition 1: A query Q is manageable at source S
ij there is a constant 0 < e < 1 such that

Source(S, Q, t) 2 Target(Q, t) - E

for all possible objects t. In other words, a query is

manageable at a source if the Source scores for this

query are not too much lower than the corresponding
Target scores.

Example 6: A query Q for the real-estate agent spec-

ifying both a Location and a Price is manageable at S
for the Target and Source scores defined in Example 5.
In effect, we can take e = 0.4:

Target(Q, t) - E = 0.5 .I + 0.5 . p - 0.4

= 0.1~1+0.4*(1-1)+0.5.p

5 0.1~1+0.9~p=Source(S,Q,t)

I

Example 7: Consider the following Target score for

the real-estate scenario:

ifP=*
ifL=*
otherwise

and the following Source score:

{

1 ifP=*

Source(S, (L, P), t) = p ifL=*

min{l, PI otherwise

Then, a query Q specifying both a Location and a Price
is not manageable at S, if 1 and p can assume arbitrary
values between 0 and 1. In effect, consider an object t
with 1 = 1 and p = 0. (Such a house has a perfect loca-
tion according to the user’s specification, but an exor-
bitant price.) Then, Source(S, Q, t) = min{ 1,O) = 0 <
Target(Q,t) - e = max{l,O}-e=l-e,VO<e<l.
Consequently, there is no value of E that will satisfy
the condition in Definition 1.

Intuitively, Q is not manageable at S because top
objects far Target cm have arbitrarily low scores for

Source. Therefore, we would have to retrieve all of the
objects in S to find the top objects for Target, and this
is exactly what we are trying to avoid. I

Source S is autonomous, and the meta-broker might
not know S’s Source function. However, in this sec-
tion we assume that the meta-broker knows whether

a query Q is manageable at S. (Section 4 relaxes this

property and considers sources where it does not hold.)

Property 2: Information about source manage-

ability: Given a query Q and a source S, the meta-
broker knows whether Q is manageable at S. Further-
more, in case it is, the meta-broker knows a value for

E as in the definition of manageability (Definition 1).

Defkhian 2 Let Q be a query with a significant value

vj for attribute Aj. Then, the single-attribute query

Qj for Q and Aj is the query that results from Q by
setting the value for vi to “*” (“don’t care”) for all
i # j.

To deal with sources like the one in Example 7, we
introduce the notion of a cover for a query 2:

Definition 3: A set of single-attribute queries over
different attributes C = {Ql, . . . , Qm} is a cover for a

weryQ ifgOIg1,. . . , gm, G < 1 such that V object t:

Target(Qi,t) 5 gi, i = 1,. . ., m + Target(Q, t) 5 G

Intuitively, we will later use the single-attribute

queries in a cover to extract a set of objects from

a source that includes the top Target objects. This
way, we will be able to work with sources at which a
given query is not manageable (Example 7), or that
would otherwise require potentially inefficient execu-

tions (Example 5).

2The notion of cover is related to that of a complete set of
atomic conditions in [4]. (See Section 6.)

199

Example 8: Let &I be the single-attribute query for
Q and the Location attribute, and Q2 be the single-
attribute query for Q and the Price attribute. Con-
sider the Target and Source scores of Example 5. Then,
the set (91) is a cover for Q. In effect, for any

0 5 g < 1, we can define G = 0.5 . (g + 1). Thus,
if an object t is such that Target(Q1, t) < g, then
Target(Q,t) 2 0.5 . g + 0.5 f p 5 0.5 . (g + 1) = G.
Similarly, the sets { Qz} and {&I, Qz} are also covers
for Q. I

Example 9: Consider Example 7, using the min and
max functions for Source and Target, respectively. The

set {Ql} is not a cover for Q. In effect, an object t with
Target(Q1,t) = 0 might still have Target(Qz,t) = 1,

making Target(Q, t) = max{O, 1) = 1. Therefore, for
no G < 1 will the definition of cover hold. Similarly,
{&2} is not a cover for Q. However, {Q~,&z} is a
cover. 1

The main property of sources that we investigate in

the rest of the paper is defined next. As we will see, if

a source satisfies this property for a query, then there

are cases where we do not need to extract the entire
contents of the source to find the top Target objects for
the query. Furthermore, we will show that if a source

does not satisfy this property, then we always need to
extract its entire contents.

Definition 4: A source S is tractable for a query Q
if there is a cover C for Q that consists only of queries

that are manageable at 5’ (i.e., if there is a manageable

cover for Q at S, in short).

Example 9: (cont.) Although Q is not manageable
at source S, as shown above, there is a manageable
cover for it, namely {&I, Qz}. (Qi is manageable at

S because Target(Qi, t) = Source(S, Qi, t) V object t,

i = 1,2.) Therefore, S is tractable for Q. 1

3 Extracting top objects from a
tractable source

In this section we present an algorithm to extract the
top Target objects for a query from a tractable source.

Since we will deal with a single source, and to sim-
plify our notation, we sometimes omit mentioning the

source explicitly. For example, we use Source(Q, t) as

shorthand for Source(S, Q, t).
Consider a query Q and a source S that is tractable

for Q. The algorithm in Figure 1, which we refer to as
Top, extracts the top Target objects for Q from S 3.

3 Algorithm Top reduces the problem of finding the top ‘Earget
objects for Q in S to the problem of finding all objects t in S
with Target(Q, t) > G, for some G. [4] uses a similar strategy
for processing queries over a multimedia repository.

Example 10 : Consider the real-estate agent and

the scenario of Example 5. Then, Algorithm Top
can choose {Ql, 92) as the cover for query Q (Step

(1)). Since Target and Source agree on single-attribute
queries, it follows that ~1 = ~2 = 0 (Steps (2) and (3)).
We can use any 0 5 91, g2 < 1 and G = 0.5 . (91 + 92)
in the definition of cover (Definition 3). Suppose
that Algorithm Top then picks, say, g1 = g2 = 0.8
with G = 0.8 (Step (4)). Then, the algorithm re-
trieves from S all objects t with Source(Ql, t) 2 0.8 or

Source(Q2,t) 2 0.8 (Steps (5) and (6)). There is only
one such house, the Palo Alto house, that matches the

first condition, and no house that matches the second
condition.

At this point, the algorithm has extracted all ob-
jects t with Target(Ql,t) > 0.8 + ~1 = 0.8 or with

Target(Qz,t) 1 0.8+ 62, because &I and Q2 are man-
ageable for S (see below). If a house t has not been
retrieved, then Target(Q1, t) < 0.8 and Target(Q2, t) <
0.8. Because {Ql, Q2) is a cover, then Target(Q,t) 5
G = 0.8. The Target score for Q for the Palo Alto

house is 0.6 5 0.8 (Step (7)), as discussed above. Con-

sequently, the algorithm goes to Step (11) and lowers
g1 to, say, 0.7, and g2 to, say, 0.45, assuming 6 = 0.1,
for example.

No new objects are retrieved in Steps (5) and (6),
since all of the Mountain View houses have a Source

score for &I of 0.6 (2 g1 = 0.7) and a Source score
for Q2 of 0.4 (2f g2 = 0.45). The Palo Alto house is
retrieved again, of course. Since G for g1 and g2 is
now 0.575, which is less than 0.6, the Target score for

the Palo Alto house for Q, then the algorithm stops
(Step (14)) and t re urns the object with the highest
score found so far, i.e., the Palo Alto house. I

Theorem 1: Let Q be a query and S a source that is

tmctable for Q. Then, Algorithm Top extmcts the top

Target objects for Q from S. [5]

Consider a source S that is tractable for a query
Q. We cannot guarantee that Algorithm Top never
extracts all the objects in S. As a trivial example,
consider the case when there is only one object t in
S, and t is such that Target(Q, t) = 1. The algorithm

then necessarily extracts all the objects in S, namely,
object t.

Nevertheless, in many cases Algorithm Top is much

more efficient than this. In particular, if Q has a man-
ageable cover with high associated gi values (Defini-
tion 3) and low associated ei values (Definition l), then
the algorithm might stop after examining just a few of
the objects in S. Furthermore, as the following theo-
rem shows, we can always define the contents of S in
such a way that the algorithm stops without retrieving
all of these objects from S.

Algorithm 1 Top
Input: A query Q and a source S that is tractable for Q.
Method:
(1) Pick a manageable cover C = {Ql, . . . , Q,,,} for Q at S.

(2) for i = 1 to m
(3) Define ei for Qi as in Definition 1.

(4) PickOIgl,...,g,, G < 1 for cover C as in Definition 3.
(5) for i = 1 to m
(6) Retrieve all objects t with Source(Qi, t) > Gi i gi - ei.

(7) Compute Target(Q, t) for all objects t retrieved.
(8) if 3i such that Gi 5 0 then

/* We have retrieved all objects in S */

(9) Go to Step (14).
(lO)if Vt retrieved, Z’arget(Q, t) 5 G then

(11) FindnewO5g:,...,gA,G’<lforC

as in Definition 3 such that:

*g:<giVi=l,...,m.

* 3j such that either g: = 0 or gi 5 gj - 6, for some

arbitrary, predefined constant 6 > 0.

(12) Replace gi by g,! (i = 1, . . . , m) and G by G’.

(13) Go to Step (5).

(14)Output those objects retrieved that have the highest Target score.

Figure 1: Algorithm to retrieve the top Target objects for a query from a tractable source.
Theorem 2: Let & be a query and S a source that Property 1: Information in query results

is tmctable for Q. Assume that there is a manageable

cover C = (91,. . . , Q,,,} for Q such that gi - ei > 0

vi = l,..., m (ei and gi are as in Definitions 1 and

3, respectively). Then, there exist instances of S where
Algorithm Top finds the top Target objects for Q before
extmcting all of the objects in S. [5]

Theorem 2 shows that source tractability, together
with the assumption in the theorem that Vi, gi-ei > 0,
form a suficient condition for being able to sometimes

extract a top Target object from a source without ac-

cessing all of its objects. As we will see in Section 5,

source tractability is also a necessary condition: if a

source is not tractable for a query, we must always ac-
cess all of its contents to extract the top Target objects

for the query.

4 Varying source types

Section 3 presented an algorithm to extract top objects
from sources that satisfied a number of properties.

However, the sources that a meta-broker has to deal
with are intrinsically autonomous and heterogeneous.

Some sources reveal how they process queries, while
others conceal this. Some sources return quite com-
plete information together with their query results,
while others just provide quite basic data. In this sec-

tion we revisit the properties of Section 3 and see in
what cases we can adapt Algorithm Top for sources
where these properties do not hold.

Algorithm Top requires that sources return the val-

ues of the objects for those attributes with significant

values in a query. In effect, Step (7) of the algorithm
computes the Targetscores for the objects retrieved us-

ing these values. However, some sources might return
just object ids, or just a few of these attribute values
in the query results. In such a case, a possibility for

Algorithm Top is to access each object retrieved in its
entirety to obtain all the information needed for the

Target scores, which could be quite time consuming.

Alternatively, if the meta-broker knows how to map
Source scores into Target scores for single-attribute

queries (like in the real-estate agent scenario of Exam-

ple 5), then it might compute the Target scores for the
original query without accessing the actual attribute

values for each object. This requires, of course, that
the sources report their Source scores. If these scores
are not available, then the meta-broker needs the at-

tribute values.

Property 2: Information about source manage-

ability

Algorithm Top requires that a meta-broker know what
single-attribute queries are manageable at a source.
Furthermore, a meta-broker needs to know the 6 val-
ues (Definition 1) that bound how much lower than
the Target scores the Source scores might be (Steps
(2) and (3)). All this information can be derived
from the Source scoring function of a source. Unfortu-

201

nately, this function might not be publicly known, as

the sources view it as their competitive advantage.

If the Source function for a source is not known,
and Property 2 does not hold either (i.e., the meta-
broker does not know whether an attribute is manage-
able or not, or the E values), then a meta-broker can
only try to guess all this information by issuing sample
queries to the sources. However, whatever conclusion
the meta-broker draws about a Source function would

only be a statistical guess, since there is no way to
guarantee (unless more information is available) that
the corresponding source would not behave differently
in the future, for example. Thus, users would still get
ranked query results from the meta-broker, but they
should be warned that high ranking objects might be
missing from these results.

Example 11: Consider the real-estate agent of Ex-
ample 5. Suppose that a meta-broker does not know
whether a single-attribute query on Location is man-
ageable at the source. Suppose that the meta-broker,
off-line, issued a series of single-attribute queries

on Location to the source and computed, for each
such query Li, ei = maxt retrieved{ Target(Li, t) -
Source(Li, t)}. Based on the ei values retrieved, the

meta-broker might then decide that indeed such single-
attribute queries are always manageable at the source,
with associated E = max{O,maxi{ei}}. In particular,
in our real-estate scenario, e would be determined to
be zero, which is the right decision. 1

To proceed as in the example above, a meta-broker
needs the Source scores for each object retrieved. If a
source does not even report these scores, then a meta-
broker would have to resort to other forms of “guess-

ing” for the E values.

Other implicit properties of the source behavior

Algorithm Top asks sources for all objects with Source

score Gi or higher for a single-attribute query and for

arbitrary values of Gi (Steps (5) and (6)). However,
a source interface might fail to allow this in several

ways.

First, a source might not accept a single-attribute

query for a particular attribute. For example, the real-

estate agent of Example 5 might not accept queries

that specify a target Price but not a target Location.
In this case, we can redefine cover (Definition 3) to
allow for multiple-attribute queries.

Example 12: Consider a source S and a query &
over attributes Al, AZ, and A3. Suppose that S does
not accept single-attribute queries on Al. However,

S accepts multi-attribute query Qi,s, which is the re-

striction of Q to A1 and Aa, and S also accepts single-
attribute query Qs. Assume that 30 2 g1,2, gs, G < 1

such that V object t, if Target(Ql,z,t) 5 g1,2 and
Target(Q3, t) 5 ga then Tcwget(Q, t) 5 G. Then,
C = {Qr,s, Qa} is a cover for Q if we now allow multi-
attribute queries like Qi,z in a cover. 1

Thus, if we can find a manageable cover using
multiple-attribute queries, then Algorithm Top might
proceed as before. Otherwise, the meta-broker will
not be able to extract the top Target objects from the
source (Section 5).

As a second problem that a meta-broker might have
with a source, the source might only return the top ob-

jects for a query, without including the Source scores
for the objects returned. In such a case, a meta-broker

does not know if it has retrieved all the objects with a
Source score of at least Gi or not, and Step (6) needs
this information. Unfortunately, the definition of man-

ageability does not allow us to infer much about the
Source score of an object given its Target score. For
example, consider a source that assigns most objects

a Source score of 1 for a given query. Then, the top k
Source objects for that query might not include any of

the top Target objects. Therefore, to work with such a
source a meta-broker would need to know some bound
on how different the Source and Target scores might
be.

Finally, a source might always return a fixed max-
imum of, say, 200 objects per query, for efficiency
reasons or to prevent users from downloading all the

source’s valuable contents, for example. In such a
case, a meta-broker that wants all objects t with

Source(Qi, t) 2 Gi might retrieve only those objects
with Soume(Qi, t) 2 G:, for some higher G:. If these
higher values (and their associated G’, as in Defini-

tion 3) are not low enough to make the condition in
Step (10) false, then the meta-broker cannot guaran-

tee that it has obtained the top Target objects from
the source, and will have to return only approximate

results.
In summary, ranking objects from autonomous

sources is a difficult problem. For Algorithm Top
to work, the sources need to provide a query inter-
face that permits “powerful enough” searches based
on scores, and the sources must return “sufficient” in-

formation on the matching objects so that the meta-

broker can compute its Target scores. Finally, the

meta-broker needs to know some “fundamental prop
erties” of the source scoring functions.

Given all that is needed by our algorithm, one may
wonder if there could be some other algorithms that
require less source functionality or less knowledge of
the sources. In the next section, we show how under

202

some very broad assumptions, essentially there is no

algorithm that can rank results in a meaningful way
for a source that is not tractable for a given query.

5 Source tractability as a necessary
condition

In this section, we will see that if our source is not
tractable, then any strategy to extract the top Target

objects from the source using single-attribute queries
must always retrieve all the objects. To prove this,
we need to make some assumptions about Source and
Target scoring functions. We believe that these as-
sumptions are not restrictive, and all reasonable scor-
ing functions that we can think of meet these criteria.

These assumptions are in addition to the properties in
Section 3.

Our first assumption about the Source scores for a
query is that these scores can take values ranging all
the way from 0 to 1. Using this assumption we rule
out “constant” Source score functions, for example.

Assumption 1: Variability of Source: Let & be a

query. Then, 31, t2 objects such that Source(&, tl) =

0 and Source(&, t2) = 1.

Our second assumption affects both the Target and

Source scores for a query Q. In essence, these scores
must only depend on the attributes corresponding to
the significant values in Q. Thus, the attribute values

for “don’t care” attributes are irrelevant for Target and

Source.

Assumption 2: Locality of Source and Target:

Let Q be a query and Al, . . . , A,,, the attributes with

significant values in Q. Let t and t’ be two objects

such that t[AJ = t’[Ai] for i = 1,. . . , m (i.e., t

and t’ agree on all the significant attributes in Q).

Then, Target(Q, t) = Target(Q, t’) and Source(Q, t) =

Source(Q, t’).

Our final assumption affects the Target scores for a

query Q, and is related to Assumption 2. If we “im-
prove” an object t for Q by changing its value for Aj

so that it is better for Qj, for some j, then Target(Q, t)

should not decrease. Also, this assumption bounds the
effect of a change in Target(Qj, t) over Target(Q, t).

Assumption 3: Monotonicity of Target: Let Q

be a query and Al, . . . , A,,, the attributes with signif-

icant values in Q. Let t and t’ be two objects such

that t[Ai] = t’[Ai] for i = 1,. . . , m, i # j for some

j. Also, Target(Qj, t) 1 Target(Qj, t’) - 6, for some

6 2 0. Then, Target(Q, t) 1 Target(Q, t’) - 6.

Next, we define the class of executions for a query Q

that we analyze in this section. In short, these execu-
tions follow the methodology of Algorithm Top in that

they query the source using single-attribute queries
for Q, until they have obtained “enough” objects and,
hopefully, the top Target objects for Q. These execu-
tions decide when they have retrieved enough objects
based only on the objects that they retrieve. They do
not, for example, have any “magic” information about
the unseen contents of the source.

Definition 5: Let S be a source, Q a query, and C =

(91,. . . , Q,,,} a set of single-attribute queries for Q.

Then, a partial retrieval for Q and S using C is a

set of objects {t E S]Source(Qi, t) > gi, for some i =

1 , . . . , m}, with 0 < gi < 1, i = 1,. . . , m 4. The gi

values are determined based on the objects retrieved,

and not on the rest of the source contents.

To prove the main result of this section, we first
need the following lemma, which identifies a condition
that implies manageability.

Lemma 1: Let Q be a query and S a source for
which 30 < x 5 y < 1 such that V object t, either

Source(Q, t) > x or Target(Q, t) < y. Then, Q is

manageable at source S. [5]

We are now ready for our main result. Consider
a partial retrieval for a query Q and a source S that
is not tractable for Q and that has no objects with a

Target score of 1. The following theorem shows that
such a partial retrieval might miss objects that are

better than any object retrieved. In fact, we can al-
ways build better objects and “include” them in the
source. These objects would not be retrieved, because
the execution that built the partial retrieval at hand
would see exactly the same top Source objects for each
single-attribute query. Thus, this execution would

stop at exactly the same point as before for each of

the single-attribute queries (Definition 5), hence miss-
ing the (new) top Target objects. Consequently, such
a partial retrieval might always be incorrect, leaving
no alternative but to extract the entire source contents

to obtain the top Target objects for Q.

Theorem 3 : Consider a query Q and a minimal

cover C = {Ql, . . . , Q,,,}. for Q. Assume that 3j

such that Qj is not manageable at source S, and Qi

is manageable at source S, Vi # j. Consider a par-

tial retrieval for Q and S using C, and let G =

maxt retieved{ Target(Q, t)}. Assume that G < 1.

4This definition excludes executions that request all objects

with a non-zero Source score for Qi, since gi has to be greater
than zero. However, this is not a limitation for most sources,

where Source scores have finite precision.

203

Then, we can build an object 1 not in the partial re-
trieval such that Target(Q, I) > G.

Proof: Let 0 < g; < 1, i = 1,. . . , m, be the values
used by the partial retrieval for Q and S using C (Def-

inition 5). For every i # j, pick an object tj such that
Source(Qi, ti) 5 gi. (Such objects exist from Assump-

tion 1.) From the choice of ti and the definition of
partial retrieval, it follows that ti is not retrieved by
query Qi. Let ai = Target(Qi, ti) (0 5 ai 5 1).

From the minimality of C it follows that C - {Qj}
is not a cover for Q. Then, there is an object le such
that Target(Qi, le) 5 ai Vi # j and Target(Q,lo) >
G. Otherwise, C - {Qj} would be a cover for Q. (If
m = 1, just pick any object Ze with Target(Q,lo) >
G.) Furthermore, Target(Q;, lo) 5 ai = Target(Qi, ti)

Vi # j.
We now build an object 11 using the tis and 10:

Zl[i] =
1

ti[i] ifi= l,...,m,i#j
Ie [i] otherwise

From the choice of Ii it follows that:

i = l,...,m, i # j: Target(Qi, II) =

Target(Q;, ti), because Zr [i] = ti[i] and using As-

sumption 2. Furthermore, Target(Qi, ti) = ai 2

Tawt(Qi, lo).

Otherwise: Target(Qi, 11) = Target(Qi, lo), be-
cause Il[i] = Zo[i] and using Assumption 2.

Then, Target(Qi,Zl) 1 Target(Qi,la), Vi. Hence,
from Assumption 3, it follows that Z’arget(Q,ir) 1
Target(Q,lo) > G. Also, for i = 1,. . .,m, i # j,

Source(Qi, II) = Source(Qi, ti) 5 gi. Hence Ir is not
retrieved by any of the Qi queries, i # j.

Next, we build another object 1s. We will use Ii
and /2 to construct the final object I that we need for
our proof. Let 0 < 6 < Target(Q,II) - G. Now, let
2 = gj and y = max{t, Target(Qj,ll) - 6). (Then,

0 < t 5 Y < 1.) Since Qj is not manageable at

S, from Lemma 1 it follows that there is an object
12 such that Source(Qj, 12) < z and Target(Qj, 12) 1

9. Then, Soume(Qj, /2) 5 gj and Target(Qj, 12) 1
Target(Qj, 61) - 6.

Finally, let us define object I by letting l[i] = ll[i]

Vi # j and @] = Izlj]. Then,

l i # j: Target(Qi,l) = Target(Qi,II).

l Otherwise: Target(Qj,O = Target(Qj,h) 1
Target(Qj, II) - 6.

Then, from Assumption 3 it follows that Target(Q, 1) 2
Target(Q, II) - 6 > Target(Q, iI) - Target(Q, 11) + G =
G. Also,

l i = l,..., m, i # j: Source(Qi , 1) =

Source(Qi, Ii) 5 gi.

l Otherwise: Source(Qj, I) = Source(Qj, 12) 5 gj.

Thus, we have constructed an object 1 that satisfies
the conditions in the theorem. I

Corollary 1: Let C = {&I,. . . , Qm} be a (not nec-
essarily minimal) cover for the query Q of Theorem 3
such that it does not contain any manageable cover for
Q. Then, we can still build an object 1 as in Theorem 3
for any partial retrieval for Q and S using C. [5]

Note that the main results of this section only cover
algorithms that work via multiple single-attribute
queries, We believe that this is not a restriction for
most sources, since we expect the Source scores to

match the Target scores for single-attribute queries
more often than for multi-attribute queries.

6 Related work

The problem of merging document ranks from mul-
tiple sources has received recent attention in the in-
formation retrieval field, where it is often referred to

as the collection fusion problem. Given a query, the

goal is to extract as many of the relevant documents
as possible from the underlying document collections.
As with our problem, key decisions include how far
“down” each document rank to explore, and how to
translate Source scores (local similarity measures) into
Target scores (usually global similarity measures). An

approach to address these problems is to learn from

the results of training queries [S]. Another approach
is to calibrate the document scores from each collec-
tion using statistics about the word distribution in the
collections [7]. One important difference between this
line of work and ours is that we want to guarantee that
meta-brokers extract the top Target objects from the
sources and return these objects ordered according to
their Targetscores. In contrast, the work on the collec-

tion fusion problem develops heuristics or techniques
for placing relevant documents (a subjective notion) as

high as possible in the combined document ranks for a
query, sometimes using the Source scores as indicators

of relevance.

For document collections, it is particularly hard to

compute the Target score for a document from the

query results that are typically returned by text search
engines. In effect, these results do not include en-
tire documents, and have very little information other
than the Source scores. To address this problem,

the STARTS protocol proposal [S] developed at Stan-
ford specifies what information should accompany the

204

query results that a text search engine returns so that
document rank merging is facilitated.

A closely related problem is how to query a repos-

itory of complex, multimedia objects. These objects
might have attributes like images and text. Thus, the
matches between query values and such multimedia
attributes are inherently fuzzy, and the objects are
ranked according to how well they match the query
values. The work in [3] and [4] studies how to query
such repositories efficiently. In particular, [3] stud-
ies upper and lower bounds on the number of objects
that we need to extract from a repository so that the
overall top objects are retrieved and returned to the
user that issued a query. [4] addresses the cost-based
optimization of queries over such repositories. This
work assumes that a single repository handles all at-
tributes of an object. Therefore, there is no need to
“calibrate” the scores that an object gets for a par-
ticular attribute, for example. Using our terminology,

all single-attribute queries are manageable with t = 0.
(See Section 7 for further discussion.)

Finally, there has been a significant amount of work
on querying multiple heterogeneous sources. In this
paper, we assume that all sources export a uniform

interface so they can all answer queries over the same
set of attributes. We can use the techniques in [9, lo],
for example, to build wrappers around the sources and
provide the illusion of such a uniform interface.

7 Conclusion

Many sources rank the objects in query results accord-

ing to how well these objects match the original query.
In this environment, meta-brokers usually query mul-

tiple autonomous, heterogeneous sources that might
use varying result-ranking strategies. In this paper we

have studied two crucial problems that a meta-broker

faces: guaranteeing that it has extracted all the top ob-

jects for a user query from the underlying sources, and

re-ranking these objects according to its own criterion.
These are difficult problems, and the goal of this pa-
per is to characterize the sources where we have some

hope of dealing with these problems efficiently. We
have-presented necessary properties that any source

should satisfy, under broad assumptions. If a source
does not verify these properties, then a meta-broker
might miss top objects from the source, unless all of
the source’s contents are retrieved. We have also de-

scribed a simple algorithm to extract the top objects

from a source where our properties hold.

The results in this paper, and Algorithm Top in

particular, do not guarantee efficient executions. In

effect, Algorithm Top might retrieve large portions of
a source when searching for top Target objects. An in-
teresting open issue is then the optimization of queries

over multiple sources, perhaps using statistics on the

sources’ contents to obtain small Ei and large gi val-
ues, for example. A promising direction is to adapt the

work in [3] and [4] to our distributed, heterogeneous
scenario. Another interesting issue is how to deal with
sources that do not satisfy the properties and assump-
tions that our results need. We touched on this issue
in Section 4, but we need to explore further, for ex-
ample, how to deal with sources that return no more

than, say, 200 objects per query. These characteris-
tics also impact the optimization of queries over these

sources.

References

PI

PI

[31

[41

[51

[61

PI

PI

PI

PO1

Gerard .%&on. Automatic text processing: the trans-

formation, analysis, and retrieval of information by
computer. Addison Wesley, 1989.

W. Niblack, R. Barber, W. Equitz, M. Flickner,

E. Glasman, D. Petkovic, P. Yanker, and C. Faloutsos.
The QBIC project: Querying images by content us-
ing color, texture, and shape. In Storage and retrieval

for image and video databases (SPIE), pages 173-187,

February 1993.

Ronald Fagin. Combining fuzzy information from mul-
tiple systems. In 15th ACM Symposium on Principles

of Database Systems, June 1996.

Surajit Chaudhuri and Luis Gravano. Optimizing

queries over multimedia repositories. In Proceedings
of the 1996 ACM SIGMOD Conference, 1996.

Luis Gravano and HCctor Garcia-Molina. Merging
ranks from heterogeneous Internet sources. Techni-
cal Report SIDL-WP-1997-0063, Stanford University,

February 1997. Accessible as http : //wvw-diglib. -
stanford.edu/cgi-bin/WP/get/SIDL-UP-1997-0063.

Ellen M. Voorhees, Narendra K. Gupta, and Ben
Johnson-Laird. The collection fusion problem. In Pro-

ceedings of the 3Pd Text Retrieval Conference (TREC-

31, 1995.

James P. CaIIan, Zhihong Lu, and W. Bruce Croft.

Searching distributed collections with inference net-
works. In Proceedings of the 18th Annual SIGIR Con-

ference, 1995.

Luis Gravano, Chen-Chuan K. Chang, Hkctor Garcia-
MoIina, and Andreas Paepcke. STARTS: Stanford

proposal for Internet meta-searching. In Proceedings

of the 1997 ACM SIGMOD Conference, May 1997.

J.-C. Franchitti and R. King. AmaIgame: a tool

for creating interoperating persistent, heterogeneous

components. In Advanced Database Systems, pages

313-36. Springer-Verlag, 1993.

Yannis Papakonstantinou, Hector Garcia-Molina,
Ashish Gupta, and Jeffrey UIIman. A query trans-

lation scheme for rapid implementation of wrappers.

In Fourth International Conference on Deductive and

Object-Oriented Databases, pages 161-186, National

University of Singapore(NUS), Singapore, 1995.

205

