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ABSTRACT

Motivation: Gene-expression microarrays are currently being applied

in a variety of biomedical applications. This article considers the prob-

lem of how to merge datasets arising from different gene-expression

studies of a common organism and phenotype. Of particular interest

is how to merge data from different technological platforms.

Results: The article makes two contributions to the problem. The first

is a simple cross-study normalizationmethod,which is basedon linked

gene/sample clustering of the given datasets. The second is the

introduction and description of several general validation measures

that can be used to assess and compare cross-study normalization

methods. The proposed normalization method is applied to three

existing breast cancer datasets, and is compared to several compet-

ing normalization methods using the proposed validation measures.

Availability: The supplementary materials and XPN Matlab code are

publicly available at website: https://genome.unc.edu/xpn

Contact: shabalin@email.unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

High-throughput gene-expression microarrays are currently
being applied in a wide variety of biomedical problems. There
are now several widely used, commercially available, micro-
array platforms that measure gene expression in related, but
different, ways. No matter which technology is used, the
evaluation of gene-expression experiments usually begins with
statistical analyses that take a variety of forms, including
exploratory analysis (such as clustering), classification and
assessments of differential expression.
The increasing number and availability of large-scale gene-

expression studies of human and other organisms provides
strong motivation for cross-study analyses that combine
existing and/or new datasets. In a cross-study analysis,
the data, relevant test statistics or conclusions of several studies
are combined. The simultaneous analysis of different studies of

a common organism and phenotype has the potential to
strengthen and extend the results obtained from the individual
studies. Cross-study analyses can be carried out using existing
datasets, so their results hold out the promise of comparatively
inexpensive, scientific ‘value-added’.
On the other hand, combining data from different expression

studies poses a number of statistical difficulties. These diffi-
culties arise from the fact that the constituent datasets have
often been produced using different gene-expression platforms
and different processing facilities. As a consequence, measure-
ments from different platforms cannot be directly combined.
Identifying and removing such systematic effects is the primary
statistical challenge in cross-study analysis. We note that
technological differences between studies may be confounded
with biological differences arising from the choice of patient
cohorts (e.g. age, gender or ethnicity). In many cases,
technological artifacts are dominant, though care should be
taken to verify this, and one can hope to remove them while
leaving biological information intact.
There are several potential approaches to cross-study analysis,

depending on what information is being synthesized. At the
highest level, onemaywish to combine, throughmeta-analysis or
other techniques, the broad conclusions of different studies.
Most existing work on multi-study gene-expression analysis is
focused on an intermediate level, where the goal is to combine
information from primary statistics (such as t-statistics or
P-values) or secondary statistics (such as gene lists) that are der-
ived from the individual studies (Choi et al., 2003; Garrett-
Mayer et al., 2004; Ghosh et al., 2003). Other approaches to
meta-analysis of gene-expression data are considered by
(Garrett-Mayer et al., 2007; Parmigiani et al., 2004; Rhodes
et al., 2002, 2004; Shen et al., 2004). This article deals with the
problem of cross-study normalization: how to combine two
available datasets in order to produce a single, unified dataset to
which standard statistical procedures (such as clustering, classi-
fication and measures of differential expression) can be applied.
There has been a great deal of work on the normalization

of gene-expression data within a single study (Bolstad et al.,
2003; Irizarry et al., 2003a, b; Yang et al., 2002). Much of that
work can be applied, with little modification, to normalizing*To whom correspondence should be addressed.
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data from multiple studies that are based on the same techno-
logical platform. The emphasis here is on the problem of com-
bining data from different array platforms. We will use the
term cross-platform normalization when this distinction is
important.

2 CROSS-PLATFORM NORMALIZATION (XPN)
METHOD

Here we describe the basic idea behind the XPN (cross-platform

normalization) method. We restrict our attention to merging two

studies; the model and fitting procedure can be extended in a natural

way to handle three or more studies.

XPN takes as input the gene-expression measurements from two

studies, after appropriate preprocessing and imputation. One may work

with the set of common genes in the studies, or on a selected subset of

these genes. Once an appropriate set G of genes has been identified, the

available data can be represented as two matrices

Xp ¼ fxgsp : g 2 G; s ¼ 1, . . . , npg p ¼ 1; 2: ð1Þ

Here Xp denotes the available data from study p, and xgsp is the expres-

sion of gene g in sample s of study p. Let n1 and n2 denote the number of

samples in studies 1 and 2, respectively, m denote the number of genes in

G. The normalized data can be represented similarly, as two matrices
~Xp ¼ f ~xgsp : g 2 G; s ¼ 1, . . . , npgwith the same dimensions asX1 andX2.

2.1 Block linear model

The XPN procedure is based on a simple block-linear model. In this

model, the observed value xgsp is a scaled and shifted block mean plus

noise. The block mean is constant over a range of gene and sample

values, and is the same in each platform. The slope and offset of the

linear transformation, as well as the variance of the noise, depend on

the gene g and the platform p. More precisely, we assume that

xgsp ¼ A��ðgÞ,��pðsÞ, p � bgp þ cgp þ �gp"gsp: ð2Þ

The functions �* : {1, . . . ,m}} {1, . . . ,K} and ��p : f1, . . . , npg �
f1, . . . ,Lg, p¼ 1, 2, define linked groups of genes and samples,

respectively. The numbers Aijp are block means, while bgp and cgp
represent sensitivity and offset parameters, respectively, that are specific

to each gene and platform. The noise variables "gsp are independent

standard normals, so the final term in (2) has variance �2
gp. The model

reflects the assumption that the samples of each available study fall

roughly into one of L statistically homogenous groups, and that each

group is defined by an associated gene profile that is constant within

each of K groups of similar genes. The block means {Ai, j : i¼ 1, . . . ,K}

represent the profile of the jth group. Figure 1 illustrates the underlying

block structure. Note that the basic studies may be of different sizes.

A heatmap illustrating the same idea on real data is provided in the

Supplementary Materials.

2.2 Description of XPN

Initially, the data from the available studies are sample standardized and

gene median centered, in order to remove gross systematic differences,

and then combined. Following the model (2), clustering is then used to

identify homogenous groups of genes and samples in the combined data

matrix. Specifically, k-means clustering is applied independently to the

rows and columns of the combined datamatrix, using k¼K gene clusters

and k¼L sample clusters, respectively. Application of k-means begins

with a random choice of centroids for the clusters. In clustering rows,

we selectK rows of the data matrix at random, and use these as the initial

centroids. Cluster assignments and centroids are then updated iteratively

until convergence to a local minimum of the sum of squared Euclidean

distances. A similar procedure is used for clustering of the columns.

The gene clusters in the combined data matrix are summarized by the

assignment function � :G! {1, . . . ,K}. Gene clusters are naturally

linked across studies, as we work with the same genes in each study.

The column clusters in the combined data matrix are summarized

by assignment functions �p : {1, . . . , np}} {1, . . . ,L} for p¼ 1, 2.

Specifically, �p(s) is the index of the combined sample cluster containing

sample s from Study p. The ‘th combined cluster splits into linked

clusters {s : �1(s)¼ ‘} in Study 1 and {s : �2(s)¼ ‘} in Study 2.

From the mappings �(g) and �p(s), estimates of the model parameters

Âijp, b̂gp, ĉgp and �̂gp are obtained using standard maximum likelihood

methods. Details are given in the Appendix. Common model param-

eters �̂g ¼ ðb̂g; ĉg; �̂
2
g Þ and Âij are then calculated as weighted averages of

the parameters in Study 1 and Study 2:

�̂g ¼
n1�̂g, 1 þ n2�̂g, 2

n1 þ n2
Âij ¼

nj, 1Âi, j, 1 þ nj, 2Âi, j, 2

nj, 1 þ nj, 2

where nj,p is the number of samples in the jth sample group of platform p.

The expression values of each platform are then modified in accordance

with the estimated model parameters to produce normalized values

x�gsp ¼ Â�ðgÞ, �pðsÞ b̂g þ ĉg þ �̂g
xgsp � Â�ðgÞ, �pðsÞ, p b̂gp � ĉgp

�̂gp

 !
:

The output of the XPN algorithm is based on multiple clusterings of the

data. The procedure described above is applied 30 times, with different

randomly chosen initial centroids for the row and column clusters. The

output of the algorithm is the average of the normalized values

obtained over the repeated runs.

There are several reasons for averaging the results of multiple clus-

terings of the combined data matrix. To start, there is unlikely to be a

single, ‘biologically correct’ clustering of the available genes and samples:

disease subtypes and gene pathways are not always uniquely defined, and

they may exhibit moderate overlap. Multiple clusterings better capture

the structure present in this situation. By combining normalization

results from multiple clusterings (each of which yields a local minimum

of the sum of squares cost function) the XPN algorithm performs a

simple form of model averaging. Averaging also controls (minor)

instability that may arise from use of the k-means clustering procedure,

whose output is dependent on the initial choice of cluster centroids. In

this latter respect, XPN is similar in spirit to resampling-based

approaches to cluster stability such as those in (Dudoit and Fridlyand,

2002; Tibshirani et al., 2001; Tseng, 2007; Tseng and Wong, 2005).

In principle, the XPN method procedure can be used with any

clustering method that produces a pre-specified number of clusters from

a given set of vectors, or with resampling, based improvements of such

methods. We chose to use k-means clustering because of its simplicity

and computational efficiency. The validation study below indicates that

Study 1 Study 2 

Fig. 1. Studies 1 and 2 after row and column clustering of their

combined data, with K¼ 5 gene groups and L¼ 3 sample groups.

Shading indicates linked gene-sample blocks.
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the XPN method performs well, and generally outperforms competing

normalization methods, when it is used with basic k-means clustering.

The validation results leave open the possibility of further improve-

ments with alternative clustering methods, but a number of experiments

with other clustering methods have not produced better results.

In the current implementation of XPN, the number of row and

column clusters, K� 1 and L� 1, respectively, are fixed in advance, and

will depend on the type and dimension of the data under study. In

general, L should be large enough to capture principal sample groups or

subtypes, and L should be large enough to capture large, homogenous

groups of genes. In the numerical experiments below we chose K¼ 5

and L¼ 25. (In practice, XPN is not sensitive to the choice of K and L,

see Section 6.1 below). As a general rule we suggest letting the number

L of sample clusters be in range of 5–8, and the number K of row

clusters to be on the order of 10–30, depending on the number of genes.

As an alternative, one may employ a method such as the GAP statistic

(Tibshirani et al., 2001), implemented as an R function kmeansGap in

library ‘SLmisc’, to assess the number of row and column clusters in

the data. Applied to the dataset used in this article, the GAP statistic

suggested 4–8 sample clusters and 8–9 gene clusters.

3 OTHER METHODS

We compare XPN with several other normalization methods in the

literature. The other methods have previously been applied to batch

correction on single platforms, but are well adapted to more general

cross-study situations. As a baseline, we standardized each available

column (sample) (CS). Beginning with CS data, we median centered

each gene in each study and then combined studies. The resulting

procedure is denoted by (MC). The MC method is currently used in

practice, and in spite of its simplicity, performs relatively well in our

validation experiments. We also consider the Empirical Bayes (EB)

method (Johnson et al., 2007). EB is based on the model

xgsp ¼ ag þ �gp þ �gp�g"gsp, "gsp � Nð0, 1Þ

The platform specific parameters �gp and �gp are estimated using an EB

approach, and are essentially equal to least squares estimates shrunken

towards their respective cross-platform means. Other parameters are

estimated by gene-wise OLS. The data is then transformed to remove

the effects of different �gp and �gp across platforms. Finally, we

considered the Distance Weighted Discrimination (DWD) method for

batch correction (Benito et al., 2004), which is based on the DWD

method (Marron and Todd, 2004). DWDnormalization finds a direction

in which the sample-vectors from the two studies are well-separated, and

then translates the samples from each study along that direction until

their respective families of vectors have significant overlap.

The Probability of Expression (POE) method (Parmigiani et al., 2002;

Shen et al., 2004), transforms each data value into a signed probability in

the range [� 1, 1]. While this transformation is useful for identifying

meta-signatures, the resulting data is difficult to compare with normal-

ized values produced by other methods, and we do not include its

analysis here.

We note that each of the alternative normalization methods described

above is gene-wise affine, that is, for each gene g there exist constants

ag and bg, with ag40, such that ~xs, g ¼ agxs, g þ bg. As a result, the

correlation between xs,g and ~xs, g across samples s is 1 for every g.

In contrast, XPN seeks to simultaneously borrow strength across genes

and samples via linked row and column clusters, and as a result, XPN

is not gene-wise affine.

4 DATASETS AND PREPROCESSING

We applied XPN and the methods described above to three
existing breast cancer datasets. The first dataset, from (Huang
et al., 2003), has 89 samples and 8948 genes. Their experiments

were performed with Affymetrix GeneChip U95Av2 arrays. The
89 samples were obtained at the Koo Foundation Sun Yat-Sen
Cancer Centre (KF-SYSCC), Taipei. The second dataset, which
will be referred to as Nederlands Kanker Instituut [Netherlands
Cancer Institute (NKI)], comes from (van’t Veer et al., 2002). It
contains 97 samples and 16 360 genes, and was obtained from
Netherlands Cancer Institute and Rosetta Inpharmatics-Merck
custom designed 25K Agilent oligonucleotide arrays. Most of
the NKI patients had stage I or II breast cancer. The third
dataset, referred to as University of North Carolina (UNC), is
from (Hu et al., 2006). It contains 114 samples representing 104
patients and 12 065 genes, and was obtained using 22K Agilent
oligonucleotide arrays. The UNC sample set represents an
ethnically and geographically diverse cohort.
Initially, locally weighted regression (LOWESS) normaliza-

tion was applied to the NKI and UNC datasets; robust multi-
array analysis (RMA) was used to obtain expression values for
the Huang dataset. The raw expression values in each study were
then log-2 transformed, and missing values were imputed with
1-nearest neighbor imputation (Troyanskaya et al., 2001).
Duplicated genes in each datasets were collapsed by median
using Entrez Gene ID. There were 6092 common genes among
the three platforms. Cross-study normalization methods were
applied to this set of common genes, and subsequently to a
smaller set of ‘intrinsic genes’ (Perou et al., 2000) identified as
playing an active role in the biology of breast cancer.
The next section presents validation results for the set of

common genes. The same analysis for the set of intrinsic genes
is presented in the supplementary materials. In our experi-
ments, all cross-platform normalization methods worked better
on the set of intrinsic genes, and more generally, on smaller
gene sets selected using integrative correlation filtering. Prior
to cross-study normalization, the log-2 transformed expression
values in each platform were column standardized.

5 VALIDATION

Broadly speaking, cross-study normalization methods can be
assessed in terms of two competing criteria. Ideally, a normal-
ization method should produce a single unified dataset, in
which samples originating in Study 1 are not distinguishable
from those originating in Study 2 on the basis of non-biological
features. A method that fails to remove systematic differences
between studies under-corrects the data. On the other hand,
excessive homogenization of the studies (over-correction) can
result in a loss of biological information, and the combined
dataset may be less useful than its constituents.
The validation results presented below are intended to assess

the performance of the methods under study, and their
tendency towards over- and under-correction. We begin with
the column-standardized datasets X1,X2 and X3. Every method
is applied to each pair Xi,Xj with 1� i5j� 3 to produce
normalized data ~Xi, j ¼ ½ ~Xi, ~Xj�. Validation measures are applied
to each pair, and the average value of the measure over the
three pairs is reported. For before and after comparisons, we
take as a reference the initial data [Xi, Xj] produced by column-
standardization (denoted CS in what follows).
In order to better understand the baseline behavior and

biases of the normalization methods under consideration, we
also apply them to artificial studies obtained by randomly
dividing the arrays in a given platform into two pseudo-studies,
similar to the procedure in (Gentleman et al., 2006). To be more
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precise, from a single column-standardized dataset Xi, we
produce a pair X1

i ,X
2
i of pseudo studies by randomly assigning

each sample to one of two groups. Different normalization
methods are then applied to ½X1

i ,X
2
i �, yielding a normalized

datasets ~Xi ¼ ½ ~X1
i ,

~X2
i �. Validation measures are applied to

compare the pseudo-study and its normalized version. Each of
the three available datasets is randomly split 10 times, and the
average measure (over splits and studies) is reported.
By design, the data in each pair of pseudo studies come from

a common platform and study. Thus we anticipate that a cross-
study normalization method should have relatively little effect,
beyond its attempt to correct the unavoidable differences that
result from splitting the studies in half. While these differences
are not negligible, they are typically smaller than the differences
between platforms.

5.1 Measures of center and spread

For a given array, the difference between the mean and the
median of its values provides a rough measure of its asymmetry
in regards to location. After normalization, it is desirable to see a
similar distribution of asymmetry across both studies. Figure 2
shows the area between the cumulative distribution function
(CDFs) of mean minus median in the two available studies.
Graphs for both standard and split-study validation are shown.
A similar comparison for scale can be carried out by consid-

ering the SD (�) and median absolute deviation from median
(MAD). For the standard normal distribution with CDF �, we
have �¼MAD/�(0.75). Figure 3 shows the area between
CDFs of ��MAD/�(0.75) in each of the two available studies.
XPN reduces both measures more than the other methods; the
split study results show little bias for all methods.

5.2 Average distance to nearest array in another

platform

The set of arrays in given platform can be viewed as a set of points
in m-dimensional Euclidean space. After normalization it is
reasonable to expect that the point ‘clouds’ associated with
distinct platforms will have substantial overlap. (This is one of
the motivations behind the DWD normalization method.) To
measure overlap in a pair of normalized studies, we measure the
Euclidean distance from each array in the first study to the nearest
array in the second study, then repeat, swapping the roles of the
studies, and finally average the results. The results are presented
in Figure 4, with smaller values indicating greater overlap. XPN
and EB reduce the average distance more than other methods.
The split study results show little bias for all the methods.

5.3 Correlation with column standardized data

The previous validation measures assess the similarity of two
datasets after normalization. A natural way to see howmuch the
normalization methods affect the data is to calculate correlation
between the data matrices before and after normalization, where
‘before’ is represented by CS. This measure does not by itself
support a given normalization method, but in choosing between
methods that perform similarly across other validation mea-
sures, the method that has less effect on the data should clearly
be preferred. The average correlation of arrays before and after
normalization for the different methods under study is shown in
Figure 5. Median centering has the least effect on the data; the
other three methods yield average correlations close to 0.8, with
XPN lying between DWD and EB. Table 1 shows the average

correlation of genes before and after normalization, averaged
over both studies. As discussed above, all methods but XPN
perform normalization by transforming each gene in an affine
fashion; thus the gene correlation for these methods is equal to 1.
Similar remarks apply to the integrative correlation and
t-statistic measures described below. The gene correlation for
XPN is 0.99, with a split-study value of 0.996.

5.4 Global integrative correlation

Integrative correlation (Cope et al., 2007) is a means of iden-
tifying genes with concordant expression in different studies.
Let r1(g), r2(g) be the gth row of X1 and X2, respectively.
The global integrative correlation (GIC) between X1 and X2 is
the correlation between

ðCorrðr1ðgÞ; r1ðg
0ÞÞ : g; g0 2 G Þ ðCorrðr2ðgÞ; r2ðg

0ÞÞ : g; g0 2 G Þ

0

0.1

0.2

0.3

Validation Split

CS

MCtr

EB

DWD

XPN

Fig. 3. Area between the CDFs of ��MAD/�(0.75) for arrays of

different platforms. Lower values indicate greater similarity of datasets

after normalization.

0

0.02

0.04

0.06

Validation Split

CS

MCtr

EB

DWD

XPN

Fig. 2. Area between the CDFs of array mean minus array median

across platforms. Lower values indicate greater similarity of datasets

after normalization.

30

55

80

105

Validation Split

CS

MCtr

EB

DWD

XPN

Fig. 4. Average L2 distance from the samples of one study to the

nearest sample from the other study. Lower values indicate greater

similarity of the study point ‘clouds’ after normalization.
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here regarded as vectors with |G|2 components. High values of
IC(g) indicate good concordance between the values in Studies
1 and 2. GICs for different normalization methods are shown in
Table 1. The results for CS shows that the average GIC between
halves of the same platform (0.556) is much higher than average
GIC between different studies (0.255). XPN is the only method
among those considered that affects GIC. It increases GIC by
33% to 0.338 in cross-study validation, well below the split-
study level (0.556). XPN increases GIC between pseudo studies
by a relatively small 7%.
Each tumor sample in the datasets under consideration has

an associated, clinically based ER status (ERþ or ER�). We
next consider several validation measures based on this
biological information. The Huang dataset has only 15 ER
negative samples out of 89, making its split-study results
unstable, and is therefore excluded from the split study analysis
of the ER-based validation measures.

5.5 Correlation of t-statistics

For each platform, t-statistics measuring the association of gene-
expression values with the ER status are calculated. Ideally, the
vectors of t-statistics for different platforms should becomemore
concordant after platform normalization. Table 1 shows the
Pearson correlation between the t-statistics for ER status for
different normalization methods. (Results for rank correlation

are similar.) As expected, the average correlation of t-statistics is
higher in split study (0.446) than between platforms (0.312).
XPN increases the correlation of t-statistics between platforms
by 45% to 0.451. In split-study validation it increased correla-
tion by roughly 22%. Overall, XPN has greater effect than the
other methods considered. The correlation measurements above
show that, on average, XPN does not make dramatic changes in
the rows of the data matrices, and we believe that much of the
split study increase in t-statistic correlation is due to inherent
differences between the randomly selected pseudo studies.

5.6 Cross platform prediction of ER status

If we regard ER status as a binary phenotype, we may explore
misclassification rates associated with its prediction. Ideally,
combining labeled studies via cross-platform normalization
should lead to lower misclassification rates on test datasets. To
test the compatibility of different studies after normalization in
regards to classification, we treated the data from one study as
a training set, and the data from the other study as a test set,
and vice versa. Lower error rates indicate better concordance.
Classification was performed using two methods: nearest
shrunken centroids prediction analysis for microarrays
(PAM) (Tibshirani et al., 2002) and support vector machines
(SVM) (Boser et al., 1992; Cortes and Vapnik, 1995). The
results are presented in Figures 6 and 7. As can be seen, all of
the normalization methods greatly reduce cross-platform
prediction error, with the minimum error achieved by XPN.
In the split-study test, none of the methods produces significant
reductions in classification error, as expected.
One might also be interested in the 5- or 10-fold cross-

validation prediction error rate on the combined studies.
However, none of the normalization methods has a significant
effect on the cross-validated classification error. This appears to
arise from the fact that, in cross validation, the classification
methods are trained on elements of both platforms, and the
distinguishing features of ER status are strong enough to enable
the methods to perform well without prior normalization.

5.7 Preservation of significant genes

Lastly, we consider gene lists produced using ER-based
t-statistics at a nominal 0.1% significance threshold. Let Li be
the list of genes in Study i¼ 1, 2, and let L1, 2 be the list
produced at the same nominal 0.1% level from the combined
data ~X. Ideally, genes that are in both L1 and L2 should appear
in L1,2, and most genes that appear in at least one of the single
study lists will be in the joint list. We assess these two types
of overlap by measures V1¼ |(L1\L2)\L1,2|/|L1\L2| and
V2¼ |(L1[L2)\L1,2|/|L1[L2|, respectively. The results are
presented in Table 2. The value of V1 is 1 for all normalization
methods except CS, showing the importance of platform
normalization. The V2 measure is increased by all methods,
with the greatest increase achieved by MC and DWD.

6 FURTHER DISCUSSION OF XPN

6.1 Stability with respect to K and L parameters

To test stability of XPN with respect to the numbers K and L of
row and column clusters, we applied XPN with a range of
parameters. For L¼ 5 we triedK¼ 2, 10, 20, 25, 30, 50, 100, 500,

0.55

0.7

0.85

1

Validation Split

CS

MCtr

EB

DWD

XPN

Fig. 5. Average correlation of arrays with their values before normal-

ization (CS). Larger values indicate less modification of the data by the

normalization procedure.

Table 1. Gene-based correlation measures

CS, MCtr,

EB, DWD

XPN Change Change

(%)

Avg gene corr w/CS

Validation 1.000 0.990 �0.010 �1.0%

Split 1.000 0.996 �0.04 �0.4%

GIC

Valid’n 0.255 0.338 0.083 33%

Split 0.556 0.597 0.041 7%

ER t-stat correlation

Valid’n 0.312 0.451 0.139 45%

Split 0.446 0.543 0.096 22%

The first row shows the average correlation of genes with their value before

normalization (CS). The second row shows global integrative correlation (GIC)

between platform pairs after normalization, with larger values indicating better

concordance between platforms. The third row shows the average correlation of

ER t-statistics across platforms, with larger values indicating better concordance.
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and for K¼ 25 we tried L¼ 2, 4, 5, 6, 7, 8, 10. The results (pres-
ented in the Supplementary Materials) indicate that XPN is
generally insensitive to the choice of the K and L. However, we
do see (expected) degradation of performance in situations
where K or L is below four, in which case the clustering is too
coarse to adequately capture homogenous blocks of samples or
genes. At the other extreme, when L is large, one finds column
clusters containing samples from a single platform. For such
clusters the algorithm cannot combine information across plat-
forms, and its results will be degraded accordingly. (In its current
implementation, XPN excludes such clusterings from the aver-
age that forms its output.) Values of K larger than 25 make
the algorithm slower and do not substantially improve its
performance.

6.2 Stability of XPN output

The XPN algorithm averages the normalization results from B
row/column clusterings. To assess the stability of XPN, we
calculated the SD of each element in the normalized matrix
over the B¼ 100 runs of the basic procedure. The average SD
(over all elements and platform pairs) was 0.004. In contrast,
the average SD of the entries of the normalized matrices was
0.79. Thus, the variability of the normalized entries due to
random clusterings was, on average, two orders of magnitude
less than the variability between the final normalized entries.

7 CONCLUSION

The increasing number and public availability of large-scale
gene-expression studies provides impetus for cross-study

analyses that combine existing, and potentially new, datasets.
Properly combined datasets give researchers more power for
biological and statistical analysis. In this article we propose
a new, block model-based method, called XPN, for cross-
platform normalization. The block model distinguishes XPN
from other platform normalization methods such as DWD and
EB, which are gene-wise linear.
We propose a set of validation measures for comparison of

different normalization methods. The validation measures can
be roughly split in two groups. One group assesses the ability of
normalization methods to remove systematic differences across
platforms, while the other measures how much the data is trans-
formed by normalization procedures. Based on the proposed
validation measures, XPN successfully combined three existing
breast cancer datasets without incurring substantial overfitting.
In particular, cross-platform ER prediction error rates indicate
that XPN successfully preserved biological information while
removing systematic differences between platforms.
The XPN method has three parameters: the number of row

and column clusters (K andL) and the number of basic iterations
B. Our experiments indicate that the results of XPN are robust to
the choice of K and L (see Section 6.1). The analysis in Section
6.2 suggests setting B¼ 30 is sufficient for stable output.
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APPENDIX: MAXIMUM LIKELIHOOD ESTIMATION
OF THE MODEL

The XPN algorithm estimates the parameters of the Model (2)
usingmaximum likelihood approach. Themodel has distinct sets

of parameter for different gene clusters and different platforms.
Thus the problem of parameter estimation can be split into 2K
smaller tasks. Fix i2 {1, . . . ,K} and p2 {1, 2}. The log-likelihood
function associated with gene group i and platform p can be
expressed as

2li, p ¼ Cþ
X

ðs, gÞ :�ðgÞ ¼ i

lnð�2
gpÞ

þ
X

ðs, gÞ:�ðgÞ¼i

ðxgsp � Ai, �pðsÞ, p bgp � cgpÞ
2=�2

gp

To ensure identifiability of the coefficients {Aijp} and {bgp},
we set

XL
j¼ 1

Aijp ¼ 0,
XL
j¼1

A2
ijp ¼ L and

X
g:�ðgÞ¼ i

bgp 4 0

The parameters Aijp, bgp, cgp and �2
gp are chosen to maximize

the log-likelihood. To find them we take first derivative of the
log-likelihood with respect to these parameters and set the
result equal to zero:

dl=dcgp ¼ 0 ¼
X
s

ðxgsp � Ai,�pðsÞ, pbgp � cgpÞ

dl=dbgp ¼ 0 ¼
X
s

Ai,�pðsÞ, pðxgsp � Ai,�pðsÞ, pbgp � cgpÞ

dl=dAijp ¼ 0 ¼
X

ðg, sÞ:�pðsÞ¼j

bgðxgsp � Aijpbgp � cgpÞ=�
2
g

dl=d�2
gp ¼ 0 ¼ np�

�2
gp �

X
s

ðxgsp � Ai, �pðsÞ, pbgp � cgpÞ
2��4

gp

Here and in what follows, each sum is taken over all the
genes in the ith cluster. The above equations simplify to

cgp ¼ �xgp � n�1bgp
X
j

Aijpnjp

bgp ¼
X

s
Ai,�pðsÞ, pðxgsp � cgpÞ

h i
=
X

j
A2

ijpnjp

h i

Aijp ¼
X

ðg, sÞ:�pðsÞ¼j

ðxgsp � cgpÞbgp=�
2
gp

2
4

3
5= njp

X
g

b2gp=�
2
gp

" #

�2
gp ¼ n�1

p

X
s

ðxgsp � Ai, �pðsÞ, pbgp � cgpÞ
2

Define the sample mean and variance of the expression
values of a gene in sample block j:

�xgjp ¼n�1
jp

X
s:�pðsÞ¼j

xgsp, s2gjp ¼ n�1
jp

X
s:�pðsÞ¼j

ðxgsp � �xgjpÞ
2

This allows further simplification of the equations

cgp ¼ n�1
p

X
j
ð �xgjp � bgpAijpÞnjp

bgp ¼
X

j
Aijpð �xgjp � cgpÞnjp

h i
=
X

j
A2

ijpnjp

h i
Aijp ¼

X
g
bgpð �xgjp � cgpÞ=�

2
gp

h i
=
X

g
b2gp=�

2
gp

h i
�2
gp ¼ n�1

p

X
j
ð �xgjp � Ai,�pðsÞ, pbgp � cgpÞ

2
þ s2gjp

h i
njp

There is no closed form solution for this system of equations.
To obtain the estimates, the formulas are applied iteratively
until convergence of the parameters. Each iteration increases
the log-likelihood and the limit values satisfy all first order
conditions.
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