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Let G be a graph with adjacency matrix A (G), and let D (G) be the diagonal
matrix of the degrees of G. The signless Laplacian Q (G) of G is defined as
Q (G) := A (G) +D (G). Cvetković called the study of the adjacency matrix
the A-spectral theory, and the study of the signless Laplacian–the Q-spectral
theory. To track the gradual change of A (G) into Q (G), in this paper it
is suggested to study the convex linear combinations Aα (G) of A (G) and
D (G) defined by

Aα (G) := αD (G) + (1− α)A (G) , 0 ≤ α ≤ 1.

This study sheds new light on A (G) and Q (G), and yields, in particular, a

novel spectral Turán theorem. A number of open problems are discussed.

1. INTRODUCTION

Let G be a graph with adjacency matrix A (G), and let D (G) be the diagonal
matrix of the degrees of G. In this paper we study hybrids of A (G) and D (G)
similar to the signless Laplacian Q (G) := A (G) + D (G), which has been put
forth by Cvetković in [5] and extensively studied since then. For detailed coverage
of this research see [7],[8],[9],[4], and their references. The study of Q (G) has
shown that it is a remarkable matrix, unique in many respects. Yet, Q (G) is just
the sum of A (G) and D (G), and the study of Q (G) has uncovered both similarities
and differences between Q (G) and A (G). To understand to what extent each of
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the summands A (G) and D (G) determines the properties of Q (G), we propose to
study the convex combinations Aα (G) of A (G) and D (G) defined by

(1) Aα (G) := αD (G) + (1− α)A (G) , 0 ≤ α ≤ 1.

Many facts suggest that the study of the family Aα (G) is long due. To begin with,
obviously,

A (G) = A0 (G) , D (G) = A1 (G) , and Q (G) = 2A1/2 (G) .

Since A1/2 (G) is essentially equivalent to Q (G), in this paper we take A1/2 (G) as
an exact substitute for Q (G). With this caveat, one sees that Aα (G) seamlessly
joins A (G) to D (G), with Q (G) being right in the middle of the range. In this
setup, the matrices A (G), Q (G), and D (G) can be seen in a new light, and many
interesting problems arise. In particular, we are compelled to investigate the hith-
erto uncharted territory α > 1/2, which holds some surprises, e.g., a novel version
of the spectral Turán theorem (see Theorem 27 below).

Let us note the crucial identity

(2) Aα (G)−Aβ (G) = (α− β)L (G) ,

where L (G) is the well-studied Laplacian of G, defined as L (G) := D (G)−A (G).
This neat relation corroborates the soundness of definition (1).

It is worth pointing out that the family Aα (G) is just a small subset of the
generalized adjacency matrices defined in [10] and the universal adjacency matrices
defined in [17]. However, our restricted definition allows to prove stronger theorems,
which are likely to fail for those more general classes.

The rest of the paper is structured as follows. In the next section we introduce
some notation and recall basic facts about spectra of matrices. In Section 3 we
present a few general results about the matrices Aα (G). Section 4 deals with the
largest eigenvalue of Aα (G). Section 5 is dedicated to spectral extremal problems,
which are at the heart of spectral graph theory. A miscellany of topics are covered
in Section 6. Finally, in Section 7, we calculate the Aα-spectra of some specific
graphs.

2. NOTATION AND PRELIMINARIES

Let [n] := {1, . . . , n} . Given a real symmetric matrix M, write λk (M) for
the kth largest eigenvalue of M. For short, we write λ (M) and λmin (M) for the
largest and the smallest eigenvalues of M.

Given a graph G, we write:

- V (G) and E(G) for the sets of vertices and edges of G, and v (G) for |V (G)|;
- ΓG (u) for the set of neighbors of a vertex u, and dG (u) for |ΓG (u)| ;
- δ (G) and ∆ (G) for the minimum and maximum degree of G;
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- wG (u) for the number of walks of length 2 starting with the vertex u, i.e.,
wG (u) =

∑

{u,v}∈E(G) dG (v);

- G [X] for the subgraph of G induced by a set X ⊂ V (G);

- e(X) for number of edges of G [X];

- e (X,Y ) for the number of edges between two disjoint sets X ⊂ V (G) and
Y ⊂ V (G);

- G−X for the graph obtained by deleting the vertices of a set X ⊂ V (G).

In the above notation the subscript G will be omitted if G is understood.

A coclique of G is an edgeless induced subgraph of G. Further, Kn stands for
the complete graph of order n, and Ka,b stands for the complete bipartite graph
with partition sets of sizes a and b. In particular, K1,n−1 denotes the star of order
n. We write Sn,k for the graph obtained by joining each vertex of a complete
graph of order k to each vertex of an independent set of order n − k, that is,
Sn,k = Kk ∨Kn−k.

On many occasions we shall use Weyl’s inequalities for eigenvalues of Hermi-
tian matrices (see, e.g. [20], p. 181). Although these fundamental inequalities have
been known for almost a century by now, their equality case was first established
by So in [31], based on the paper [21] by Ikebe, Inagaki and Miyamoto.

For convenience we state below the complete theorem of Weyl and So:

Theorem WS Let A and B be Hermitian matrices of order n, and let
1 ≤ i ≤ n and 1 ≤ j ≤ n. Then

λi(A) + λj(B) ≤ λi+j−n(A+B), if i+ j ≥ n+ 1,(3)

λi(A) + λj(B) ≥ λi+j−1(A+B), if i+ j ≤ n+ 1.(4)

In either of these inequalities equality holds if and only if there exists a nonzero
n-vector that is an eigenvector to each of the three eigenvalues involved.

A simplified version of (3) and (4) reads as

(5) λk (A) + λmin (B) ≤ λk (A+B) ≤ λk (A) + λ (B) .

Further, we shall need the following simple properties of the Laplacian:

Proposition L If G is a graph of order n, then

λ (L (G)) ≤ n and λmin (L (G)) = 0.

If G is connected, then every eigenvector of L (G) to the eigenvalue 0 is constant .

Finally, recall that a real symmetric matrix M is called positive semidefinite
if λmin (M) ≥ 0. Likewise, M is called positive definite if λmin (M) > 0.
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3. BASIC PROPERTIES OF Aα (G)

Given a graph G of order n, it is obvious that the system of eigenequations
for the matrix Aα (G) is

(6) λxk = αdG (k)xk + (1− α)
∑

{i,k}∈E(G)

xi, 1 ≤ k ≤ n.

3.1 The quadratic form 〈Aαx,x〉

If G is a graph of order n with Aα (G) = Aα, and x := (x1, . . . , xn) is a real
vector, the quadratic form 〈Aαx,x〉 can be represented in several equivalent ways;
for example,

〈Aαx,x〉 =
∑

{u,v}∈E(G)

(αx2
u + 2 (1− α)xuxv + αx2

v),(7)

〈Aαx,x〉 = (2α− 1)
∑

u∈V (G)

x2
ud (u) + (1− α)

∑

{u,v}∈E(G)

(xu + xv)
2
,(8)

〈Aαx,x〉 = α
∑

u∈V (G)

x2
ud (u) + 2 (1− α)

∑

{u,v}∈E(G)

xuxv.(9)

Each of these representations can be useful in proofs.

Equation (2) implies the following characteristic property of 〈Aα (G)x,x〉:
Proposition 1. If 1 ≥ α > β ≥ 0 and G is a graph of order n, then

〈Aα (G)x,x〉 ≥ 〈Aβ (G)x,x〉

for any n-vector x.

Further, since Aα (G) is a real symmetric matrix, Rayleigh’s principle implies
the following assertion:

Proposition 2. If α ∈ [0, 1] and G is a graph of order n with Aα (G) = Aα, then

(10) λ (Aα) = max
‖x‖

2
=1

〈Aαx,x〉 and λmin (Aα) = min
‖x‖

2
=1

〈Aαx,x〉 .

Moreover, if x is a unit n-vector, then λ (Aα) = 〈Aαx,x〉 if and only if x is an
eigenvector to λ (Aα) , and λmin (Aα) = 〈Aαx,x〉 if and only if x is an eigenvector
to λmin (Aα).

In turn, relations (10) yield the following statement:

Proposition 3. If α ∈ [0, 1] and G is a graph with Aα (G) = Aα, then

λ (Aα) = max {λ (Aα (H)) : H is a component of G} ,
λmin (Aα) = min {λmin (Aα (H)) : H is a component of G} .
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Caution: If G is disconnected, λ (Aα) can be attained on different compo-
nents of G, depending on α. For example, let k ≥ 2 be an integer and let G be
the disjoint union of K3k+1,3k+1, K3,3k2 , and K1,3k2+1. Calculating the largest
eigenvalues of A0, A1/2, and A1 for each of the three components of G, we get the
following table:

K3k+1,3k+1 K3,3k2 K1,3k2+1 G

λ (A0) 3k + 1 3k
√
3k2 + 1 3k + 1

λ
(

A1/2

)

3k + 1
(

3k2 + 3
)

/2
(

3k2 + 1
)

/2
(

3k2 + 3
)

/2
λ (A1) 3k + 1 3k2 3k2 + 1 3k2 + 1

Thus, λ (Aα (G)) may be attained on any components of G, depending on α.

3.2 Monotonicity of λk (Aα (G)) in α

In this subsection, we shall show that λk (Aα (G)) is nondecreasing in α for
any k. For a start, note that if G is a d-regular graph of order n, then

Aα (G) = αdIn + (1− α)A (G) ;

hence, there is a linear correspondence between the spectra of Aα (G) and of A (G)

(11) λk (Aα (G)) = αd+ (1− α)λk (A (G)) , 1 ≤ k ≤ n.

In particular, if G is a d-regular graph, then λ (Aα (G)) = d for any α ∈ [0, 1] .
Moreover, if G is a regular and connected graph of order n, equations (11) imply
that λk (A (G)) is increasing in α for any 2 ≤ k ≤ n. It turns out that the latter
property is essentially valid for any graph:

Proposition 4. Let 1 ≥ α > β ≥ 0. If G is a graph of order n with Aα (G) = Aα

and Aβ (G) = Aβ , then

(12) λk (Aα)− λk (Aβ) ≥ 0

for any k ∈ [n] . If G is connected, then inequality (12) is strict, unless k = 1 and
G is regular.

Proof. Identity (2), inequality (5), and Proposition L imply that

(13) λk (Aα)− λk (Aβ) ≥ (α− β)λmin (L (G)) = 0.

If G is connected and equality holds in (13), Theorem WS implies that λk (Aβ),
λk (Aα), and λmin (L (G)) have a common eigenvector, which by Proposition L must
be constant, say, the all-ones vector jn. Now, Proposition 14 implies that k = 1,
and the eigenequations (6) imply that G is regular.

The premises of Proposition 4 also imply that

λk (Aα)− λk (Aβ) ≤ (α− β)n,

which leads us to
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Proposition 5. If G is a graph with Aα (G) = Aα, then the function λk (Aα) is
Lipschitz continuous in α for any k ∈ [n] . Furthermore, λ (Aα) is convex in α, and
λmin (Aα) is concave in α.

Let us note that the convexity of λ (Aα) and the concavity of λmin (Aα) follow
from Weyl’s inequalities (5).

Question 6. If n ≥ k ≥ 1, is the function f (α) := λk (Aα) differentiable in α?

3.3 Positive semidefiniteness of Aα (G)

An important property of the signless Laplacian Q (G) is that it is positive
semidefinite matrix. This is certainly not true for Aα (G) if α is sufficiently small,
but if α ≥ 1/2, then Aα (G) is similar to Q (G) .

Proposition 7. If α > 1/2, and G is a graph, then Aα (G) is positive semidefinite.
If G has no isolated vertices, then Aα (G) is positive definite.

Proof. Let x := (x1, . . . , xn) be a nonzero vector. If α > 1/2, then for any edge
{u, v} ∈ E, we see that

(14) 〈Aα (G)x,x〉 ≥ (1− α) (xu + xv)
2
+ (2α− 1)x2

u + (2α− 1)xv
2 ≥ 0.

Hence Aα (G) is positive semidefinite. Now, suppose that G has no isolated vertices.
Select a vertex u with xu 6= 0 and let {u, v} ∈ E. Then we have strict inequality
in (14), implying that Aα (G) is positive definite.

Obviously, Proposition 4 implies that if Aα (G) is positive (semi)definite for
some α, then Aβ (G) is positive (semi)definite for any β > α. This observation
leads to the following problem:

Problem 8. Given a graph G, find the smallest α for which Aα (G) is positive
semidefinite.

For example, if G is the complete graphKn, we have λmin (Aα (Kn)) = nα−1;
hence, Aα (Kn) is positive semidefinite if and only if α ≥ 1/n. This example can
be generalized as follows:1

Proposition 9. Let G be a regular graph with chromatic number r. If α < 1/r,
then Aα (G) is not positive semidefinite.

Proof. Let G be a d-regular graph and let A be its adjacency matrix. Hoffman’s
bound [19] implies that

λmin (A) ≤ −λ (A)

r − 1
= − d

r − 1
.

1Some progress with Problem 8 is reported in [28], along with an extension of Proposition 9.
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Hence, (11) implies that

λmin (Aα (G)) ≤ αd− (1− α)
d

r − 1
=

(

α− 1

r

)

rd

r − 1
< 0,

completing the proof.

3.4 Some degree based bounds

It is not an exaggeration to say that degree based bounds are the most usable
bounds in spectral graph theory. We give a few such bounds for Aα (G), the first
of which follows from Proposition 4.

Proposition 10. Let G be a graph of order n with degrees d (1) ≥ · · · ≥ d (n) and
with Aα (G) = Aα. If k ∈ [n], then

λk (Aα) ≤ d (k) .

In particular, λ (Aα) ≤ ∆(G) .

Using an idea of Das [11], the bound λmin (Aα) ≤ δ (G) can be improved
further: let u be a vertex with minimum degree and define the n-vector x :=
(x1, . . . , xn) by letting xu := 1 and zeroing the other entries. Then Proposition 2
and equation (8) imply that

λmin (Aα) ≤ 〈Aαx,x〉 = (2α− 1) δ + (1− α) δ = αδ.

But, if α ∈ [0, 1), the vector x does not satisfy the eigenequations for λmin (Aα);
hence, we see that

λmin (Aα) < αδ.

Further, Weyl’s inequality (5) immediately implies the following bounds:

Proposition 11. If α ∈ [0, 1] and G is a graph with A (G) = A and Aα (G) = Aα,
then

αδ + (1− α)λk (A) ≤ λk (Aα) ≤ α∆+ (1− α)λk (A)

Next, we give a tight lower bound on λ (Aα), which generalizes a result of
Lovász ([24], Problem 11.14):

Proposition 12. If G is a graph with ∆(G) = ∆, then

λ (Aα) ≥
1

2

(

α (∆ + 1) +

√

α2 (∆ + 1)
2
+ 4∆(1− 2α)

)

If α ∈ [0, 1) and G is connected, equality holds if and only if G = K1,∆.
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Proof. Proposition 39 gives the spectral radius of Aα of a star. This result, com-
bined with Proposition 14, yields

λ (Aα (G)) ≥ λ (Aα (K1,∆)) =
1

2

(

α (∆ + 1) +

√

α2 (∆ + 1)
2
+ 4∆(1− 2α)

)

.

The case of equality also follows from Proposition 14.

Some algebra can be used to deduce a simpler lower bound:

Corollary 13. Let G be a graph with ∆(G) = ∆. If α ∈ [0, 1/2] , then

λ (Aα (G)) ≥ α (∆ + 1) .

If α ∈ [1/2, 1) , then

λ (Aα (G)) ≥ α∆+ (1− α)
2
/α.

4. THE LARGEST EIGENVALUE λ (Aα (G))

As for the adjacency matrix and the signless Laplacian, the spectral ra-
dius λ (Aα (G)) of Aα (G) is its most important eigenvalue, owing to the fact that
Aα (G) is nonnegative, so λ (Aα (G)) has maximal modulus among all eigenvalues
of Aα (G) .

4.1 Perron-Frobenius properties of Aα (G)

In this subsection, we spell out some properties of λ (Aα (G)), which follow
from the Perron-Frobenius theory of nonnegative matrices. Observe that if 0 ≤
α < 1 and G is a graph, then G is connected if an only if Aα (G) is irreducible,
because irreducibility is not affected by the diagonal entries of Aα (G). Hence, the
Perron-Frobenius theory of nonnegative matrices implies the following properties
of Aα (G):

Proposition 14. Let α ∈ [0, 1) , let G be a graph, and let x be a nonnegative
eigenvector to λ (Aα (G)):

(a) If G is connected, then x is positive and is unique up to scaling;

(b) If G is not connected and P is the set of vertices with positive entries in x,
then the subgraph induced by P is a union of components H of G with λ (Aα (H)) =
λ (Aα (G));

(c) If G is connected and µ is an eigenvalue of Aα (G) with a nonnegative
eigenvector, then µ = λ (Aα (G));

(d) If G is connected, and H is a proper subgraph of G, then λ (Aα (H)) <
λ (Aα (G)).

A practical consequence of Proposition 14 reads as:
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Proposition 15. Let α ∈ [0, 1) and let G be a graph with Aα (G) = Aα. Let
u, v, w ∈ V (G) and suppose that {u, v} ∈ E (G) and {u,w} /∈ E (G). Let H be the
graph obtained from G by deleting the edge {u, v} and adding the edge {u,w}. If
x := (x1, . . . , xn) is a unit eigenvector to λ (Aα) such that xu > 0 and

〈Aα (H)x,x〉 ≥ 〈Aαx,x〉 ,

then λ (Aα (H)) > λ (Aα) .

Proof. Proposition 2 implies that λ (Aα (H)) ≥ λ (Aα) , so our goal is to show that
equality cannot hold. Assume for a contradiction that λ (Aα (H)) = λ (Aα) and set
λ = λ (Aα) . Proposition 2 implies that x is an eigenvector to H, and therefore

λxw = αdH (w)xw + (1− α)
∑

{i,w}∈E(H)

xi

= α (dG (w) + 1)xw + (1− α)xu +
∑

{i,w}∈E(G)

xi

> αdG (w)xw +
∑

{i,w}∈E(G)

xi,

contradicting the fact that x is an eigenvector to λ (Aα) in G.

4.2 Eigenvectors to λ (Aα (G)) and automorphisms

Knowing the symmetries of a graph G can be quite useful to find the spectral
radius of λ (Aα (G)). Thus, we say that u and v are equivalent in G, if there exists
an automorphism p : G → G such that p (u) = v. Vertex equivalence implies useful
properties of eigenvectors to λ (Aα (G)):

Proposition 16. Let G be a connected graph of order n, and let u and v be equiv-
alent vertices in G. If (x1, . . . , xn) is an eigenvector to λ (Aα (G)), then xu = xv.

Proof. Let G be a connected graph with Aα (G) = Aα; let λ := λ (Aα) and
x := (x1, . . . , xn) be a unit nonnegative eigenvector to λ. Let p : G → G be an
automorphism of G such that p (u) = v. Note that p is a permutation of V (G), and
let P be the permutation matrix corresponding to p. Since p is an automorphism,
we have P−1AαP = Aα; hence,

P−1AαPx = λx,

so Px is an eigenvector to Aα. Since Aα is irreducible, x is unique, implying that
Px = x, and so xu = xv.

Note that eigenvector entries corresponding to equivalent vertices need not
be equal for disconnected graphs; for example, if G is a union of two disjoint copies
of an r-regular graph. However, Proposition 16 implies the following practical
statement:



90 V. Nikiforov

Corollary 17. If G is a connected graph and V (G) is partitioned into equivalence
classes by the relation “u is equivalent to v”, then every eigenvector to λ (Aα) is
constant within each equivalence class.

4.3 A few general bounds on λ (Aα (G))

In this section, we give a few additional bounds on λ (Aα).

Proposition 18. Let G be a graph, with ∆(G) = ∆, A (G) = A, and Aα (G) = Aα.
The following inequalities hold for λ (Aα (G)):

λ (Aα) ≥ λ (A) ,(15)

λ (Aα) ≤ α∆+ (1− α)λ (A) .(16)

If equality holds in (15), then G has a λ (A)-regular component. Equality in (16)
holds if an only if G has a ∆-regular component.

Proof. Note that inequality (15) follows from Proposition 4, but we shall give an-
other proof in order to deduce the case of equality. Let H be a component of
G such that λ (A) = λ (A (H)). Write h for the order of H, and let (x1, . . . , xh)
be a positive unit vector to λ (A (H)). For every edge {u, v} of H, the AM-GM
inequality implies that

(17) 2xuxv = 2αxuxv + 2 (1− α)xuxv ≤ αx2
u + 2 (1− α)xuxv + αx2

v.

Summing this inequality over all edges {u, v} ∈ E (H), and using (7), we get

λ (A) = λ (A (H)) = 〈A (H)x,x〉 ≤ 〈Aα (H)x,x〉 ≤ λ (Aα) ,

so (15) is proved. If equality holds in (15), then x1 = · · · = xh, hence H is λ (A)-
regular.

Inequality (16) follows by Weyl’s inequalities (5), because

λ (Aα) ≤ λ (αD (G)) + λ ((1− α) (A)) = (1− α)λ (A) + α∆,

but we shall give a direct proof based on identity (9) that is more appropriate for
the case of equality. Let H be a component of G such that λ (Aα) = λ (Aα (H))
and let h be the order of H. Let x := (x1, . . . , xh) be a positive unit eigenvector to
λ (Aα (H)) . We have

λ (Aα) = α
∑

u∈V (H)

x2
udG (u) + 2 (1− α)

∑

{u,v}∈E(H)

xuxv

≤ α∆(H)
∑

u∈V (H)

x2
u + (1− α)λ (A (H))

≤ α∆+ (1− α)λ (A) ,

proving (16). If equality holds in (16), then H is ∆-regular.

It is not hard to see that if G has a ∆-regular component, then λ (A) = ∆ =
λ (Aα), so equality holds in (16).
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Having inequality (15) in hand, every lower bound of λ (A) gives a lower
bound on λ (Aα) , which, however, is never better than (15). We mention just two
such bounds.

Corollary 19. Let G be a graph with Aα (G) = Aα. If G is of order n and has m
edges, then

λ (Aα) ≥
√

√

√

√

1

n

∑

u∈V (G)

d2G (u) and λ (Aα) ≥
2m

n
.

Equality holds in the second inequality if and only if G is regular. If α > 0, equality
holds in the first inequality if and only G is regular.

Proof. The only difficulty is to prove that if α > 0, then the equality

(18) λ (Aα) =

√

√

√

√

1

n

∑

u∈V (G)

d2G (u)

implies that G is regular. Indeed, suppose that (18) holds, which implies also that

λ (A (G)) =

√

√

√

√

1

n

∑

u∈V (G)

d2G (u).

Let G1, . . . , Gk be the components of G and let n1, . . . , nk be their orders. We see
that

∑

u∈V (G)

d2G (u) = λ2 (A (G))n ≥ λ2 (A (G1))n1 + · · ·+ λ2 (A (G1))nk

≥
∑

u∈V (G1)

d2G1
(u) + · · ·+

∑

u∈V (Gk)

d2Gk
(u) =

∑

u∈V (G)

d2G (u) .

Hence,
λ (A (G1)) = · · · = λ (A (Gk)) = λ (A (G)) ,

and likewise,
λ (Aα (G1)) = · · · = λ (Aα (Gk)) = λ (Aα (G)) .

Now, Proposition 4 implies that all components of G are regular, completing the
proof.

A very useful bound in extremal problems about λ (Q) is the following one

(19) λ (Q) ≤ max
u∈V (G)







d (u) +
1

d (u)

∑

{u,v}∈E(G)

d (v)







,

with equality if and only if G is regular or semiregular. Bound (19) goes back to
Merris [25], whereas the case of equality has been established by Feng and Yu in
[13]. It is not hard to modify (19) for the matrices Aα (G):



92 V. Nikiforov

Proposition 20. If G is a graph with no isolated vertices, then

(20) λ (Aα (G)) ≤ max
u∈V (G)







αd (u) +
1− α

d (u)

∑

{u,v}∈E(G)

d (v)







,

and

(21) λ (Aα (G)) ≥ min
u∈V (G)







αd (u) +
1− α

d (u)

∑

{u,v}∈E(G)

d (v)







.

If α ∈ (1/2, 1) and G is connected, equality in (20) and (21) holds if and only if G
is regular.

Proof. Let Aα (G) = Aα. Our proof of (20) and (21) uses the idea of Merris.
The matrix D−1AαD is similar to Aα, so λ (Aα) = λ

(

D−1AαD
)

. Since D−1AαD

is nonnegative, λ
(

D−1AαD
)

is between the smallest and the largest rowsums of
D−1AαD, implying both (20) and (21).

If G is connected, then Aα is irreducible and so is D−1AαD. Hence, if equality
holds in either (20) and (21), then all rowsums of D−1AαD are equal. The remain-
ing part of the proof uses an idea borrowed from [13]. For any vertex v ∈ V (G),
set

m (u) :=
1

d (u)

∑

{u,v}∈E(G)

d (v) .

Fix a vertex u and let v be any neighbor of u. Now, from

αd (u) + (1− α)m (u) = αd (v) + (1− α)m (v)

we see that

∑

{u,v}∈E(G)

αd (u) + (1− α)m (u) =
∑

{u,v}∈E(G)

αd (v) + (1− α)m (v) .

Hence,

αd2 (u) + (1− α) d (u)m (u) = αd (u)m (u) + (1− α)
∑

{u,v}∈E(G)

m (v) .

Taking u to be a vertex with maximum degree, we find that

αd2 (u) + (1− 2α) d (u)m (u) = (1− α)
∑

{u,v}∈E(G)

m (v) ≤ (1− α) d2 (u) .

Hence m (u) ≥ d (u) , which is possible only if all neighbors of u have maximal
degree as well. Since G is connected, it turns out that G is regular.
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Corollary 21. For any graph G,

(22) λ (Aα) ≤ max
{u,v}∈E(G)

{αd (u) + (1− α) d (v)}

and

(23) λ (Aα) ≥ min
{u,v}∈E(G)

{αd (u) + (1− α) d (v)} .

Caution: If the right side of (22) is equal to M, and is attained for {u, v} ∈
E (G), then

M = max {αd (u) + (1− α) d (v) , αd (v) + (1− α) d (u)} .

A similar remark is valid for (23) with appropriate changes.

It seems that equality in (20) and (21) holds only if G is regular, except in
the cases α = 0 and α = 1/2. If true, this fact would need new proof technique, so
we raise the following problem:

Problem 22. Find all cases of equality in (20), (21), (22), and (23).

The last bounds in this sections are in the spirit of (20) and (21):

Proposition 23. Let α ∈ [0, 1]. If G be a graph of order n, then

λ2 (Aα (G)) ≤ max
k∈V (G)

αd2G (k) + (1− α)wG (k)

and
λ2 (Aα (G)) ≥ min

k∈V (G)
αd2G (k) + (1− α)wG (k) .

Proof. Let Aα := Aα (G), A := A (G), D := D (G). First, we show that for any
k ∈ [n] , the kth rowsum of A2

α (G) is equal to

αd2G (k) + (1− α)wG (k) .

Indeed, for the square of Aα, we see that

A2
α = α2D2 + (1− α)

2
A2 + α (1− α)DA+ α (1− α)AD.

Thus, for the kth rowsum rk
(

A2
α

)

we find that

rk(A
2
α) = α2rk(D

2) + (1− α)
2
rk(A

2) + α (1− α) rk (DA) + α (1− α) rk (AD)

= α2d2G (k) + (1− α)
2
wG (k) + α (1− α) d2G (k) + α (1− α)wG (k)

= αd2G (k) + (1− α)wG (k) .

Since λ2 (Aα) = λ
(

A2
α

)

, the assertions follow, because λ
(

A2
α

)

is between the small-
est and the largest rowsums of A2

α.
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5. SOME SPECTRAL EXTREMAL PROBLEMS

Recall that one of the central problem of classical extremal graph theory is
of the following type:

Problem A Given a graph F, what is the maximum number of edges of a
graph of order n, with no subgraph isomorphic to F?

Such problems are fairly well understood nowadays; see, e.g., [3] for compre-
hensive discussion and [26] for some newer results. During the past two decades,
some subtler versions of Problem A have been investigated, namely for λ (A (G))
and λ (Q (G)). In these problems, the principal questions are the following ones:

Problem B Given a graph F, what is the maximum λ (A (G)) of a graph G
of order n, with no subgraph isomorphic to F?

Problem C Given a graph F, what is the maximum λ (Q (G)) of a graph G
of order n, with no subgraph isomorphic to F?

Many instances of Problem B have been solved, see, e.g., the second part of
the survey paper [26]. There is also considerable progress with Problem C: see,
e.g., the papers [1], [2], [15], [16], [18], [27], [29], [30], and [32].

Now, having the family Aα (G), we can merge Problems B and C into one,
namely:

Problem D Given a graph F, what is the maximum λ (Aα (G)) of a graph
G of order n, with no subgraph isomorphic to F?

In this survey we shall solve Problem D when F is a complete graph. Several
other cases seem particularly interesting:

Problem 24. Solve problem D if F is a path or a cycle of given order.

5.1 Chromatic number and λ (Aα (G))

A graph is called r-chromatic (or r-partite) if its vertices can be partitioned
into r edgeless sets. An interesting topic in spectral graph theory is to find relations
between eigenvalues and the chromatic number of graphs. In particular, here we
are interested in the maximum λ (Aα (G)) if G is an r-partite graph of order n.

Let us write Tr (n) for the r-partite Turán graph of order n, and recall that
Tr (n) is a complete r-partite graph of order n, whose partition sets are of size
⌊n/r⌋ or ⌈n/r⌉. Note that if r = 2, then T2 (n) = K⌊n/2⌋,⌈n/2⌉. It is known that
Tr (n) has maximum number of edges among all r-partite graphs of order n. The
corresponding problem for λ (Aα (G)) is not so straightforward, so for reader’s sake
we shall consider the case r = 2 first.

Theorem 25. Let G be a bipartite graph of order n.
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(i) If α < 1/2, then

λ (Aα (G)) < λ (Aα (T2 (n))) ,

unless G = T2 (n) .

(ii) If α > 1/2, then

λ (Aα (G)) < λ (Aα (K1,n−1)) ,

unless G = K1,n−1.

(iii) If α = 1/2, then

λ (Aα (G)) ≤ n/2,

with equality if and only if G is a complete bipartite graph.

Proof. Suppose that G is a bipartite graph of order n with maximum λ (Aα (G))
among all bipartite graphs of order n. Proposition 14,(d) implies that G is a com-
plete bipartite graph. Suppose that the partition sets V1 and V2 of G are of size n1

and n2, where n1 + n2 = n. Set λ := λ (Aα (G)) and let (x1, . . . , xn) be a positive
eigenvector to λ. Proposition 16 implies that the entries of (x1, . . . , xn) correspond-
ing to vertices of the same partition set have the same value, say, zi for Vi, i = 1, 2.
Thus, the equations (6) give

λz1 = αn2z1 + (1− α)n2z2,

λz2 = αn1z2 + (1− α)n1z1.

Excluding z1 and z2, we find that

(λ− αn2) (λ− αn1) = (1− α)
2
n1n2

and therefore,

λ =
αn+

√

α2n2 + 4n1n2 (1− 2α)

2
.

Clearly if α < 1/2, then λ is maximum whenever n1n2 is maximum; hence G =
T2 (n). Likewise if α > 1/2, then λ is maximum whenever n1n2 is minimum, and
so G = K1,n−1. Finally if α = 1/2, then λ = n/2 for every complete bipartite
graph.

For general r the statement reads as:

Theorem 26. Let r ≥ 2 and G be an r-partite graph of order n.

(i) If α < 1− 1/r, then

λ (Aα (G)) < λ (Aα (Tr (n))) ,

unless G = Tr (n) .
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(ii) If 1 > α > 1− 1/r, then

λ (Aα (G)) < λ (Aα (Sn,r−1)) ,

unless G = Sn,r−1.

(iii) If α = 1− 1/r, then

λ (Aα (G)) ≤ (1− 1/r)n,

with equality if and only if G is a complete r-partite graph.

Proof. Suppose that G is an r-partite graph of order n with maximum λ (Aα (G))
among all r-partite graphs of order n. Proposition 14, (d) implies that G is a
complete r-partite graph. Suppose that V1, . . . , Vr are the partition sets of G,
with sizes n1, . . . , nr; obviously n1 + · · · + nr = n. Set λ := λ (Aα (G)) and let
(x1, . . . , xn) be a positive eigenvector to λ. Proposition 16 implies that the entries
of x corresponding to vertices of the same partition set have the same value, say zi
for Vi, i = 1, . . . , r. Hence, equations (6) reduce to the following r equations

(24) λzk = α (n− nk) zk + (1− α)
∑

i∈[r]\{k}

nizi, 1 ≤ k ≤ r.

If α = 1− 1/r, we see that the value λ := (1− 1/r)n always is an eigenvalue with
an eigenvector defined by zi = 1/ (rni) , i = 1, . . . , r. This observation proves (iii).

Further, letting S := n1z1 + · · ·+ nrzr, equations (24) imply that

(λ− α (n− nk) + (1− α)nk)nkzk = (1− α)nkS, 1 ≤ k ≤ r.

After some algebra, we see that λ satisfies the equation

(25)
∑

k∈[r]

nk

λ− αn+ nk
=

1

1− α
.

Now, if α < 1− 1/r, then 1/ (1− α) < r. Hence some of the summands in the left
side of (25) is less than 1 and so λ− αn > 0. Letting

f (z) :=
z

λ− αn+ z
= 1− λ− αn

λ− αn+ z
,

it is easy to see that

f ′′ (z) =
−2 (λ− αn)

(λ− αn+ z)
3 < 0

for z ≥ 0; thus, f (z) is strictly concave for z ≥ 0. It is not hard to see that the
maximum

(26) max







∑

k∈[r]

f (tk) : t1 + · · ·+ tr = n, tk ≥ 0 is an integer for each k ∈ [r]
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is attained if and only if tk = ⌊n/r⌋ or tk = ⌈n/r⌉ for any k ∈ [r] . Indeed, it is clear
that the maximum (26) is attained, as there are finitely many vectors (t1, . . . , tr)
satisfying the constraints. Suppose that the maximum (26) is attained for some
t1, . . . , tr and assume by symmetry that t1 ≤ · · · ≤ tr. If tr − t1 ≤ 1, we are done,
so assume for a contradiction that tr − t1 ≥ 2. Set

t′1 = t1 + 1, t′2 = t2, . . . t′r−1 = tr−1, t′r = tr − 1.

The Mean Value Theorem implies that there exist θ1 ∈ (t1, t1 + 1) and θr ∈
(tr − 1, tr) such that

∑

k∈[r]

f (t′k)−
∑

k∈[r]

f (tk) = f (t1 + 1)− f (t1) + f (tr − 1)− f (tr) = f ′ (θ1)− f ′ (θr) .

However, since f ′ (z) is decreasing in z and θr > θ1, we see that f
′ (θ1)−f ′ (θr) > 0,

and therefore
∑

k∈[r]

f (t′k) >
∑

k∈[r]

f (tk) ,

contrary to the assumption that
∑

k∈[r] f (tk) is maximal. Therefore, tk = ⌊n/r⌋
or tk = ⌈n/r⌉ for any k ∈ [r] .

Let λT := λ (Aα (Tr (n))) and let t1, . . . , tr be the sizes of the partition sets
of Tr (n) , that is to say, ti = ⌊n/r⌋ or ti = ⌈n/r⌉ and t1 + · · ·+ tr = n. In view of
(25), we have

∑

k∈[r]

tk
λT − αn+ tk

=
1

1− α
.

Now, we see that

∑

k∈[r]

tk
λT − αn+ tk

=
1

1− α
=

∑

k∈[r]

nk

λ− αn+ nk
≤

∑

k∈[r]

tk
λ− αn+ tk

.

Hence λT ≥ λ, with equality if and only if ni = ⌊n/r⌋ or ni = ⌈n/r⌉ for all i ∈ [r].
This argument proves (i).

The proof of (ii) goes along the same lines. Let G be an r-partite graph of
order n with

λ ≥ λ (Aα (Sn,r−1)) .

We shall prove that G = Sn,r−1. Since ∆ (Sn,r−1) = n − 1, Corollary 13 implies
that

(27) λ ≥ λ (Aα (Sn,r−1)) ≥ α (n− 1) + (1− α)
2
/α = αn+ 1/α− 2.

If α > 1 − 1/r, then 1/ (1− α) < r. Hence some of the summands in the left side
of (25) is less than 1 and so λ− αn < 0. Letting

f (z) :=
z

λ− αn+ z
= 1− λ− αn

λ− αn+ z
,
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it is easy to see that

f ′′ (z) =
−2 (λ− αn)

(λ− αn+ z)
3 > 0

whenever z + λ− αn > 0. In view of (27), we find that

λ− αn+ 1 ≥ 1/α− 1 > 0,

thus f (z) is strictly convex for z ≥ 1. It is not hard to see that the maximum

(28) max







∑

k∈[r]

f (sk) : s1 + · · ·+ sr = n, sk > 0 is an integer for each k ∈ [r]







is attained if and only if all but one of the sks are equal to 1. Indeed, it is clear
that the maximum (28) is attained, as there are finitely many vectors (s1, . . . , sr)
satisfying the constraints. Let the maximum (28) be attained for some s1, . . . , sr
and assume by symmetry that s1 ≤ · · · ≤ sr. If sr−1 = 1, we are done, so assume
for a contradiction that sr−1 ≥ 2. Set

s′1 = s1, . . . s
′
r−2 = sr−2, s′r−1 = sr−1 − 1, s′r = sr + 1.

The Mean Value Theorem implies that there exist θr−1 ∈ (sr−1 − 1, sr−1) and
θr ∈ (sr, sr + 1) such that

∑

k∈[r]

f (s′k)−
∑

k∈[r]

f (sk) = f (sr + 1)−f (sr)+f (sr−1 − 1)−f (sr) = f ′ (θr)−f ′ (θr−1) .

However, since f ′ (z) is increasing in z for z ≥ 1 and θr > θr−1, we see that
f ′ (θr)− f ′ (θr−1) > 0, and therefore

∑

k∈[r]

f (s′k) >
∑

k∈[r]

f (sk) ,

contrary to the assumption that
∑

k∈[r] f (sk) is maximal. Therefore, s1 = · · · =
sr−1 = 1.

Let λS := λ (Aα (Sn,r−1)) and let s1, . . . , sr be the sizes of the partition sets
of Sn,r−1, that is to say, s1 = · · · = sr−1 = 1 and sr = n − r + 1. In view of (25),
we have

∑

k∈[r]

sk
λS − αn+ sk

=
1

1− α
.

Now, we see that

∑

k∈[r]

sk
λS − αn+ sk

=
1

1− α
=

∑

k∈[r]

nk

λ− αn+ nk
≤

∑

k∈[r]

sk
λ− αn+ sk

.

Hence, λS = λ, and all but one of the partition sets of G are of cardinality 1, that
is to say, G = Sn,r−1. The proof of Theorem 26 is completed.
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5.2 Clique number and λ (Aα (G))

A graph is called Kr-free if it does not contain a complete graph on r vertices.
It is known (see, e.g., [26] and [18]) that if G is a Kr+1-free graph of order n, then

λ (A (G)) ≤ λ (A (Tr (n))) ,

λ (Q (G)) ≤ λ (Q (Tr (n))) .

The generalization of these results to λ (Aα (G)) is summarized in the following
encompassing, but somewhat unexpected theorem:

Theorem 27. Let r ≥ 2 and G be an Kr+1-free graph of order n.

(i) If 0 ≤ α < 1− 1/r, then

λ (Aα (G)) < λ (Aα (Tr (n))) ,

unless G = Tr (n) .

(ii) If 1 > α > 1− 1/r, then

λ (Aα (G)) < λ (Aα (Sn,r−1)) ,

unless G = Sn,r−1.

(iii) If α = 1− 1/r, then

λ (Aα (G)) ≤ (1− 1/r)n,

with equality if and only if G is a complete r-partite graph.

We shall show that Theorem 27 can be reduced to Theorem 26 via the fol-
lowing technical lemma.

Lemma 28. Let α ∈ [0, 1) and n ≥ r ≥ 2. If G is a graph with maximum λ (Aα (G))
among all Kr+1-free graphs of order n, then G is complete r-partite.

For the proof of the lemma, we introduce some notation: Let α ∈ [0, 1) .
Given a graph G of order n and a vector x := (x1, . . . , xn) , set

SG (x) := 〈Aα (G)x,x〉 ,

and for any v ∈ V (G), set

SG(v,x) := αdG (v)xv + (1− α)
∑

{v,i}∈E(G)

xi.

Proof. Let G be a graph with maximum λ (Aα (G)) among all Kr+1-free graphs of
order n. For short, let λ := λ (Aα (G)). Clearly, G is connected; thus, there is a
positive unit eigenvector x := (x1, . . . , xn) to λ (Aα (G)), and therefore,

λ = SG (x) =
∑

v∈V (G)

xvSG(v,x).
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Note that the eigenequation (6) for any vertex v ∈ V (G) can be written as

(29) λxv = SG(v,x).

To prove the lemma, we need two claims.

Claim A There exists a coclique W ⊂ G such that

G = W ∨G′,

where G′ = G− V (W ).

Proof Select a vertex u with

SG(u,x) := max {SG(v,x) : v ∈ V (G)} ,

and set U := ΓG(u) and W := G − U . Remove all edges within W and join
each vertex in U to each vertex in W. Write H for the resulting graph, which is
obviously of order n and is Kr+1-free. We shall show that SH (v,x) ≥ SG (v,x)
for each v ∈ V (G) . This is obvious if v ∈ U , since then ΓG (v) ⊂ ΓH (v), so
SH(v,x) ≥ SG(v,x). Now, let v ∈ V (W ) . Note that

SH(v,x) = αdG (u)xv + (1− α)
∑

{u,i}∈E(G)

xi

= αdG (u)xv + SG(u,x)− αdG (u)xu.

Hence,

SH(v,x)− SG(v,x) = SG(u,x)− SG(v,x)− αdG (u) (xu − xv) .

Now, equation (29) implies that SG(u,x) = λxu and SG(v,x) = λxv. Hence

SH(v,x)− SG(v,x) = λ (xu − xv)− αdG (u) (xu − xv) = (λ− αdG (u)) (xu − xv) .

But Corollary 13 implies that λ − αdG (u) > 0, and equation (29) implies that
xu ≥ xv. Hence SH(v,x) ≥ SG(v,x) for any v ∈ V (G), and so

λ (Aα (H)) ≥ SH (x) ≥ SG (x) = λ ≥ λ (Aα (H)) .

Therefore, λ (Aα (H)) = λ, implying, in particular, that SH(v,x) = SG(v,x) for
each v ∈ U ; thus each v ∈ U is joined in G to each w ∈ W , so G = H = W ∨G [U ] ,
completing the proof of Claim A.

To finish the proof of the lemma we need another technical assertion:

Claim B Let 1 ≤ k < r. If F is an induced subgraph of G and W1, . . . ,Wk

are disjoint cocliques of G such that

G = W1 ∨ · · · ∨Wk ∨ F
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then there is a coclique Wk+1 ⊂ F such that

G = W1 ∨ · · · ∨Wk+1 ∨ F ′,

where F ′ = F − V (Wk+1).

Proof Select a vertex u ∈ V (F ) with

SG(u,x) = max {SG(v,x) : v ∈ V (F )} ,

and set U := ΓF (u) and W := F − U . Remove all edges within W and join
each vertex in U to each vertex in W. Write H for the resulting graph, which is
obviously of order n and is Kr+1-free. We shall show that SH (v,x) ≥ SG (v,x) for
each v ∈ V (G) . This is obvious if v ∈ V \V (W ), since then either ΓG (v) = ΓH (v)
or ΓG (v) ⊂ ΓH (v), so SH(v,x) ≥ SG(v,x). Now, let v ∈ V (W ) . Exactly as in the
proof of Claim A we see that

SH(v,x)− SG(v,x) = (λ− αdG (u)) (xu − xv) .

Hence, SH(v,x) ≥ SG(v,x) and

λ (Aα (H)) ≥ SH (x) ≥ SG (x) = λ ≥ λ (Aα (H)) .

Therefore, λ (Aα (H)) = λ, implying, in particular, that SH(v,x) = SG(v,x) for
each v ∈ U ; thus each v ∈ U is joined in F to each w ∈ W , and so F = W ∨G [U ].
Letting Wk+1 := W, the proof of Claim B is completed.

To complete the proof of the lemma, we first apply Claim A and then repeat-
edly apply Claim B until k = r − 1. In this way we find that

G = W1 ∨ · · · ∨Wr−1 ∨ F,

where W1 ∨ · · · ∨ Wr−1 are cocliques of G and F is an induced subgraph of G.
Because G is Kr+1-free, F must be a coclique too and so, G is a complete r-partite
graph.

6. MISCELANEOUS

In this section, we briefly touch a few rather different topics, some of which
deserve a much more thorough investigation.

6.1 The smallest eigenvalue λmin (Aα (G))

The smallest eigenvalue of the adjacency matrix, which is second in impor-
tance after the spectral radius, has numerous relations with the structure of the
graph. To a great extent this is also true for λmin (Q (G)); see, e.g., [12], [22], and
[23]. In particular, the smallest eigenvalues of A (G) and Q (G) have close relations
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to bipartite subgraphs of G. A simple relation of this type can be obtained also for
λmin (Aα (G)).

LetG be a graph of order n withm edges. Let V (G) = V1∪V2 be a bipartition
and let the n-vector x := (x1, . . . , xn) be −1 on V1 and 1 on V2. We see that

〈Aα (G)x,x〉 = α 〈D (G)x,x〉+ (1− α) 〈A (G)x,x〉
= 2αm+ 2 (1− α) (e (V1) + e (V2))− 2 (1− α) e (V1, V2)

= 2αm+ 2 (1− α)m− 4 (1− α) e (V1, V2)

= 2m− 4 (1− α) e (V1, V2)

Hence, scaling (x1, . . . , xn) to unit length, we get:

Proposition 29. If G is a graph of order n with m edges, then

λmin (Aα (G)) ≤ 2m

n
− 4 (1− α)

n
maxcut(G).

It is interesting to determine how small λmin (Aα (G)) can be if G is a graph of
order n. For α ≥ 1/2 the question is easy. Indeed, if α ≥ 1/2, the matrix Aα (G) is
positive semidefinite, so λmin (Aα (G)) ≥ 0. On the other hand, if G has an isolated
vertex, then λmin (Aα (G)) = 0, so if α ∈ [1/2, 1] , then

min {λmin (Aα (G)) : v (G) = n} = 0.

By contrast,

min {λmin (A (G)) : v (G) = n} = −
√

⌊n/2⌋ ⌈n/2⌉;

hence it is worth to study the following problem:

Problem 30. For any α ∈ (0, 1/2) determine

min {λmin (Aα (G)) : v (G) = n} .

6.2 The second largest eigenvalue λ2 (Aα (G))

In this subsection, we discuss how large λ2 (Aα (G)) can be if G is a graph of
order n.

Proposition 31. Let G be a graph of order n with Aα (G) = Aα.

(a) If 1/2 ≤ α ≤ 1, then

λ2 (Aα) ≤ αn− 1.

If α > 1/2, equality is attained if and only if G = Kn.

(b) If 0 ≤ α < 1/2, then

λ2 (Aα) ≤
n

2
− 1.

If n is even equality holds for the graph G = 2Kn/2.
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The proof of (a) follows by

λ2 (Aα) = λ2

(

A1/2

)

+ (α− 1/2)L (G) ≤ (n− 2) /2 + (α− 1/2)n.

The proof of (b) follows by

λ2 (Aα) ≤ λ2

(

A1/2

)

≤ n

2
− 1.

Note that we have not determined precisely how large λ2 (Aα (G)) can be if
G is a graph of odd order n. Taking G = K[n/2] ∪K⌈n/2⌉, we see that

λ2 (Aα (G)) =
n− 1

2
− 1,

but this bound still leaves a margin of 1/2 to close.

6.3 Eigenvalues of Aα (G) and the diameter of G

The following theorem can be proved using the generic idea of [6].

Proposition 32. Let a ∈ [0, 1), let G be a graph with Aα (G) = Aα, and let u and
v be two vertices of G at distance k ≥ 1. Let l ∈ [k] and set B := Al

α.

(a) If l = k, then bu,v > 0;

(b) If l < k, then bu,v = 0.

Proof. Set A = A (G) . If X and Y are matrices of the same size, write X ≻ Y, if
xi,j ≥ yi,j for all admissible i, j.

Proof of (a) Note that Aα ≻ (1− α)A, and so Ak
α ≻ (1− α)

k
Ak. However,

the (u, v) entry of Ak is positive, since there is a path of length k between u and
v. Hence, bu,v > 0, proving (a).

Proof of (b) Now suppose that l < k, and note that A + nI ≻ Aα. Hence,

(A+ nI)
l ≻ Al

α. Since

(A+ nI)
l
= Al + al−1A

l−1 + · · ·+ a0I
l

for some real a0, . . . , al−1, we see that the (u, v) entry of (A+ nI)
l
is zero, because

there is no path shorter than k between u and v, so the (u, v) entry of each of the
matrices Al, . . . , A, I is zero. Hence, bu,v = 0.

Corollary 33. If G is a connected graph of diameter D, then Aα (G) has at least
D + 1 distinct eigenvalues.

6.4 Eigenvalues of Aα (G) and traces

In this subsection we give two explicit expressions for the sum of the eigen-
values of Aα (G) and for the sum of their squares.
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Proposition 34. If G is a graph of order n and has m edges, then

n
∑

i=1

λi (Aα (G)) = tr Aα (G) = α
∑

i∈V (G)

dG (u) = 2αm.

Here is a similar formula for the sum of the squares of the eigenvalues of Aα.

Proposition 35. If G is a graph of order n and has m edges, then.

n
∑

i=1

λ2
i (Aα (G)) = tr A2

α (G) = 2 (1− α)
2
m+ α2

∑

i∈V

d2G (u) .

Proof. Let Aα := Aα (G), A := A (G), and D := D (G). Calculating the square A2
α

and taking its trace, we find that

tr A2
α = tr (α2D2 + (1− α)

2
A2 + α (1− α)DA+ α (1− α)AD)

= α2tr D2 + (1− α)
2
tr A2 + α (1− α) tr DA+ α (1− α) tr AD

= 2 (1− α)
2
m+ α2

∑

i∈V

d2G (u) ,

completing the proof.

7. THE Aα-SPECTRA OF SOME GRAPHS

Equalities (11) and the fact that the eigenvalues of A (Kn) are n−1,−1, ...,−1
give the spectrum of Aα (Kn) as follows:

Proposition 36. The eigenvalues of Aα (Kn) are

λ1 (Aα (Kn)) = n− 1 and λk (Aα (Kn)) = αn− 1 for 2 ≤ k ≤ n.

Next we present the spectrum of a join of two regular graphs.2

Proposition 37. Let G1 be a r1-regular graph of order n1, and G2 be a r2-regular
graph of order n2. The spectrum of Aα (G1 ∨G2) is determined as follows:

(a) The largest and smallest eigenvalues of G1 ∨G2 are given by

λ (Aα (G1 ∨G2)) = λ

(

r1 + αn2 (1− α)
2
n1n2

1 r2 + αn1

)

,

λmin (Aα (G1 ∨G2)) = λmin

(

r1 + αn2 (1− α)
2
n1n2

1 r2 + αn1

)

.

(b) The remaining n1 + n2 − 2 eigenvalues of G1 ∨G2 are given by

αr1 + (1− α)λk (A (G1)) , 2 ≤ k ≤ n1,

αr2 + (1− α)λk (A (G2)) , 2 ≤ k ≤ n2.

2The idea for Proposition 37 is due to the referee.
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The proof of Proposition 37 is based on familiar ideas dating back to Fink and
Grohmann [14]: take a set of orthogonal eigenvectors to λ2 (A (G1)) , ..., λn1

(A (G1))
and another set for λ2 (A (G2)) , ..., λn2

(A (G2)), and extend those vectors in the
obvious way to n1 + n2 − 2 orthogonal eigenvectors of length n1 + n2 to the same
eigenvalues. This approach proves (b).

To prove (a), note that the matrix

B :=

[

r1 + αn2 (1− α)
2
n1n2

1 r2 + αn1

]

is the 2× 2 quotient matrix of Aα (G1 ∨G2) with respect to the bipartition

V (G1 ∨G2) = V (G1) ∪ V (G2) .

Since, G1 and G2 are regular, it turns out that the two eigenvalues of B are the
largest and the smallest eiganvalues of G.

As an immediate corollary of Proposition 37, we present the Aα-spectrum of
the complete bipartite graph Ka,b.

Proposition 38. Let a ≥ b ≥ 1. If α ∈ [0, 1] , the eigenvalues of Aα (Ka,b) are

λ (Aα (Ka,b)) =
1

2

(

α (a+ b) +

√

α2 (a+ b)
2
+ 4ab (1− 2α)

)

,

λmin (Aα (Ka,b)) =
1

2

(

α (a+ b)−
√

α2 (a+ b)
2
+ 4ab (1− 2α)

)

,

λk (Aα (Ka,b)) = αa for 1 < k ≤ b,

λk (Aα (Ka,b)) = αb for b < k < a+ b.

In particular, the Aα-spectrum of the star K1,n−1 is as follows:

Proposition 39. The eigenvalues of Aα (K1,n−1) are

λ (Aα (K1,n−1)) =
1

2

(

αn+
√

α2n2 + 4 (n− 1) (1− 2α)
)

λmin (Aα (K1,n−1)) =
1

2

(

αn−
√

α2n2 + 4 (n− 1) (1− 2α)
)

λk (Aα (K1,n−1)) = α for 1 < k < n.

8. CONCLUDING REMARKS

The present survey covers just a small portion of the hundreds of results
about A (G) and Q (G) that could be extended to Aα (G). To extend most of these
results would be a challenging endeavor. If nothing else, Theorems 26 and 27 show
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that it is worth studying Aα (G), for it is unlikely to discover them in a different
context.

Acknowledgement. Thanks are due to Prof. Oscar Rojo and Germain
Pastén for valuable remarks. Particularly important has been the input of the
referee, who not only spotted numerous typos, but also made significant suggestions
for improving the paper. I am most grateful for this help.

REFERENCES

1. N.M.M. de Abreu, V. Nikiforov, Maxima of the Q-index: abstract graph properties,
Electron. J. Linear Algebra 23 (2012), 782–789.

2. N.M.M. de Abreu, V. Nikiforov, Maxima of the Q-index: Graphs with bounded clique
number, Electron. J. Linear Algebra 24 (2013), 121–130.

3. B. Bollobás, Extremal Graph Theory, Academic Press Inc., London-New York, 1978,
xx+488 pp.
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5. D. Cvetković, Signless Laplacians and line graphs, Bull. Acad. Serbe Sci. Arts, Cl.
Sci. Math. Natur., Sci. Math. 131 (2005), 85–92.
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