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Abstract

Mathematical models have assisted in describing the transmission and propagation dynamics of various viral diseases like 
MERS, measles, SARS, and Influenza; while the advanced computational technique is utilized in the epidemiology of viral 
diseases to examine and estimate the influences of interventions and vaccinations. In March 2020, the World Health Organi-
zation (WHO) has declared the COVID-19 as a global pandemic and the rate of morbidity and mortality triggers unprec-
edented public health crises throughout the world. The mathematical models can assist in improving the interventions, key 
transmission parameters, public health agencies, and countermeasures to mitigate this pandemic. Besides, the mathematical 
models were also used to examine the characteristics of epidemiological and the understanding of the complex transmission 
mechanism. Our literature study found that there were still some challenges in mathematical modeling for the case of ecol-
ogy, genetics, microbiology, and pathology pose; also, some aspects like political and societal issues and cultural and ethical 
standards are hard to be characterized. Here, the recent mathematical models about COVID-19 and their prominent features, 
applications, limitations, and future perspective are discussed and reviewed. This review can assist in further improvement 
of mathematical models that will consider the current challenges of viral diseases.

1 Introduction

The new pandemic also known as coronavirus disease 
(COVID-19), is an infectious disease caused by the con-
tagious virus, severe acute respiratory syndrome (SARS-
CoV-2). It has risked the well-being of people and caused 
major global economic losses [1–5]. COVID-19 pace pre-
vention and global initiatives cannot be well understood by 
biological and health-care instruments alone, since it is a 
complex pandemic and the developments in therapies and 
medical services require certain mathematical tools. Thus, 
the mathematical models are indispensable for the estima-
tion of main transmission parameters and countermeasures 
to mitigate this pandemic [6–10].

Many new mathematical models have been used to 
understand and estimate the dynamics of the COVID-19. 
It is very important for monitoring and planning by public 
health organizations. As there is no well-defined vaccine 
and appropriate treatment drugs, more accurate mathemati-
cal models are needed to fine-tune quarantine policies and 
other government acts such as lockdown, media attention 
for social isolation and better public health, etc., for the 
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management of illness. Further, stochastic and heterogene-
ous contacts between individuals should be considered in the 
established model [11–18]. Recently, Yang et al. [1] released 
a mathematical model to evaluate the production of COVID-
19 in China. The severity and timing of the epidemic peak 
and the final epidemic factor were expected by various inter-
vention strategies focused on an updated compartmental 
susceptible-exposure-infectious-recovered (SEIR) system. 
This is a typical example of the study of transmission and 
distribution of COVID-19 through the use of mathematical 
modeling techniques. Therefore, an accurate understanding 
of the disease's dynamics is important for reducing social 
infection as infectious diseases add to the broad challenge 
facing citizens and the country's economy. Another problem 
is the implementation of a suitable strategy against the trans-
port of diseases. One of the main tools to deal with these 
challenges is the mathematical modeling technique [18–25].

To estimate better results of the pervasiveness of conta-
gious diseases, several mathematical models have been intro-
duced and these models are based on differential equations. 
Recently, researchers showed that the fractional differential 
formulations are useful to estimate a more precisely model 
global dynamics and can be applied in different domains 
such as engineering, biology, physics, economics, finance, 
epidemiology, and theory of control [26–32]. By using these 
mathematical models, the rate of change in COVID-19 can 
be understood and how the disease can affect persons at risk 
and in under-quarantine. Therefore, recent research is the 
focus on developing a biological model for infectious dis-
eases using mathematical formulations [33–38]. This review 
work aims to present a constructive discussion about various 
mathematical models and their merits and limitations; so, 
researchers can concentrate on appropriate models that can 
be utilized for the COVID-19 prediction.

1.1  Organization

To ease the flow of paper, the paper begins with a compre-
hensive abstract. Sect. 1: introduction describes the overall 
situations and preliminary definitions related to Covid-19. In 
Sect. 2 the role of different mathematical models in under-
standing the rise, spread, and forecasting of COVID-19 is 
reviewed in detail based on the models briefed. Section 3 
is dedicated to mathematicalling modelling of COVID-19 
simulating the role of aerosols in its transmission. Section 4 
discusses the merits of various mathematical modeling bases 
on the review outcome of Sect. 2. Limitations and future 
directions are discussed in Sect. 5. Section 6 contains brief 
discussions of reviewed models and their limitations in 
general, concluding remarks with usual assumptions made 
by the researchers. It is strongly believed that the outcomes 
of this article can assist in the further improvement of 

mathematical models that will consider the current chal-
lenges of viral diseases.

2  Review of COVID‑19 Mathematical 
Modelling

Many people around the world have been hampered by the 
epidemic of the COVID-19 virus that was originally identi-
fied in China. Mathematical models can be very productive 
in order to better understand and forecast the propagation 
dynamics of this epidemic [39–43]. Numerous mathemati-
cal models varying largely for prediction/forecasting of this 
disease, role of quarantine, deaths, registered cases, etc. are 
modeled at different levels. The summary of the models 
used by researchers is briefed in Table 1 with references. 
In Table 2 an overview of COVID-19 mathematical mod-
els highlighting the study type, model related, advantages 
and disadvantages are summarized. In this review article, 
the role of mathematical models in understanding the rise, 
spread, and forecasting of COVID-19 is provided in detail 
based on the models briefed. Most of the mathematical 
modeling of the disease reported is pertinent to the com-
partmental model. An idea of compartmental models along 
with intra movements is shown in Fig. 1. The transmission 
structure of COVID-19 and the spread of infection from a 
single person is shown in Figs. 1 and 2 respectively for the 
sake of demonstration.

The following assumptions are usually accompanied 
with different mathematical models and are summarized as 
follows: (a) the rates of viral mutation in various countries 
are similar; (b) persons recuperated will achieve permanent 
immunity to COVID-19; (c) the consequences (also spa-
tial data structures) of climate change will be overlooked in 
the short-term forecasts; (d) travel behavior of the people 
was not influenced by the disease; (e) during the incubation 
period, infected individuals could not infect others; (f) the 
pandemic does not have strong seasonality in its transmis-
sion; (g) even distribution of population in the region of 
study.

The present contributions in the epidemiological mod-
eling of Covid-19 comprise various types of models: sta-
tistical models, mathematical models, network-based mod-
els, and phenomenological models. SIR compartmental 
models are most popular in modeling epidemic dynamics 
because of its conceptual and mathematical simplicity. 
Only very few models are based on two-dimensional or 
three dimensional partial differential equations. Viguerie 
et al. [107] presented an early version of a SEIRD (Suscep-
tible–Exposed–Infected–Recovered–Deceased) mathemati-
cal model based on partial differential equations coupled 
with a heterogeneous diffusion model. It described the spa-
tiotemporal spread of the COVID-19 pandemic, and aims 
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to capture dynamics also based on human habits and geo-
graphical features. Ahmed [108] tried to design the shape of 
corona virus (COVID-19) using the partial differential equa-
tion and found that the PDE method can produce smooth 
parametric surface representations of any given shapes of 
viruses having complex geometries.

Liu et  al. [126] developed two mathematical models 
SEIRU and SEIRU δ that incorporate the different phases 
(referring to Fig. 3) of COVID-19 epidemic infection in 
China. Proper care was taken to consider the major epide-
miological parameters like transmission rate, basic reproduc-
tive number, and daily reported cases. The results stress the 
importance of (1) implementing governmental restrictions 
to mitigate the brutality of the epidemic, (2) both reported 
and unreported cases in interpreting the number of reported 
cases, and (3) asymptomatic infectious cases in the transmis-
sion of disease.

Using a mathematical model, the dynamic analysis of 
health care capacity for COVID-19 was investigated by 
Cakan [65]. The authors examined the effect of health care 
efficiency for the case of local and global stability, while 
some numerical simulations were performed to help the 
model. It was shown that the model was dependent upon 
β (effective contact rate); if β is not small, the increase in 
infectious individuals is unavoidable. If β even increases 

by 0.17 ×  10−8, the health care capacity will exceed (refer 
to Fig. 4). The compartment model behaviors based on the 
proposed model can be seen in Fig. 5. In another study, 
Almeshal et al. [71] forecasted COVID-19 spreading by 
logistic regression and compartment modeling. Stochas-
tic and deterministic modeling was used for calculating 
the size of the spread in Kuwait. In Fig. 6, the effect of 
variation of reproduction number on spread control and its 
infection height are shown as obtained from their devel-
oped model using the Eq. (1). The rise in the number of 
reproductions will prolong the expected ending period by 
around 7 weeks and an approximately 29.57% increase in 
the outbreak rate. This rise may be since people are repat-
riating with significantly higher numbers from epicenters 
and asymptomatic, resulting in transmit the disease to the 
susceptible individual. Equation (1) can be expressed as 
follows [71]:

here, β and γ are the infection rate and the recovery rate 
and the proportion of the population infected every day, 
respectively. This model is based on SIR (Suscepti-
ble–Infected–Recovered (SIR) where the compartments are 

(1)R
o
=

�

�

Table 1  Different mathematical models adopted for modelling of COVID-19

Model COVID-19 studies References

Ordinary and partial differential equations (ODE and PDE) Modelling the dynamics of spread, infections, and deaths [44, 45, 45–50]

Susceptible-exposed-infected-recovered (SEIR) Dynamics, prediction, management strategies, Effect of tem-
perature and humidity levels

[6, 51–69]

Susceptible-infected-recovered (SIR) Track transmission and recovering rates in time, data fitting, 
management strategies

[63, 67–74]

Susceptible, un-quanrantined infected, quarantined infected, 
confirmed infected (SUQC)

Effectiveness of control measures and quarantine [75]

Susceptible-infectious-quarantined-recovered (SIQR) Quarantine, management strategies [76]

Stereographic Brownian diffusion epidemiology model 
(SBDiEM)

Modelling of infectious dynamics, nowcasting, and forecasting [77]

Susceptible individuals, asymptomatic infected, symptomatic 
infected, recov- ered, and deceased (SEIRD)

Prediction of lockdown for an optimal time [78–80]

Markov Chain Monte Carlo (MCMC) SPSS modeler Effects of self-protective measures, effect of temperature levels [81, 82]

Susceptible, exposed, infectious, hospitalized, dead 
(θ-SEIHRD)

Bed required in hospital, presence of transmittable unnoticed 
cases, various sanitary and infectiousness situations of 
attmitted people

[83]

Autoregressive integrated moving average (ARIMA) Death prediction for one month [84–87]

Fractional nonlinear grey Bernoulli model (FANGBM) Forecast the number of confirmed cases [88]

Logistic Total number of deaths [71, 89, 90]

Linear regression Daily cumulative confirmed, discharged and death cases [91]

q -homotopy analysis trans- form method (q -HATM) Study of epidemic prophecy [92]

SIDARTHE Spread of the disease [93, 94]

Other models Simulation modelling to help make most informed decisions, 
minimizing the effect, prediction of deaths

[42, 86, 87, 
95–99, 
99–106]
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S, I, and R. These are 1) population at risk of infection 2) 
infected population 3) recovered population, respectively.

Ribeiro et  al. [86] used stacking-ensemble learning, 
CUBIST (cubist regression), RIDGE (ridge regression), 
ARIMA (autoregressive integrated moving average), SVR 
(support vector regression), and RF (random forest) to evalu-
ate the task of COIVD-19 cases prediction in Brazil. The 
developed framework and the mathematical training model 
implemented are shown in Fig. 7 and Eq. (2), respectively. 
The efficacy of the models was assessed based on the index 
of change, mean absolute error, and the criterion of abso-
lute percentage error with a symmetric scale. In most cases, 
learning from SVR and stacking-ensemble achieves greater 
efficiency concerning adopted parameters than comparative 
models. The mathematical training model is expressed as 
follows:

where y(t+1) is one-day prediction, ny = 5 past cases. ∈ and 
σ2 are the random error and constant variance, respectively. 
Li et al. [89] examined the COVID-19 modeling data and it 
was found a fairly small error between both the model devel-
oped and the official data curve. Around the same period, 
the epidemic situation is based on forwarding prediction 
and backward observation; these relevant analyzes helped 
applicable countries to make policy choices. The model was 
developed by analyzing the existing Hubei epidemic data, 
and after that, the simulation was performed. Li et al. [89] 
analyzed the key factors influencing the spread of COVID-
19 such as the number of simple regenerations, the time of 
incubation, and the total number of cure days. The authors 
forecasted the transformation of current epidemic data and 
showed a significant impact on the epidemic if controls were 
imposed. Furthermore, according to current data abroad, 
making ambitious estimates of the disease development 
patterns in South Korea, Italy, and Iran, pointing out poten-
tial outbreaks and the associated control time, and tracking 
countries' initial transmission dates.

Kyrychko et al. [51] developed a SEIR-type mathematical 
model of COVID-19 dynamics to estimate the number of 
cases and deaths in Ukraine. It was estimated that restricting 
mixing among children and youngsters has a larger impact 
on reducing the number of cases because of larger mixing 
rates in these age groups while shielding over-60s might 
have a smaller effect on reducing the number of cases, but 
might significant reduction in the number of deaths. Also, 
the results recommend that dropping work contacts is more 
efficient at reducing the disease issue than reducing school 
contacts or implementing shielding for people over 60 age. 
Badr et al. [103] used daily mobility data (Jan 1 to April 20, 
2020) to capture real-time trends in movement patterns for 
each US province by fitting a statistical model. The mobility 

(2)y(t+1) = f

{

yt,… , yt+1−ny

}

+ ∈ ∈∼ N
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Fig. 1  COVID-19 Transmission structure model [73]

Fig. 2  Spred of infection with intial infection by person A [105]



1317Merits and Limitations of Mathematical Modeling and Computational Simulations in Mitigation…

1 3

patterns were strongly correlated with decreased COVID-19 
case growth rates for the most affected provinces in the USA 
and dropped by 35–63% relative to the normal conditions. 
The findings also strongly support that social distancing 
played a crucial role in the reduction of case growth rates 
in the USA.

Nicholas et al. [104] developed a mathematical model 
of SARS-CoV-2 transmission based on infectiousness and 
PCR test sensitivity over time since infection. The authors 
confirmed that all individuals with symptoms of COVID-
19 self-isolated and self-isolation were 100% effective in 
reducing ahead transmission, while self-isolation of symp-
tomatic individuals would result in a reduction in R of 47% 
(95% uncertainty interval). Weekly screening of health-care 
workers and other high-risk groups by use of PCR testing 
was predicted to decrease their influence on SARS-CoV-2 
transmission by 23% (95% UI). Adam et al. [82] studied 
early dynamics of transmission and control of COVID-19 
by combining a stochastic transmission model with data 
on cases of COVID-19 in Wuhan and international cases 
over the time during January 2020 and February 2020. It 
was reported that the median daily reproduction number in 
Wuhan decayed from 2·35 to 1.05 (95% CI 1·15–4·77) for 
the case of one-week travel restrictions.

Hernandez-Vargas [47] reviewed in-host mathematical 
modeling of COVID-19 in humans. The within-host model 
based on the target cell limited formulation generative num-
ber for SARS-CoV-2 was consistent with the wide values of 
human influenza infection. The immune cell response sug-
gested a slow immune response peaking between 5 and 10 
days post-onset of symptoms. The eclipse phase model sim-
ulations predict that SARS-CoV-2 may repeat very slowly in 
the first days after infection, and viral load could be below 
exposure levels through the first 4 days post-infection.

Many people around the world have been hampered by 
the epidemic of the COVID-19 virus that was originally 
identified in China. Mathematical models can be very pro-
ductive in order to better understand and forecast the propa-
gation dynamics of this epidemic. The fractional-order is 
linked to the memory effects and hence appears to be most 
efficient in modeling infectious diseases. Inspired by this, 
Karthikeyan et al. [80] developed a model for the transmis-
sion of COVID-19. It is a fractional-order infected person, 
symptomless affected, symptomatic infected, regained, and 
deceased (SEIRD) model. They also compared this model 
to the traditional one to determine various variables, by uti-
lizing the actual data from Italy, published by the WHO. 
They found that the fractional-order model is better than the 
traditional one as it has a low RMSE value.

Liang [44] reported the laws for the transmission of 3 
types of pneumonia: SARS, MERS, and COVID-19. He 
also compared the transmission features of the current 
COVID-19 with that of SARS and MERS. He developed 

Fig. 3  Important phases of COVID-19 transmission: Exposed or 
latency period is the phase in which an infected person without symp-
toms causes transmission. The incubation period is the phase before 
the symptomatic period. The transmissibility period overlaps both 
symptomatic and asymptomatic periods [126]

Fig. 4  I function variation with t (time) [65]

Fig. 5  The proposed models evolving in all compartments [65]
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growth models of transmission by analyzing the rate of 
growth and continuous suppression of the antiviral dis-
ease. The variables required for this growth model are 
acquired using non-linear fitting. They found that the rate 
of increase of COVID-19 is almost double that of SARS 
and MERS with the doubling period of 2 to 3 days, indi-
cating that without human involvement, the percentage of 
patients with COVID-19 will double in 2 or 3 days.

A massive worldwide crisis is caused by the ongoing 
COVID-19, with numerous confirmed cases and death 
rates. Probabilistic statistical methods can help to explain 
both coronavirus disease administration and monitoring in 
the absence of any active therapeutics or medicines and with 
an uncertain epidemiological lifespan. So Piu et al [45] in 
their report, using epidemic details of up to April 30, 2020, 
presented a compartmental statistical model to forecast and 

Fig. 6  Infection rates predicted 
for Ro (reproduction number) = 
2.2 and Ro = 2.3 [71]

Fig. 7  A framework to forecast 
COVID-19 [86]
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monitor the dynamic behavior of the COVID-19 pandemic 
in India. They calculated simple reproduction number R 0, 
to study simulations and forecasts. For both infection-free 
and endemic equilibrium points, they conducted the stability 
investigations w.r.t R 0. In addition, they demonstrated the 
disease persistence criterion for R 0 > 1.

Kiesha et  al. [56] used artificial site communication 
trends in Wuhan and applied these in the case of school 
closures, expanded workplace shutdowns, and a decrease in 
mixing in the general population to investigate how shifts 
in population mixing have influenced outbreak progress in 
Wuhan. They simulated the existing path of an outbreak in 
Wuhan using these datasets and the recent predictions of 
the epidemiological variables of the Wuhan outbreak and 
used the SEIR model for various spatial distancing steps. 
They found that if the phased return to work was during 
April, physical distancing measures were most effective as 
this reduced the median number of infections.

The age distribution of novel coronavirus (COVID-19) 
fatalities across Spain and Japan indicates just a minimal 
difference, even though the death rate per country indicates 
a wide variation. So to know the determining factor for this 
situation, Ryosuke et al. [54] built a mathematical model to 
explain the propagation dynamics and historical background 
of 20 COVID-19 and examined the data of fatal incidents of 
COVID-19 in Spain, and Japan. The parameter representing 
the age-dependence of vulnerability was calculated by fitting 
the model with the data published, taking into account the 
impact of the shift in contact trends during the occurrence of 
COVID-19 and the fraction of symptomatic infections with 
COVID-19. They found that if the mortality rate or frac-
tion of symptomatic outbreaks among all cases of COVID-
19 does not rely on age, then absurdly variable age-related 
susceptibility to COVID-19 infections between Japan, and 
Spain are necessary to justify the similar age-related mortal-
ity distribution but varying basic replication numbers (R0).

The mathematical model developed by Veera Krishna 
[55] was to know the spread and control of COVID 19. 
He developed the modeling for vulnerable, uncovered, and 
transmittable inhabitants and isolated inhabitants. They cal-
culated the reproduction number and their results shown the 
additional diagnostic holders than the actual authenticated 
holders and proposed a study of the impact of the recog-
nition of cases to identify the magnitude of the epidemic. 
The mathematical model given in [49] describes how fast 
COVID 19 spreads through contact and how fast new infec-
tions spread the disease. They consider the susceptible, 
exposed, infected, and isolated people for their modeling. 
They concluded that for a low contact rate if the reproduc-
tive number is less than one, the COVID 19 disease may be 
controlled.

The mathematical model proposed in [42] describes the 
time evolution of COVID 19 in Brazil. Their mathematical 

model describes daily growth and daily change in different 
cities of Brazil. The model predicted the confirmed cases in 
July, August. They have not described the effect of factors 
like social distancing and re-opening of essential services on 
growth rate as the model depends on the exponential decay 
curve. SEIR model is used for COVID 19 with the help of 
the particle swarm optimization to show the evolution of 
COVID 19 in Hubei province. There is a difference between 
the estimated value of recovered and hospitalized people by 
their model and actual data due to small real data considera-
tion into their model [53].

A mathematical model is developed for the understand-
ing of COVID 19 in Nigeria [46] to understand its dynam-
ics. They considered both symptomatic and asymptomatic 
infected people for mathematical modeling by taking the 
fraction of people who use facemask into account. Their 
results show that the disease will be ceased if 55% of the 
population follows social distancing and face mask usage.

Yousaf et al. [85] performed an analysis based on data 
collected by the NIH (National Institute of Health)-Islam-
abad and described a prediction of reported COVID-19 
cases and the number of fatalities and recovery rates in 
Pakistan using the ARIMA (Auto-Regressive Integrated 
Moving Average Model). The fitted prediction model 
showed high exponential growth in actual cases, deaths, 
and recoveries. Based on their forecasting model, the num-
ber of reported cases may significantly raise by 2.7 times, 
95% forecast interval for the number of cases at the end 
of May 2020 = (5681–33,079). There might be up to 500 
deaths, 95% forecast interval = (168–885) and the number 
of recoveries may be eight times higher, 95% forecast inter-
val = (2391–16,126). Salgotra et al. [100] used the Genetic 
Programming (GP) as a predictive model for confirmed 
cases and death cases along with all three of its most affected 
states, namely Delhi, Gujarat, and Maharashtra and also 
India as a whole. The proposed algorithm was described 
by using the explicit formulation, and it studied the inad-
equacy of prediction variables. Statistical parameters and 
metrics were used for the evaluation and validation of the 
model. The proposed model showed an accurate estimation 
for COVID-19 cases in India in time series. The pseudo-
code for time-series prediction model Algorithm 1 for the 
confirmed cases (CC) of COVID-19 in India is referred to 
in Fig. 8.

Wu et al. [69] developed a transmission dynamics model 
for COIVD-19 and showed that there was a limit to reduc-
ing the transmission contact rate. It was estimated that the 
probability of transmission per contact (β) was virtually 
unchanged since 26 February, indicating a lack of improve-
ment in personal protection in Ontario. Refers to Fig. 6a, 
b, the reported cumulative cases and the infected popula-
tion decreased significantly at peak time as β decreased. 
The epidemics may be peaked around April 2 if the risk 
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of transmission had decreased by 70%. Similarly, the total 
confirmed cases and a peak value of the infected population 
can be decreased by increasing the quarantine rate (q) and, 
most significantly, the diagnosis rate (δI) as shown in Fig. 9d, 
e and g, h, respectively.

Higazy [127] formulated the COVID-19 pandemic 
model by fractional-order model SIDARTHE which had 

not previously appeared in the literature. The presence 
of a stable solution of the COVID-19 SIDARTHE frac-
tional-order model was demonstrated and the necessary 
fractional-order conditions of the four control strategies 
were created. The responsiveness of the model to frac-
tional order and the parameters of the infection rate were 
also shown. All studies were simulated numerically using 
MATLAB increasing the differential equation solver for 
fractional order. Roda et al. [63] discussed why it was 
difficult to properly model to predict the COVID-19 
pandemic. The authors showed that the main reason for 
wide variations was the non-identifiability in model cali-
brations using confirmed case data. Using AIC (Akaike 
Information Criterion) for model selection, a model with 
SIR performs much smarter than a model with SEIR in 
portraying the data stored in the confirmed data. After the 
City's lockdown and quarantine on January 23, predic-
tion performance for the COVID-19 outbreak in Wuhan, 
it was found that the effects of the city's strict quarantine 
indicators on the time course of the epidemic, and simu-
lation the possibility of a second outbreak after the city's 
return to work. For the SIR and SIER models, the transfer 
diagrams were shown in Fig. 10. The model equations are 
also reported by the Eq. (3); where ρI, ρ, β, 1/τ and I0 are 

Fig. 8  Algorithm  1 of the time-series prediction model for the con-
firmed cases (CC) in India [100]

Fig. 9  a, b Effect of the probability of transmission (β), d, e quarantine rate (q), and g, h diagnosis rate (δI) of COVID-19 pandemic of Ontario 
[69]
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the normal distribution, diagnosis rate, the transmission 
rate, variance, the initial population size for I compartment 
on  21st January at t = 0.

(3)

S
� = −�IS

I
� = �IS − (� + �)I

R
� = �I − dR

S
� = −�IS

E
� = �IS − �E

I
� = �E − (� + �)I

R
� = �I − dR

Eikenberry et al. [58] analyzed the role of face masks 
in the prevention of COVID-19 and established a com-
partmental model for the overall, asymptomatic public to 
assess the community-wide impact of mask use, a portion 
of which could be asymptomatically infectious. Based on 
data on COVID-19 dynamics in New York and Washington, 
simulation results indicated that broad implementation of 
even largely ineffective face masks can significantly reduce 
COVID-19 community transmission and minimize death and 
hospitalization. The peak hospitalization and mortality rate 
from the developed model are presented in Fig. 11.

Pathan et al. [128] investigated the rate of mutation of 
the entire genomic sequence gathered from different coun-
tries’ patient dataset using recurrent NN (neural network). 
The dataset gathered was indeed processed separately to 

Fig. 10  Model SIR and SIER 
transfer diagram [63]

Fig. 11  Simulated epidemics, 
cumulative mortality and rela-
tive peak hospitalizations [58]
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determine the nucleotide mutation and codon mutation. The 
determined mutation rate was categorized for four different 
regions, based on the size of the dataset: China, Australia, 
the USA, and the remaining world. Huge amounts of Thy-
mine (T) and Adenine (A) are mutated to other nucleotides 
for all regions, but codons were not frequently mutating like 
nucleotides. The training and testing results of the mutation 
rate from the model were successful with the proposed neu-
ral network model as presented in Fig. 12.

Chimmula and Zhang [98] assessed the main elements 
of the current COVID-19 eruption in Canada and the whole 
world to forecast the patterns and potential stoppage time. 
The authors described the LSTM (Long Short-Term Mem-
ory) networks and a deep learning method for forecasting 
future COVID-19 cases. Depending on the outcomes of 
the LSTM network, it was estimated the outbreak could 
end around June 2020. Scheiner et al. [62] investigated the 
importance of the death kinetics law and a core component 
of the SEIR models. The latter approach was contrasted with 
an alternative approach called the infection-to-death law. 
To this end, it was tested how well these two mathematical 
formulations reflect the country-specific data on reported 
deaths in publicly accessible countries through ranges of 
57 countries. The variables of model governance, namely 
the death transfer coefficient of the model kinetics of death, 
the obvious fatality to case fraction, and the typical fatal 
infection to death regulation period were time-invariant. A 
transmission network model that captured the contact het-
erogeneity among individuals was developed in which each 
node represented an individual and the edges represented 
mingling between individuals through which the disease 
was transmitted. The developed model was well fitted to the 
reported data for the COVID-19 epidemic in Wuhan (China), 
Toronto (Canada), and the Italian Republic using a Markov 
Chain Monte Carlo (MCMC) optimization algorithm. The 

model emphasized that the role of containment strategies, 
personal protection, and social distancing in mitigation of 
COVID-19 transmission [81, 129].

Mandal et  al. [76] formulated a mathematical model 
introducing a quarantine class and governmental interven-
tion measures to mitigate disease transmission to forecast a 
short-term trend of COVID-19 for the three highly affected 
states, Maharashtra, Delhi, and Tamil Nadu, in India; and 
it suggested that the first two states need further monitor-
ing of control measures to reduce the contact of exposed 
and susceptible humans. The simulation of the developed 
mathematical model suggested that both quarantine and 
governmental intervention strategies like lockdown, media 
coverage on social distancing, and public hygiene can play 
an important role in diminishing COVID-19 transmission; 
while a success rate is highly dependent on the proper imple-
mentation of the process. An appropriately formulated math-
ematical model was developed by Okuonghae et al. [68] 
to study the influence of various non-pharmaceutical con-
trol measures like social distancing, use of face mask and 
case detection (via contact tracing and subsequent testing) 
to mitigate the COVID-19 in Lagos, Nigeria. The model 
results showed that if at least 55% of the population com-
plied with the social distancing regulation with about 55% of 
the population effectively making use of face masks while in 
public, the disease will eventually die out in the population. 
The same applies to the increased case detection rate. The 
results demand the critical attention of policymakers in strict 
enforcement of control measures and the medical authority 
to identify new cases.

The mathematical model similar to the SIRS model was 
developed by Kassa et al. [70] with or without backward 
bifurcation and was based on reproduction number, which 
equals or less than unity for the presence or absence of rein-
fection. The model was well validated by using available 

Fig. 12  Mutation rate (nucleotide) forecasting [128]
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data and the same was used to enforce different mitigation 
strategies like isolation of at least 30% of the asymptomatic 
infectious group and provide medical attention for at least 
50% of symptomatic patients. The asymptomatic infectious 
group played a major role in the re-emergence of the disease 
in the future. Ivorra et al. [83] proposed a new θ-SEIHRD 
model namely that of infection and the different health and 
infection conditions of hospitalized people and takes into 
account the known special characteristics of that disease. 
It required in particular a novel approach to the fraction of 
cases found relative to the true total cases infected, allowing 
the value of this ratio to be analyzed concerning the impact 
of COVID-19. The model was able to determine hospital 
bed needs. The data that authorities report on this pandemic 
were sufficiently complicated to capture important results, 
but still simpler enough to allow a fair determination of its 
parameters. In Fig. 13, the evolution of cases in china is 
depicted available from data and also from the model.

Sahin and Sahin [83] predicted the number of actual 
COVID-19 cases in Italy and the USA The prevision was 
contrasted in this analysis with the nonlinear fractional 
model Bernoulli (FANGBM(1,1)) and gray model (GM(1,1), 
the nonlinear gray model Bernoulli (NGBM(1,1)). There 
were total handlings of the number of COVID-19 cases in 
these countries. Models prediction results were calculated in 
the average absolute percent error (MAPE),  R2, root average 
square error (RMSE) estimate values. The FANGBM (1,1) 
offered the lowest MAPE and RMSE values and the highest 
 R2 for these countries with the highest prediction results. 
Currie et al. [95] described the complexities of the COVID-
19 pandemic and explore how simulation modeling will 
assist decision-makers to make the most informed decisions. 
The investigation was like a call to arms and policy-makers 

as a guideline on how the simulation community can provide 
help. The number and scale of decisions described here indi-
cate that there may be not enough modelers to thoroughly 
and efficiently address all of these questions, and it needed 
to choose what we are doing carefully and share results and 
models quickly across our international networks to optimize 
the value of modeling simulations to reduce the impact of 
COVID-19.

Chakraborty and Ghosh [95] carried mathematical mod-
eling for producing short-term (real-time) forecasts of poten-
tial COVID-19 events, for multiple countries risk assessment 
(in case of fatality rates) of the current COVID-19 by defin-
ing several significant population characteristics for coun-
tries along with other disease characteristics for some of the 
deeply affected countries. To address the first question, the 
authors have previously developed a hybrid approach based 
on the auto-represented integrated moving average model 
and the Wavelet model, which can generate a short (ten days 
ahead) forecast for Canada, France, India, and South Korea 
for the number of cases conducted daily. The ARIMA model 
can be expressed by Eq. (4) used to forecast the cases on a 
real-time basis. The real-time forecast for South-Korea based 
on the developed model is presented in Fig. 14.

Zhang et al. [130] analyzed the regularly accessible new 
case data from the COVID-19 outbreak in six Western 
countries of Group of Seven (i.e., France, Canada, United 
Kingdom, Germany, Italy, and the USA) using a segmented 
Poisson model. The authors have taken into account the 
measures by the government concerning COVID 19 (stay-at-
home meetings, lock-ups, quarantine, and social distancing). 
This methodology enabled us to estimate the turning point 
(at the regular peak of new cases), the timeframe (duration 
of the outbreak), and the assault rate (percentage of the total 
population infected during the outbreak) for these countries 
(referring to Fig. 15). The maximum value of the daily con-
firmed cases was given by Eq. (5) as follows:

where α, β, and γ were estimated first, then tpeak peak time 
was calculated to predict the further spread of the outbreak.

Given the potential transfer of COVID-19 from dead 
bodies to human beings and the lock-down effect, a mathe-
matical model has been suggested by Atangana [64]. Three 
incidents have been considered. The first case indicated 
the body was passed from dead to living (medical pro-
fessionals performing postmortem treatments and direct 

(4)
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+ �
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�2

)

=∶ tpeak

Fig. 13  Several deaths from a.r.c. (adjusted reported cases) and from 
the developed model (EXP) [83]
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communications during funeral ceremonies). This case 
does not have balancing points, except for disease-free 
control, a strong sign that corpses due to corona-19 must 
be handled carefully. In the second example, the transfer 
rate from dead bodies has been reduced. There was a bal-
ance in this situation, as the number of deaths, carriers, 
and infected persons increased exponentially to a certain 
degree of stability. In the last case, Atangana [64] used 
the next-generation matrix to provide a lock-down and 
social distancing effect. It was found that they hit a zero-
output number with a very fast degradation of the number 
of deaths, contaminated and transported. This is a strong 
indication that the danger of COVID-19 could be mini-
mized within several months if lock-down guidelines were 

to be followed. While the proposed mathematical model 
agreed with the lock-down performance and it is necessary 
to note the harmful effects of insufficient testing.

Sun and Wang [66] compiled data and trained an 
ODE (ordinary differential equation) model to fit in the 
epidemic data from 23rd January to 25th March of Hei-
longjiang province. To describe the effect, they extended 
the simulation by using this trained model. The newly 
reported COVID-19 infections in Heilongjiang province 
were carried out by an imported ‘escaper’. The Stochastic 
simulations showed further that substantially that local 
contacts among imported ‘escapers’ contributed much to 
the COVID-19 local outbreak, their epidemiologic related 
cases, and susceptible populations. The ODE used for 
model development was implemented as follows:

where λ defines the quarantine discharge rate. The average 
contact rate between S and C, A, and I is defined by the βi 
(i = 1…3). The average contact rate between sensitivity and 
near contacts is approximately β1. β2 describes the average 
rate of touch among susceptible and asymptomatic patients. 
β3 refers to the normal interaction between vulnerable and 
contaminated populations. β denotes an asymptomatic 
self-recovery rate as all asymptotical patients may recover 
untreated. ν1 & ν2 is the rate of transition from closer to 
asymptomatic contacts and diagnosed contacts. ν3 is the 

(6)
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Fig. 14  Forecast of COVID-19 
cases for 10 days [95]

Fig. 15  Model prediction and data obtained having good fitness. 
Green dash lines represent forecasting [130]
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transition to diagnosed cases from asymptomatic. μ is the 
average recovery (maximum) rate [66].

Soukhovolsky et al. [72] developed a simple phase tran-
sition mathematical model with an autoregressive distrib-
uted lag based on the data from the World Health Organi-
zation and Johns Hopkins University between 01.01.2020 
and 04.17.2020. This model was able to make an accurate 
prediction of the COVID-19 dynamics in 10 days with an 
exponential feature and predict the effect of the government/
health strategies. The developed model by Alkahtani et al. 
[94] was based on Lagrange polynomial and use the con-
cept of a fractional differential operator. It helped in imple-
menting strategies during the COVID-19 intervention in 
Italy. The model has 8 components leading to a system of 8 
ordinary differential equations and used the concept of the 
next-generation matrix to derive the reproductive number. 
Numerical simulations were presented for different values of 
fractional orders with a detailed overview of the stability of 
equilibrium points. Singhal et al. [106] established two sepa-
rate modeling models for monitoring the trend for a variety 
of cases and also foreseeing cases in the next few days to 
prepare for this epidemic. One was a mathematical concept 
that considers different parameters related to virus propaga-
tion, while the second was a non-parametric model that was 
adapted to the available data using the Fourier decomposi-
tion method (FDM). The study was conducted for different 
nations, but comprehensive findings were available for Italy, 
India, and the USA. The turnaround dates were calculated 
for the pattern in affected individuals. The developed model 
fitness for the selected countries is displayed in Fig. 16.

Rodriguez et al. [131] carried the modeling of and predic-
tion of Mexican COVID-19 infections, using only reported 
cases given in the regular technical report COVID-19 
MEXICO, by mathematical and computational models. 
Mathematical models: Gompertz and logistic, as well as the 
statistical model, have been used to model the number of 
instances of COVID-19. The results indicated a great match 
between the data observed and the Gompertz, Artificial, 
and Logistic Networks model. The Gompertz, Logistic, and 
reverse ANN models were then used to estimate the total 
number of COVID-19 infected before the end of the epi-
demic. Zhang et al. [67] studied the suitability of fractional-
derivative equations (FDEs) for modeling the dynamics and 
mitigation of the COVID-19 pandemic for the first time in 
the literature. The model was based on the Susceptible, 
Exposed, Infectious, and Recovered (SEIR) with a time-
dependent feature and was validated promptly. It was used 
to predict the evolution of the COVID-19 pandemic for three 
months in China. The simulation results showed significant 
spatiotemporal variations in the recovery rate and the num-
ber of deaths follows the above said temporal FDEs. The 
developed model was used successfully in the USA, Italy, 
Japan, and South Korea. Evaluation of non-pharmaceutical 
strategies to mitigate the COVID-19 epidemic was addition-
ally carried out by a time FDE model based on the ran-
dom walk particle tracking scheme, which was analogous 
to a mixing-limited bimolecular reaction model. The model 
declared that strict social distancing is more effective than 
self-quarantine as not all infected people can be diagnosed 
and immediately quarantined.

Fig. 16  Model fitness for different countries to active cases [106]
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Ndaïrou et al. [61] have suggested a mathematical com-
partmental model for the propagation of the disease COVID-
19 that focuses on super disseminators’ transmissibility. 
They measured the fundamental threshold for reproductive 
numbers, analyze the local stability of the disease-free bal-
ance regarding the basic reproductive number, and analyze 
how sensitive a model is when it comes to changing its 
parameters. Number simulations indicated the suitability for 
an outbreak in Wuhan, China of the proposed COVID-19 
model. Lalmuanawma et al. [101] comprehensively reviewed 
the importance and consequent use of artificial intelligence 
(AI) and machine learning (ML) in screening, predicting, 
forecasting, contact tracing, and drug development for the 
COVD-19 pandemic. Khoshnaw et al. [96] developed an 
updated model by reviewing the existing models. The update 
included a system of differential equations with transmis-
sion parameters. Some key computational simulations and 
sensitivity analysis were investigated by using three differ-
ent techniques: non-normalizations, half normalizations, and 
full normalizations. The transition rates between asympto-
matic infected with both reported and unreported sympto-
matic infected individuals were very sensitive parameters 
concerning model variables in spreading this disease.

Arino et al. [132] developed an epidemic model, SL1L2I-
1I2A1A2R, that incorporates an Erlang distribution of times 
of sojourn in incubating, symptomatically, and asympto-
matically infectious compartments that are important in the 
context of the current COVID-19 pandemic. Li et al. [59] 
developed a mathematical model to answer those who com-
plain of symptoms of influenza similarity (ILI), who may 
be at risk for COVID-19 contraction or other emerging or 
re-emerging respiratory infectious substances, which were 
to use kits to detect serious lack of testing tools. In the case 
of an outbreak with the influenza season, the model was 
applied to determine the effect of mass influenza vaccination 
on the spread of COVID-19 and other respiratory pathogens. 
Figure 17 shows an example used in the study to show the 
dynamics of the infection of COVID-19. Intensive contact 
tracing followed by quarantine and isolation interventions 

is indicated. Complete suspected cases of quarantine with 
symptoms of exposed quarantine (Ef), clinical fever (Sf), and 
contaminated quarantine (Iq) were recorded.

Zhao and Chen [75] defined the dynamics of COVID-
19 and specifically parameterize the intervention impacts 
of control steps, which are more fitting for analytics than 
other current epidemic modes, and established a prone, 
unquarantined, quarantined infected, Conferred infected 
model (SUQC). The SUQC model was used to evaluate the 
COVID-19 outbreak in Wuhan, Hubei (except for Wuhan), 
China (except for Hubei), and 4 first-class cities in China 
with the daily data of reported infections. In Wuhan and 
Hubei, the model predicted that the end time of the COVID 
19 is at around late March, for China, except Hubei, around 
mid-March, and for the four cities of tier-one before early 
March 2020. In total 80,511, 49,510 of them from Wuhan, 
17,679 from Hubei excl. Wuhan and the rest of 13,322 from 
other parts of China (excluding Hubei) were reported to be 
infected in China. Velásquez et al. [97] analyzed historical 
and expected infection for COVID-19 death based upon the 
Gaussian reduced-space phase regression, with knowledge 
collected day by day in 82 days, between 21 January and 
12 April 2020, in the sense of chaotic Dynamic Systems. 
According to the last findings, the mean-field models of 
COVID-19 can be assumed to be completely used for the 
outbreak to be quantitatively distributed by outbreaks, fatal-
ity, and recovery. It was estimated that about 14 July 2020, 
the highest in the USA will be 132.074 deaths of approxi-
mately 1,157.796 people, as well as 132.800 deaths at the 
end of epidemics.

Ayinde et al. [91] subjected the combined daily reports of 
COVID-19 of these three variables into nine single, quad-
ratic, cubic, and quartic statistical models. The best of 36 
models was classified and used in modeling and analysis 
which classified the best. The data collected by the Nigeria 
Disease Control Center were tracked daily and eventually 
analyzed for 64 days, two, and three months. The predic-
tion values are troubling, and the authors suggested the 
Government of Nigeria needs to rapidly review its activi-
ties and operations concerning COVID-19 to include some 
operational & effective mechanisms and measures to avoid 
these challenges. Abdo et al. [133] performed the analysis 
and defined the solution to the nonlinear FDEs (fractional 
differential equation), which describes the deadly and per-
haps most parlous virus known as a coronavirus (COVID-
19). Applying a fractional AB (Adams Basforth) method, 
the mathematical model according to 14 nonlinear FDEs 
was presented and the numerical results were examined. 
Besides, to achieve more efficient performance, a recently 
implemented non-local, fractional operator is known as 
Atangana-Baleanu (AB) was used. To demonstrate the exist-
ence, uniqueness, and consistency of the model, the fixed-
point theorems of Krasnoselskii and Banach were employed.Fig. 17  Modelling of COVID-19 dynamics [59]
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Alberti and Faranda [133] concentrated on statistical 
projections of COVID-19 infections carried out through the 
integration into real data of asymptotic distributions. By tak-
ing as a case-study the epidemic outbreak of COVID-19 
infections in the provinces of China and Italy, they found 
that the forecasts at the earliest stages of the epidemic 
were marked by significant uncertainties. After the height 
of the epidemics, those uncertainties decrease dramati-
cally. Differences in the variability of regional standards 
can be employed to illustrate the delay in the virus spread. 
The daily infections in three areas of China were shown in 
Fig. 18 which was used to model the pandemic for real-time 
forecasting.

In light of recent efforts to develop a global surveillance 
network for combating pandemics through artificial intelli-
gence, Bekiros and Kouloumpou [77] implemented the new 
SBDiEM for modeling, prediction, and nowcasting infec-
tious dynamics. This model can be modified for both past 
and COVID-19 outbreaks. The new approach can have major 
impacts on national health systems, global stakeholders, and 
policymakers. Kırbaş et al. [87] confirmed COVID-19 cases 
of Denmark, Belgium, Germany, France, UK, Finland, Swit-
zerland and Turkey were modeled with Auto-Regressive Inte-
grated Moving Average (ARIMA), Nonlinear Autoregression 
Neural Network (NARNN), and Long-Short Term Memory 
(LSTM) approaches. Six model performance metrics were 
used to select the most accurate model (MSE, PSNR, RMSE, 
NRMSE, MAPE, and SMAPE). According to the results of 
the first step of the study, LSTM was found the most accu-
rate model. The results of the second step of the study show 
that the total cumulative case increase rate was expected to 
decrease slightly in many countries. The study also revealed 

that unavailability or limited data makes modeling and predic-
tion more challenging.

Ng et al. [134] modified the SEIRS model with additional 
exit conditions to extend prediction on the current projections 
of the pandemic into three possible outcomes; death, recovery, 
and recovery with a possibility of re-susceptibility. The model 
also considered specific information such as the aging factor of 
the population, time delay on the development of the pandemic 
due to control action measures, as well as re-susceptibility with 
temporal immune response. The model was verified using 
two case studies based on real-world data in South Korea and 
Northern Ireland. Bozkurt et al. [50] studied the knowledge on 
coronaviruses currently collected and create a model for differ-
ential equations with piecemeal constant arguments to address 
the transmission of bat-borne coronaviruses from and through 
the natural host to the human host. The Linearized Stability 
Theorem considers the local stability of the positive balance 
point of the model. Moreover, by using a proper Lyapunov 
function, we address global stability. To evaluate the outbreak 
of early detection, the Allee effect was implemented at times 
and achieved complex activity stability conditions.

Fanelli and Piazza [135] examined in the time span 22 
Jan–15 March 2020, the time dynamics of the outbreak 
COVID-19 in China, Italy, and France. The first study of 
simple regular lag-maps points to a certain universality in 
the spread of the epidemic, which indicates the use of simple 
mean-field models to capture quantitative images of the spread 
of the epidemic, especially the heights and times of the peak 
of infected persons reported. Analysis of the same data on a 
single susceptible-infected-recovered-death model shows that 
the kinetically determining the recovery rate appears to be the 
same regardless of the region, while the infection rates and 
mortality rates seem more variable. Based on their estimates, 
they estimated that 2500 ventilating units should be a realistic 
number for the peak requirement for strategic planning in Italy. 
Finally, a simulation of the impact on the Italian outbreak of 
drastic control steps shows that a decrease in infection rate 
actually causes the epidemic to quench. In order to achieve a 
significantly declining rate of disease peak and mortality, how-
ever, the infection rate must also be substantially and rapidly 
decreased. Only a collective, albeit painful, initiative by the 
community as a whole seems to make this possible.

Here, population P = (C, R, D), β = 0.912, α = 2.181, C 
is confirmed cases, R reported death, D is deaths, n is the 
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day. In Fig. 19 the prediction using the developed model is 
provided.

Guliyev et al. [99] used the spatial panel models to inves-
tigate the direct and indirect spatial effects on the spreading 
of the COVID-19 pandemic and its relationship between 
confirmed cases, deaths thereof, and recovered cases due 
to treatment are analyzed. The best model, SLX (spa-
tially-lagged X), was determined based on the maximum 
pseudo-R2, LR-test, LM-test statistics, and minimum AICc 
(corrected Akaike information criterion) and BIC values 
(Bayesian information criterion). As per the spatial effects, 
it is concluded that the rate of deaths and recovered cases 
has significant positive and negative effects on COVID-19 
respectively. Gao et al. [92] reviewed the epidemic proph-
ecy for Wuhan's novel COVID-19 epidemic with the use 
of Q-Homotopy (Q-HATM) research. To parameterize the 
model and evaluate the number of unreportable events, we 
have considered the studies. New research is being per-
formed for unreported cases using the emerging epidemic 
COVID-19 model. In the context of the Caputo derivative, 
the serial solution for the considered system exemplifying 
the coronavirus model is created. The findings obtained 
are explained utilizing figures showing the behavior. The 
results show that the method used for nonlinear equations is 
extremely emphatic and simple to deploy.

Lalwani et  al. [78] suggested an Optimum Locking 
cycle for some particular geographic regions to measure a 
three-stage susceptible-infected-recovered-dead (3P-SIRD) 
model that will support the break-up of the transmission 
chain and will also enable the economy of the country to 
recover and maintain infrastructure in the battle against 
COVID-19. The proposed model is new, with parameters 
such as silent carriers, newly infected individuals, and non-
recorded people infected with the deadly virus, the assumed 
incidence, and the rate of death. These parameters contrib-
ute greatly to the description of the model and of critical 
parameters. The pseudo-code of phase 3 prediction is dis-
played by Algorithm 3 (referring to Fig. 20). NS, NI, NR, 
NS, no. of suspected, infected, recovered, and died people 

of COVID-19 from beginning to end. Topt is the optimum 
period of lockdown, t is the day, and 1, 2, 3 represent phases 
1, 2, 3 respectively.

Martelloni and Martelloni [79] described a 4-population 
model: total infected, optimistic currently, recovery, and 
death. Therefore, in the evaluation of the Sars-Cov-2 out-
break, An alternative approach was suggested to a classic 
SIRD model. The approach was, however, general to other 
diseases and thus applicable. It was analyzed the actions of 
the Swab infection ratio in Italy, Germany, and the USA, 
and has studied this parameter, we retrieved for these three 
countries the generalized logistic model previously applied. 
It was assumed this could be useful for a possible corona-
viral outbreak. Pham [136] proposed a specific role model 
which was calculated the total death toll in the community 
and especially the cumulative number of deaths caused by 
the current COVID-19 virus in the USA. The results of the 
modeling were equated with two associated existing mod-
els based on new parameters and many existing framework 
selection processes. The method presented suits much easier 
than the two other US-based related models. It was seen that 
on the last available data point and the next day, errors in the 
fitted data and expected data points are less than 0.5% and 
2% of the total number of deaths in the USA. Singh et al. 
[84] developed a hybrid approach that required the applica-
tion of discrete wavelet breakdown to the death data set due 
to COVID-19, which divided the input data into serial com-
ponents and then applies to each component sequence the 
required econometric model for future forecasting of deaths. 
ARIMA models were popular econometric prediction mod-
els that able to generate accurate predictions when applied 
to decomposed time series wavelets. The data set consisted 
of daily death cases in most five countries affected by the 
COVID-19 which have to be checked by the hybrid model 
and forecast deaths a month beforehand.

Fig. 19  Forecasting of COIVD-19 by data fitting [135]

Fig. 20  A pseudo-code for phase 3 prediction Algorithm 3 [78]
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Sarkar et  al. [60] proposed a model for 17 regions 
of India as a whole and India that forecasts COVID-19 
dynamics. The predicted pandemic life cycle and actual 
data or historical history to date are shown by a com-
plete scenario, which disclosed the expected inflection 
point and end-stage of SARS-CoV-2. The proposal model 
tracked the dynamics of six compartments, namely SS, 
Asymptomatic (A), RE, I, Isolated Contaminated (Iq), and 
Quarantined Responsive (Sq), SARIIqSq expressed collec-
tively SARIIqSq. A decrease in the contact rate between 
uninfected and infected persons will effectively reduce the 
base reproduction number if the susceptible individual was 
quarantined. The simulations showed that the removal of 
an emerging pandemic SARS-CoV-2 was possible through 
the combination of restrictive social distance and touch 
tracing. The projections were based on real information 
with rational assumptions, while the exact path of the 
outbreak would depend heavily on the implementation of 
quarantine, isolation, and cautionary measures. The con-
tour plots of COVID-19 for different states of India are 
shown in Fig. 21 for the sensitive parameter, βs.

3  Mathematical Models that Simulate 
the Role of Aerosols in Transmission 
of COVID‑19

During the initial spreading period of COVID-19 pandemic, 
scientists were not sure about the role of aerosols in its 
transmission. Later, it is identified that the COVID-19 virus 
could persist in aerosol form and the severity of transmission 
depends on several factors: infectiousness, dose, and venti-
lation. Recent studies [137] recognized that aerosols play a 
major role in spreading of COVID-19 pandemic. Mathemati-
cal models are very helpful in understanding the role of aer-
osols in transmission of this pandemic. Carducci et al. [138] 
described the state of the art of coronaviruses and airborne 
transmission with the help of a systematic review using the 
PRISMA methodology by citing 64 research articles. It is 
concluded that airborne transmission is possible for severe 
illness cases without estimating its attributable risk. Never-
theless, it is advised to use masks, keep safe/social distance 
and air ventilation as a precautionary measure. Comunian 
et al. [139] published a review article about air pollution 
and COVID-19 by stressing the role of particulate matter 
in its spreading.

Fig. 21  Simple reproductive contour plots R0 eight provinces of India concerning the possibility of transmission rate βs disease and quarantined 
rate βs of sensitive persons [60]
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Girolamo et  al. [140] assessed the potential role of 
atmospheric particulate pollution and airborne transmission 
in intensifying the first wave pandemic impact of SARS-
CoV-2/COVID-19 in Northern Italy. It is found that the 
number of small potentially infectious particles coalescing 
on PM2.5 (particulate matter 2.5 micrometers or less in 
diameter) and PM10 (particulate matter 10 micrometers or 
less in diameter) particles is estimated to exceed the number 
of infectious particles needed to activate COVID-19 infec-
tion in humans.

Coccia [141] proposed two mechanisms for accelerated 
diffusion of COVID-19 outbreaks in north Italy with high 
intensity of population and polluting industrialization by 
considering air-to-human and human-to-human transmission 
dynamics. The results reveal that the mechanisms of air-to-
human transmission play a critical role rather than human-
to-human transmission in spreading of COVID-19. Seminara 
et al. [142] reviewed about the biological fluid dynamics of 
airborne COVID-19 infection mechanisms involved in its 
transmission. The mechanics of the complex two-phase flow 
processes caused due to the sneezing or speaking or cough-
ing of an infected individual and the airborne particles’ dis-
persal into the environment is well figured out. This study 
also evaluated the contrasting effects of natural or forced 
ventilation of environments on the transmission of contagion 
of Covid-19.

Khalid et al. [143] explained the disease spread mecha-
nism via aerosols in the atmosphere with the help of molecu-
lar communication and is much relevant in context of Coro-
navirus disease breakout. They presented a complete system 
model and derive an end-to-end mathematical model for the 
transmission channel under certain constraints and bound-
ary conditions. Significant numerical results are generated 
to observe the impact of parameters that affect the perfor-
mance and justify the feasibility of the proposed setup in 
related applications. Mittal et al. [144] framed a mathemati-
cal model for estimating risk of airborne transmission of 
COVID-19 to assess the protection afforded by the use of 
face mask made from a variety of fabrics and proper social 
distancing. Wang et al. [145] studied about the airborne par-
ticulate matter, population mobility and COVID-19 in differ-
ent cities of China. The study is based on Generalized addi-
tive models (GAM) with a quasi-Poisson distribution and 
identified that the aforementioned factors are highly associ-
ated with an increased risk of COVID-19 transmission.

Ronchi et al. [146] explored that how microscopic crowd 
modelling can be used to assess occupant exposure in con-
fined spaces and the results allowed policy makers to per-
form informed decisions concerning building usage during 
a pandemic. Similar work was also reported by Jankovic 
[147]. Villafruela et al. [148] carried out a CFD analysis of 
the human exhalation flow using different boundary condi-
tions, ventilation strategies, and environmental conditions. 

The results confirmed the use of CFD analysis as a power-
ful tool to predict the contaminant distribution exhaled by 
a human. Vuorinen et al. [149] Modelled the transport of 
aerosol and virus exposure with Monte-Carlo simulations in 
relation to SARS-CoV-2 transmission by inhalation indoors 
and offered clear quantitative awareness to the exposure time 
in varied public indoor environments.

The abovementioned studies indicate that aerosol-based 
transmission of COVID-19 pandemic happens due to pro-
longed exposure in confined buildings having poor ventila-
tion even though with the distance greater than 1.5 m. if the 
distance is within 1.5 m, there is high chance of droplet-
based transmission. The following preventive measures may 
be strictly imposed [142–149] to prevent the aerosol-based 
transmission of COVID-19 pandemic: physical distancing, 
hand sanitizing, proper mask wearing, sufficient system-
atic ventilation of indoor environments or suitably filtered 
(HEPA filter) air, avoiding overcrowding in confined spaces 
or reduce the duration of the stay, curtail high-emission 
activities, and last but not least, the strong awareness of 
aerosol-based transmission of COVID-19 pandemic among 
the public.

4  Merits of Mathematical Modelling

Based on the literature study, it is understood that the fol-
lowing are the significant merits of mathematical modeling:

1. In fact, with the aid of these mathematical models, dif-
ferent countries could do all the preparations in advance 
to prevent the widespread epidemic with proper plan-
ning and mobilizing huge resources. Besides, it was also 
possible to devise effective strategies to meet the unex-
pected demands of the health care system.

2. It helps the authority to understand the effectiveness of 
lockdown and to decide when to impose sharp/partial/
lenient lockdown depending on the reproduction ratio 
and incubation ratio of the virus.

3. These are indispensable tools for the estimation of 
main transmission parameters and countermeasures 
to mitigate this pandemic. It is understood that these 
mathematical models are key tools in public health 
management programs even though there is preeminent 
uncertainty in every model.

4. It assists to understand the epidemic’s dynamics clearly 
and helps in the forecasting of its propagation.

5. It helps to formulate a long-term rational strategy to nip 
the pandemic in the bud by considering social distancing 
for its prevention, but necessitating social interaction for 
the economic sustenance of the society. Mathematical 
models steer between these conflicting objectives.
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The authors strongly believe that this review paper can assist 
in the further improvement of mathematical models that will 
consider the current challenges of viral diseases.

5  Limitations and Future Directions

The literature reveals the following major limitations:

1. Information from the results or predictions of mathe-
matical modeling is helpful to the decision-makers and 
authorities only if the impact of the underlying assump-
tions is well understood.

2. The huge volume and speed of published COVID-19 
literature mean that research results and guidelines are 
continually changing with the advent of new data.

3. The reported treatment results up to date were focused 
solely on observation or limited clinical studies in which 
the risk of bias or imprecision about the degree of the 
treatment-effect has increased (one with more than 250 
patients).

4. Only analyzed adult patients and the results do not 
extend to pediatric populations.

5. The research articles were restricted to publications or 
translations in English so that there could be a lack of 
sufficient foreign knowledge. These all research inte-
grated models of numerical simulation with mathemati-
cal methods, data validation, and certain descriptive sta-
tistics.

6. To simplify both mathematical modeling and data fit-
ting, transmission rates are invariably fixed as constants. 
Actually, the transmission rates definitely vary with the 
epidemiological and socioeconomic status and may also 
be wedged by the outbreak control.

7. As Nobel Laureate Robert Solow clarified, mathematical 
modeling can be made successful and useful by making 
it simple, doing it right, and making it plausible.

No doubt, their observations have presented a wide range 
of COVID-19 related epidemiological characteristics and 
have strengthened our comprehension of the complicated 
propagation of SARS-CoV-2. But on the other hand, the 
present modeling work has the abovementioned limitations.

Finally, we propose new directions for further study epi-
cally as mathematical predictions in combating the epidem-
ics are yet to reach its perfection and are summarized as 
follows:

1. The asymptomatic human transmissibility is not yet 
modeled.

2. A comparison between findings to other models was not 
carried out by the researchers as a general practice.

3. Age, gender, and subpopulations, and other demographic 
factors were not considered by the mathematicians for 
modeling the pandemic.

4. Implementation of preventative measures for this out-
break and potential viruses of COVID-19 are not con-
sidered.

5. Prediction/forecasting based on numerous mathemati-
cal models vary greatly such as epidemic nature of the 
disease, role of quarantine, deaths, registered cases, etc. 
as these are modeled at different levels of infection.

6. Some mathematical models utilize fuzzy differential 
equations to incorporate some incorrect data in the 
model. Instead, the infectious viral load in the model 
might be adopted.

The current emergency needs a better model with high-end 
accuracy of testing and forecasting of the SARS-CoV-2, 
which can be correlated with another type of disease by 
analyzing suspects’ and infected patients’ clinical, mammo-
graphic and demographic information. Many of the models 
are not used enough to illustrate their true functionality but 
are still in a position to counter the pandemic.

One encouraging guideline for advancing mathemati-
cal modeling is to link models with data-driven techniques 
especially machine learning. The use of broad data sets cur-
rently available, including disease, genetic, demographic, 
geospace, and mobility data, which usually goes beyond the 
applicability of a traditional mathematical model, will sup-
port and enhance mathematical disease models and other 
artificial intelligence technologies. Mathematical modeling 
can provide a validating way of validating machine learning 
predictions and guiding the development of more powerful 
and robust machine learning as well as data analysis algo-
rithms. This would help each other improve and advance all 
these various quantitative methods, and their convergence 
could potentially lead to substantial progress on the COVID-
19 study and even beyond.

6  Conclusions

To conclude, mathematical models of infectious disease 
dynamics have a long history and they continue to mature 
with ongoing advances in computational tools and ease of 
access to disease incidence data. They provide an impor-
tant tool for understanding disease dynamics, evaluating 
potential control strategies, and predicting future outbreaks. 
Besides, they can be effectively used during an ongoing 
outbreak.

The available mathematical models allow us to investigate 
various investigations and their relative impacts on “flatten-
ing the curve” of the COVID-19 pandemic in the world. 
These models could give us qualitative warnings about the 
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possible dangers of lifting interventions too early or keeping 
them on for a long duration and risking a second wave of 
infections afterward. It can also show us to what extent the 
health systems will be burdened by such measures.

Mathematical models, in general, run on assumptions 
and those assumptions change as new data becomes avail-
able. Since COVID-19 is still a new virus, much important 
information is still unknown to us and makes the simula-
tion more challenging. As models mature over time with 
the emergence of new data, their projections will also keep 
changing and maturing accordingly with every addition of 
new evidence. Hence, these models become more complex 
and move a step closer to simulating reality, but we are still 
far from that with Covid-19.

These mathematical models try to predict the future of 
outbreaks or epidemics, but these predictions are based 
on assumptions that need to be taken into considerations 
and should be compared across multiple equally plausible 
scenarios. Remember that the mathematical models are not 
magical crystal balls that can predict future numbers. They 
are just one of many tools that can be used by decision-
makers, all of which rely on the collection and analysis of 
high-quality epidemiological data. These predictions can be 
well-matched with weather forecasts which simulate a pro-
jection based on past experience and present determinants.

Nowadays, WHO is working with the international 
network of universities, agencies, and institutes in differ-
ent countries to develop mathematical models and discuss 
their adaptations for the particular region and its countries. 
WHO’s collaboration with the COVID -19 International 
Modelling Consortium (CoMo) of the University of Oxford 
in the UK supports countries in their use of mathematical 
models and helps them understand their benefits and limi-
tations. Mathematical models remind us that the decision-
making should rely mainly on the collection and interpre-
tation of high-quality epidemiological data. Mathematical 
models can guide decisions, but not dictate them.

The COVID-19 pandemic constitutes this generation’s 
biggest worldwide public health epidemic since the 1918 
pandemic. To explore new COVID-19 treatments, the pace 
and amount of clinical trials underway highlight the need 
and willingness to deliver high-quality evidence even dur-
ing a pandemic. To date, no successful treatments have been 
obtained. In this review, an attempt has been made to com-
prehensively present the results of mathematical modeling 
adopted for various scenarios of the COVID-19 pandemic. 
The following points are summarized:

• In forecasting both reported cases and deaths due to 
COIVD-19, the mathematical models proposed by 
researchers showed an accurate prediction for specific 
regions of a country, different countries, and the entire 
population.

• Few mathematical models also meet all external validity 
criteria and can be used to forecast future events. The 
variables in forecasts of all models played an important 
role and the other models have only one or two separate 
variables in predictions.

• The models were less vulnerable to variables. Besides, 
the test results suggested that, rather than just simple 
assumptions, the models were highly accurate, since it 
was based on experimental evidence, such as traditional 
ones.

• The predictions from the mathematical model findings 
detail the analysis and simulation of the possibility of a 
second outbreak after a return to work in the city by the 
strict quarantine measures taken in different regions in 
the course of the epidemic.

• The data-driven mathematical modeling showed a com-
paratively in-depth idea of the pandemic in different 
regions of the world.

• The prediction by a few models showed more oscillating 
activity over the next ten days and represented the effect 
of the wide range of governmental initiatives to contain 
the epidemic.

• For the study of COVID-19 datasets, many simplifying 
assumptions were made by the researchers. Two methods 
to tackle two intertwined problems on COVID-19 were 
proposed in this regard. Our reviews suggested a hybrid 
approach that incorporates ARIMA and WBF models as 
the first issue with short-term forecasts for COVID-19 
outbreaks.
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