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Meromorphic functions of the form
f (z) =

∑∞
n=1 an/(z − zn)

James K. Langley and John Rossi

Abstract
We prove some results on the zeros of functions of the form f(z) =∑∞

n=1
an

z−zn
, with complex an, using quasiconformal surgery, Fourier

series methods, and Baernstein’s spread theorem. Our results have
applications to fixpoints of entire functions.

1. Introduction

A number of recent papers [7, 11, 21] have concerned zeros of meromorphic
functions represented as infinite sums

(1.1) f(z) =

∞∑
n=1

an

z − zn

, zn, an ∈ C, zn → ∞,
∑
zn �=0

∣∣∣∣an

zn

∣∣∣∣ < ∞.

We assume throughout that an �= 0 and that zn → ∞ without repetition.
By (1.1),

(1.2) n(r) =
∑
|zn|≤r

|an| = o(r), r → ∞.

If the zn are all non-zero and the an are all real and positive, then (1.1) gives

(1.3) f = ux − iuy, u(z) =
∞∑

n=1

an log |1 − z/zn|, lim
r→∞

T (r, u)

r
= 0,

in which u is subharmonic in the plane. We will need the following funda-
mental result [13, p. 327] on functions of the form (1.1) with complex an.
Here we use standard notation from [16].
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Theorem 1.1 ([13]) Let f be given by (1.1), and let 0 < p < 1. Then

(1.4) m(r, f) = o(1),

∫ 2π

0

|f(reiθ)|pdθ = o(1), r → ∞,

so that in particular δ(∞, f) = 0. If f has finite lower order then δ(a, f) = 0
for all a ∈ C \ {0}, and the same conclusion holds for a = 0 if in addition

(1.5)
∞∑

n=1

|an| < ∞,
∞∑

n=1

an �= 0.

We state next some of the main results from [7, 11].

Theorem 1.2 ([7, 11]) Assume that f is given by (1.1) with all the an real,
and let n(r) be defined by (1.2).

(a) If all the an are integers and an ≥ −1 for all but finitely many n then
f has infinitely many zeros.

(b) If all the an are integers and n(r) = o(
√

r) as r → ∞ then f has
infinitely many zeros.

(c) If inf{an : n ∈ N} > 0 then f has infinitely many zeros.

Theorem 1.2 (c) represents a substantial step in the direction of the fol-
lowing conjecture from [7].

Conjecture 1.1 If all the an are real and positive in (1.1) then f has in-
finitely many zeros. Equivalently, subharmonic functions u as in (1.3), with
an as in (1.1), have infinitely many critical points.

It was conjectured further in [7] that if the an in (1.1) are real and
n(r) = o(

√
r) as r → ∞ then f must have zeros, but we give counter-

examples to this in Examples 2.2 and 2.3.

The key fact used in [11] to prove Theorem 1.2, (c) is that inf{an} > 0
implies that T (r, f) = O(r) as r → ∞. The first main result of the present
paper refines Theorem 1.2, (c) to allow finitely many complex an, and this
turns out to require application of the Ahlfors spiral theorem [18, p. 600].
Our theorem also establishes Conjecture 1.1 when f has finite order and all
but finitely many of the zn lie close to the real axis.
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Theorem 1.3 Let f be given by (1.1), with the an real and positive. Assume
that f has finite order, that

(1.6)
∞∑

n=1

an = ∞,

and that either (i)

(1.7) lim inf
r→∞

T (r, f)

r
< ∞,

or (ii) there exists ε > 0 with

(1.8) |zn − zn| ≤ |zn|1−ε

for all large n. Let S(z) be a rational function. Then f(z) − S(z) has
infinitely many zeros.

In Theorem 1.3 and some of our subsequent results we consider the zeros
of f − S, with S a rational function, rather than of f . The effect of this
is to allow in particular finitely many residues which are not real and pos-
itive. In Example 2.1 we show that the hypothesis (1.6) is not redundant
in Theorem 1.3. On the other hand, if f has finite lower order and

∑
an is

absolutely convergent then the proof of Theorem 1.1 from [13] goes through
to give δ(0, f − S) = 0 for some choices of rational S: see Proposition 3.1.

Next, we make two remarks about Theorem 1.3, (ii). The first applies a
theorem of Miles [23]. Suppose that the exponent of convergence of the zn

is infinite, but that of the non-real zn is finite. Then if f is given by (1.1)
and S is meromorphic of finite order, f −S has zeros with infinite exponent
of convergence. If this is not the case, we can write

1

f − S
= FG

in which F is an entire function of infinite order, with real zeros, and G is
meromorphic of finite order. Miles’ result [23] gives N(r, 1/F ) = o(T (r, F ))
on a set of logarithmic density 1. This implies the existence of a sequence
rm → ∞ with

log T (rm, F )

log rm

→ ∞,

m(rm, f − S) ≥ m(rm, 1/F ) − m(rm, G) ≥ (1 − o(1))T (rm, F ),

which contradicts (1.4) and the fact that S has finite order.
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Second, Ostrowski proved in [27] that if f is given by (1.1) with

(1.9)
∑
zn �=0

∣∣∣∣Im(zn)

z2
n

∣∣∣∣ < ∞

and δ(a, f) > 0 for some a, then T (r, f) = O(r) as r → ∞. Ostrowski’s
result may therefore, if the an are positive, be combined with the method of
Theorem 1.2, (c) to show that f has infinitely many zeros. However, (1.8)
only implies (1.9) if

∑
zn �=0 |zn|−1−ε < ∞.

We turn our attention next to zeros of f as given by (1.1), with the an

complex. The following conjecture, which obviously implies Conjecture 1.1,
seems likely to be true.

Conjecture 1.2 If

(1.10) sup{| arg an| : n ∈ N} < π/2

then f as given by (1.1) has infinitely many zeros.

Conjecture 1.2 is certainly true if f has finite lower order and
∑

an is
absolutely convergent, by Theorem 1.1. For the case in which

∑ |an| = ∞
and f has order at most 1

2
, we have the following result in support of Con-

jecture 1.2.

Theorem 1.4 Let f be given by (1.1), of order σ ≤ 1
2
, and write

(1.11) an = x+
n − x−

n + iyn, x+
n ≥ 0, x−

n ≥ 0, yn ∈ R,

and

(1.12) n+(r) =
∑
|zn|≤r

x+
n , n−(r) =

∑
|zn|≤r

x−
n .

Assume that

(1.13) lim
r→∞

n(r) =
∞∑

n=1

|an| = ∞,

and that there exist positive constants δ, d1 such that

(1.14) n−(r) ≤ (1 − δ)n+(r), n(r) ≤ d1n
+(r)

for all large r. Let S(z) be a rational function. Then:

(1.15) δ(0, f − S) ≤ 1 − cos πσ, σ <
1

2
; δ(0, f − S) < 1, σ =

1

2
.
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Conditions (1.11) and (1.14) are obviously satisfied if (1.10) holds. Theo-
rem 1.4 allows infinitely many non-real an, but the proof is totally dependent
on minimum modulus results for functions of order at most 1

2
, and in par-

ticular on results for the extremal case of the cos πρ theorem [8]. For f
of order between 1

2
and 1 and with arg an sufficiently small, the following

rather weaker result is applicable, based on the method of quasiconformal
surgery [5, 6, 28]. The statement of the theorem is somewhat technical, but
both it and Theorem 1.4 have subsequent applications to fixpoints of entire
functions.

Theorem 1.5 Let 0 < σ <1 and let f be given by (1.1) with order ρ <1 and

(1.16) Re(an) >
1

2
+ σ, , 1 < rn = |an| < 1/σ, tn = arg an ∈ (−π/2, π/2),

and assume that, for all n,

(1.17)

∣∣∣tan−1
(

sin tn
rn−cos tn

)∣∣∣√(
log

(
r2
n

1+r2
n−2rn cos tn

))2

+
(
tan−1

(
sin tn

rn−cos tn

))2
< k0 <

1 − ρ

1 + ρ
.

Let S(z) be a rational function. Then f(z)−S(z) has infinitely many zeros.

Note that (1.16) automatically gives (1.13). The hypotheses (1.16) and (1.17)
are required in order to facilitate quasiconformal surgery and to control the
dilatation arising therefrom, and these conditions seem very unlikely to be
sharp. Obviously if an is real and positive and satisfies (1.16) then (1.17)
holds, and Theorem 1.5 provides a result applying when the an are suffi-
ciently close to the positive real axis.

Next, for f as in (1.1) but of possibly larger growth than in Theorems 1.4
and 1.5, we have the following result, based on Baernstein’s spread theo-
rem [2].

Theorem 1.6 Let 0 < σ ≤ 1. Let f be given by (1.1), of finite lower
order µ, such that (1.13) holds and

(1.18) | arg zn| < b < C(µ, σ) =
2

µ
sin−1

√
σ

2
, | arg an| + | arg zn| < c <

π

2
,

for all n. Let S(z) be a rational function. Then δ(0, f − S) < σ.

Corollary 1.1 Let f be transcendental entire, of at most order 1, con-
vergence class, and with zero sequence (zn). If limn→∞ arg zn = 0, then
δ(0, f ′/f) = 0.
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Corollary 1.1 follows at once from Theorem 1.6, since f ′/f has a repres-
entation (1.1), and establishes a conjecture of Fuchs [11, 25] in the case
where the zeros of f accumulate at a single ray.

We observe next that the hypotheses on arg an in Theorems 1.4, 1.5
and 1.6 are not redundant. In Examples 2.2 and 2.3 we construct functions f
of the form (1.1), with real an, such that f(z) has no zeros. Thus results for
complex an require, in general, some condition on the lines of (1.5) or some
hypothesis on arg an .

Our methods have an application to the fixpoints of entire functions of
order less than 1. Whittington [31] proved that if F is a transcendental
entire function with T (r, F ) = o(

√
r) as r → ∞ then F has infinitely many

fixpoints z with either F ′(z) = 1 or |F ′(z)| > 1, the proof based on applying
the cos πρ theorem [3, 18] to F and the residue theorem to 1/(z − F (z)).
In the same paper Whittington gave an example of an entire function F of
order 1

2
with only attracting fixpoints i.e. F (z) = z implies |F ′(z)| < 1 (see

also [14]). We prove here the following theorem.

Theorem 1.7 Let F be transcendental and meromorphic in the plane, with
finitely many poles and of order at most 1

2
. Let 0 < c < 1. Then F has

infinitely many fixpoints z with F (z) = z, |F ′(z)| ≥ c.

Theorem 1.7 is proved by writing 1/(z − F (z)) in the form (1.1) and
applying Theorem 1.4. Using again the method of quasiconformal surgery
[5, 6, 28] we establish the following result on the multipliers at fixpoints of
functions of order between 1

2
and 1.

Theorem 1.8 Let F be transcendental and meromorphic with finitely many
poles in the plane, and with order ρ ∈ (1

2
, 1). Let

0 < d < 1,
π√

16(log 1/d)2 + π2
<

1 − ρ

1 + ρ
.

Then F has infinitely many fixpoints un with

F (un) = un, |F ′(un)| > d.

The dependence of d on ρ in Theorem 1.8 seems unlikely to be sharp, in
particular as ρ → 1

2
. However, the function z + 1 − ez has order 1 and only

superattracting fixpoints.

We conclude the paper by proving some results when the denominators
in (1.1) are replaced by a larger power.
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Theorem 1.9 Let k ≥ 2 be an integer, and let

(1.19) F (z) =

∞∑
n=1

an

(z − zn)k+1
, zn → ∞,

∑
zn �=0

∣∣∣∣ an

zk+1
n

∣∣∣∣ < ∞.

Then, as r → ∞ outside a set of finite measure,

(1.20) (1 − o(1))T (r, F ) <

(
k + 1

k − 1

)
N(r, 1/F ).

Example 2.4 shows that the constant in (1.20) is sharp, and that Theo-
rem 1.9 fails for k = 1, even if

(1.21)
∑
zn �=0

∣∣∣∣ an

z1+d
n

∣∣∣∣ < ∞ ∀d > 0.

However, if we assume that (zn) has finite exponent of convergence, and that∑
zn �=0 |an/zn| < ∞, then we do get a result for k = 1.

Theorem 1.10 Let F be as in (1.19), with k = 1, and assume that

(1.22)
∑
zn �=0

|zn|−L < ∞,
∑
zn �=0

∣∣∣∣an

zn

∣∣∣∣ < ∞

for some L > 0. Then δ(0, F ) < 1.

The authors thank the referee for some very helpful comments and sug-
gestions.

2. Examples

Example 2.1

The following example shows that (1.6) is not redundant in Theorem 1.3. Let

g(z) =
i

z2(eiz − 1)
,

and let S be the principal part of −g at 0, so that

S(∞) = 0, g(z) + S(z) = O(1), z → 0.

Let

f(z) =
∑

n∈Z,n �=0

1

4π2n2(z − 2πn)
, h(z) = f(z) − g(z) − S(z).

Then f satisfies (1.1), (1.7) and (1.8), using (1.4), and h is entire. Since
g(z) = o(1) as z → ∞ in the union of the circles |z| = π(2m + 1),m ∈ N,
we have h ≡ 0 by (1.4). Thus f − S has no zeros.
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Example 2.2

Let zn be real and positive with z1 large and zn+1 > 4zn for each n ≥ 1,
and let

g(z) =
∞∏

n=1

(1 − z/zn), rn = 2|zn|.

We estimate g′(zm) in the following standard way. For |z| = rm with m large
we have∣∣∣∣g

′(z)

g(z)

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

1

z − zn

∣∣∣∣∣ ≤
∞∑

n=1

2

rn

< ∞, log |g(z)| > log M(rm, g) − O(1).

Let h(z) = g(z)/(z − zm). Applying the maximum principle to 1/h(z) in
rm−1 ≤ |z| ≤ rm shows that

log |g′(zm)| = log |h(zm)| >
1

2
log M(rm−1, g)

and it follows that
∞∑

n=1

|an| < ∞, an = 1/g′(zn) ∈ R.

Let f be defined by (1.1). Then f(z) − 1/g(z) is entire. But on the circle
|z| = rn, for large n, the function g(z) is large, while

|f(z)| ≤ 2r−1
n

∞∑
m=1

|am| = o(1).

It follows that f(z) − 1/g(z) ≡ 0, and so f has no zeros. Thus a function
f(z) as in (1.1) may have real residues an and arbitrarily small growth, but
fails to have zeros.

Example 2.3

Let

H(z) =
1

z cos z
, J(z) =

1

z
+

∑
k∈Z

(−1)k+1

wk(z − wk)
, wk =

(2k + 1)π

2
.

Then it is evident that J(z) satisfies (1.1), and there is an entire function
G such that H − J = G. However, since there exist arbitrarily large r such
that H(z) is small on the whole circle |z| = r, estimate (1.4) shows that
G ≡ 0 and so J has no zeros. Again J has real residues an, this time with∑

|zn|≤r

|an| = O(log r), r → ∞.
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Example 2.4

We show here that the constant in (1.20) is sharp, and that Theorem 1.9
fails for k = 1. Let g(z) = 1/(ez − 1). A simple induction argument shows
that, for each k ∈ N,

g(k)(z) =
ezPk−1(e

z)

(ez − 1)k+1
,

in which Pk−1 is a polynomial of degree at most k − 1. Expanding the
numerator in powers of ez − 1 we see that there exists dk > 0 such that

m(r, g(k)) ≤ dkm

(
r,

1

ez − 1

)
= o(r),

and so

T (r, g(k)) ∼ (k + 1)T (r, ez), N(r, 1/g(k)) ≤ (k − 1)T (r, ez) + O(1).

In particular, g′ has no zeros. By periodicity there exists a constant ck such
that

g(k)(z) =
ck

(z − 2πin)k+1
+ O(1), z → 2πin, n ∈ Z.

Set

Gk(z) = ck

∑
n∈Z

1

(z − zn)k+1
, zn = 2πin.

Then each Gk, k ∈ N, is of the form (1.19). Also g(k)−Gk is entire of order at
most 1. Let δ be small and positive and let z be large with | arg z| ≤ π/2−δ
or |π − arg z| ≤ π/2 − δ. Then g(k)(z) is small and, with the dj positive
constants,

|z − zn| ≥ d1 max{|z|, |zn|}, |Gk(z)| ≤ d2|z|− 1
2

∑
n∈Z

|zn|−k− 1
2 ,

so that Gk(z) is also small. Applying the Phragmén-Lindelöf principle now
gives g(k) ≡ Gk. Clearly G1, which has no zeros, satisfies (1.21).

3. Preliminaries

We need the following lemmas.

Lemma 3.1 ([21]) Suppose that d > 1 and that G is transcendental and
meromorphic in the plane of order less than d. Let R0 > 0. Then there exist
uncountably many R > R0 such that the length L(r,R,G) of the level curves
|G(z)| = R lying in |z| ≤ r satisfies

(3.1) L(r,R,G) ≤ r(3+d)/2, r ≥ log R.
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Lemma 3.2 ([9]) Let 1 < r < R < ∞ and let g be meromorphic in |z| ≤ R.
Let I(r) be a subset of [0, 2π] of Lebesgue measure µ(r). Then

1

2π

∫
I(r)

log+ |g(reiθ)|dθ ≤ 11Rµ(r)

R − r

(
1 + log+ 1

µ(r)

)
T (R, g).

Lemma 3.3 ([17]) Let S(r) be an unbounded positive non-decreasing func-
tion on [r0,∞), continuous from the right, of order ρ and lower order µ. Let
A > 1, B > 1. Then G = {r ≥ r0 : S(Ar) ≥ BS(r)} satisfies

logdensG ≤ ρ

(
log A

log B

)
, logdensG ≤ µ

(
log A

log B

)
.

The next lemma is a standard application of Tsuji’s estimate for har-
monic measure [30].

Lemma 3.4 Let u be subharmonic and non-constant in the plane, and let U
be a domain such that u ≡ 0 on ∂U and sup{u(z) : z ∈ U} > 0. For t > 0 let
θ∗U(t) be the angular measure of the intersection of U with the circle |z| = t,
except that θ∗U(t) = ∞ if the whole circle |z| = t lies in U . Then there exists
R0 ≥ 1 with ∫ r

R0

πdt

tθ∗U(t)
≤ log B(2r, u) + O(1), r → ∞,

in which B(2r, u) = sup{u(z) : |z| = 2r}.
Lemma 3.5 Let f be as in (1.1), of finite lower order, and suppose that
δ(0, f − S) > 0, for some rational function S. Then S(∞) = 0.

Proof. Since f − S has finite lower order Lemmas 3.2 and 3.3 give c0 > 0
and arbitrarily large r such that f − S is small on a subset Er of the circle
|z|=r of angular measure at least c0. If S(∞) �=0, this contradicts (1.4). �

Since several of our results (Theorems 1.3, 1.4, 1.5 and 1.6) rely on the
assumption that

∑ |an| diverges, we include for completeness the following
immediate extension of the method of Theorem 1.1 from [13].

Proposition 3.1 Suppose that f is given by (1.1), with
∑∞

n=1 |an| < ∞,
and that f has finite lower order. If S is a rational function with

(3.2) lim
z→∞

zS(z) �= λ =

∞∑
n=1

an,

then δ(0, f − S) = 0.

Examples 2.2, with S = λ = 0, and 2.1 show that (3.2) is not redundant
in Proposition 3.1.
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Proof. Assume that f and S are as in the hypotheses, but that δ(0, f−S)>0.
Then S(∞) = 0, by Lemma 3.5. Following [13, p. 333], write

z(f(z) − S(z)) = g(z) + λ − zS(z),

in which

g(z) =
∞∑

n=1

anzn

z − zn

satisfies the requirements of (1.1). The assumption (3.2) gives

lim
z→∞

(λ − zS(z)) �= 0.

Now (1.4), applied to g, shows that

g(z) = o(1),
1

f(z) − S(z)
= O(r)

for all z on |z| = r, apart from a set I(r) of angular measure o(1) as r → ∞.
Lemma 3.2 gives

(δ(0, f − S) − o(1))T (r, f − S) ≤ o(T (2r, f − S))

which contradicts Lemma 3.3, since f has finite lower order. �

4. Proof of Theorem 1.3

To prove Theorem 1.3 assume that f, an, zn are as in (1.1) and (1.6) with
the an real and positive. Assume further that f satisfies at least one of (1.7)
and (1.8), but that f−S has finitely many zeros, for some rational function S.
We may assume that all zn are non-zero. Let G and the positive integer N
satisfy

(4.1) N > 3 + ρ(f), f(z) − S(z) =
1

zNG(z)
.

Then G is transcendental and meromorphic in the plane, of finite order and
with finitely many poles. By Lemma 3.5, we have S(∞) = 0.

Let r0 be large and positive, so large that neither G nor S has poles in
r0 ≤ |z| < ∞. Thus log |G(z)| is subharmonic in |z| > r0. Using Lemma 3.1
and (4.1), choose a large positive R, in particular with

(4.2) R > M(2r0, G), L(r,R,G) ≤ rN−1 ∀r ≥ log R.

We may also assume that G has no multiple points with |G(z)| = R.
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Lemma 4.1 The set {z : |G(z)| > R} has finitely many unbounded com-
ponents Vj. If U is one of the Vj then U lies in |z| > 2r0. Further, the
finite boundary ∂U of U is the union of countably many pairwise disjoint
level curves of G, each either simple and going to infinity in both directions,
or simple closed. Finally, we have

(4.3) I =

∫
∂U

|f(z) − S(z)| |dz| < 1,

and B(0, 2r0) lies in an unbounded component of C \ U .

Proof. There exist finitely many Vj , since G has finite order, and each lies
in |z| > 2r0, by the choice of R. The assertion concerning the components of
∂U holds since the level curves |G(z)| = R do not intersect. To prove (4.3)
let T = log R, and partition ∂U into its intersections with the disc |z| ≤ T
and the annuli 2mT < |z| ≤ 2m+1T,m ∈ Z,m ≥ 0. Since (4.1) gives

(4.4) |f(z) − S(z)| ≤ R−1|z|−N ≤ R−1, z ∈ U ∪ ∂U,

we get

I ≤ R−1

(
TN−1 +

∞∑
m=0

2(N−1)(m+1)TN−12−NmT−N

)
< 1,

using (4.2), since r0 and R are large.

We prove the last assertion of the lemma by contradiction, and thus
assume that B(0, 2r0) lies in a bounded component of the complement of U .
Then there exists a simple closed curve γ1, a component of ∂U , such that
B(0, 2r0) lies in the interior U1 of γ1. Since zn, for large n, is a pole of f −S
with residue an > 0 we get, using (4.3),

1 ≥
∫

γ1

|f(z) − S(z)| |dz| ≥ 2π
∑

zn∈U1

an − O(1) ≥ 2π
∑

|zn|<r0

an − O(1),

which contradicts (1.6) provided r0 was chosen large enough. �

Lemma 4.2 Let U be one of the Vj, and let C1 be the unbounded component
of ∂U which separates U from B(0, 2r0). Let D be the component of C \ C1

which contains U . Fix w0 ∈ U and define a single valued branch of log z,
continuous on the closure of D, with | arg w0| ≤ π. Then we have

log z = O(log |z|) as z → ∞
in the closure of D.
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Proof. Define a subharmonic function v(z) on C as follows:

(4.5) v(z) = log |G(z)| − log R, z ∈ U ; v(z) = 0, z �∈ U.

Then v has finite order, since G has. The boundary of D is the curve C1,
and v(z) = 0 there. Thus the Ahlfors spiral theorem [18, pp. 600–608] gives
arg z = O(log |z|) as z tends to infinity on ∂D. Since arg z is monotone on
arcs of circles centred at the origin, the result follows. �

Lemma 4.3 Let u be defined by (1.3), and let U be one of the Vj. Then
u(z) = O(log |z|) as z → ∞ in the closure of U .

Proof. Using U = Vj , w0, D and the same branch of log z as in Lemma 4.2,
there exist a constant c1 and a function S1, analytic and bounded in |z| > r0,
such that

(4.6) S(z) =
d

dz
(c1 log z + S1(z))

for z in the closure of D. By (1.3) and (4.1) we have

(4.7) ux − iuy = f(z) = S(z) +
1

zNG(z)
.

For each w in U , join w0 to w by a path σw consisting of part of the ray
arg z = arg w0, part of the circle |z| = |w|, and part of the boundary of U .
Using Lemma 4.1 and (4.4) we get a constant c2 such that∫

σw

|f(z) − S(z)| |dz| < c2

for all w in U . This gives, using (4.6) and (4.7),∣∣∣∣
∫

σw

(ux − iuy)(dx + idy)

∣∣∣∣ ≤ |c1 log w| + O(1)

and the result follows using Lemma 4.2. �

Lemma 4.4 There exist positive constants k1, k2 with the following prop-
erty. With u as in (1.3), define:

u1(z) = max{u(z)−k1 log |z|−k2, 0}, |z| > 2r0 ; u1(z) = 0, |z| ≤ 2r0.

Then u1 is non-constant and subharmonic in the plane, with u1(z) = 0 on
the union of the closures of the Vj, and T (r, u1) = o(r) as r → ∞.

Proof. Choose k1 and k2 using Lemma 4.3, so that u(z) ≤ k1 log |z|+ k2 on
|z| = 2r0 and on the union of the closures of the Vj . Thus u1 is subharmonic,
with T (r, u1) = o(r) by (1.3). Finally, u1 is non-constant by (1.6). �



298 J.K. Langley and J. Rossi

We may now complete the proof of Theorem 1.3 in case (i), in which (1.7)
holds. Let U be one of the Vj , and let W be a component of the set {z :
u1(z) > 0}. Then (1.7), (4.1) and (4.5) give lim infr→∞ T (r, v)/r < ∞.
Since v vanishes off U , while u1 vanishes on the closure of U , a standard
application of the Cauchy-Schwarz inequality as in [30] gives

1

θ∗U(t)
+

1

θ∗W (t)
≥ 2

π

for large t, and a contradiction arises on applying Lemma 3.4 to v and u1.

To finish the proof of Theorem 1.3, it remains only to dispose of case (ii),
and we assume henceforth that (1.8) holds.

Lemma 4.5 For r > 0 and 0 < t < π/2 let

V +(r, t) = {z : |z| = r, t < arg z < π − t},
V −(r, t) = {z : |z| = r, π + t < arg z < 2π − t}.

Let δ > 0. Then for all r in a set Eδ of lower logarithmic density at least
1 − δ, we have u1(z) ≡ 0 on at least one of the sets V +(r, δ), V −(r, δ).

Proof. We may assume that δ is small. Then we have

(4.8) f(z) − S(z) = O(1), z → ∞, δ/4 ≤ | arg z| ≤ π − δ/4,

since S(∞) = 0 and (1.8) gives |zn| = O(|z − zn|) for large z as in (4.8).

By Lemma 3.3, there exist c3 > 0 and a set E of lower logarithmic density
at least 1 − δ such that

T (4r,G) < c3T (2r,G), r ∈ E.

For r ∈ E, since δ is assumed small, Lemma 3.2 and (4.1) now give

(4.9) 2 log |G(z)| > T (2r,G), 4 log |f(z) − S(z)| < −T (2r,G), z ∈ Ir,

in which Ir is a subset of the circle |z|=2r, of angular measure at least 8δ1 >0.

Let δ2 = min{δ, δ1} and let r be large, with r ∈ E. Without loss of
generality Ir ∩ V +(2r, δ2/2) has angular measure at least δ2, and we apply
the two-constants theorem [26] to log |f(z) − S(z)| in the interior Ω of the
region r/2 ≤ |z| ≤ 2r, δ2/4 ≤ arg z ≤ π − δ2/4. This gives positive c4, c5

independent of r such that, using (4.8) and (4.9), for z ∈ V +(r, δ2),

4 log |f(z) − S(z)| ≤ −T (2r,G)ω(z, Ir,Ω) + O(1) ≤ −c4T (2r,G) + c5,

where ω(z, Ir,Ω) denotes harmonic measure, and so V +(r, δ2) ⊆ Vj, for
some j, using (4.1) again. Lemma 4.5 now follows from Lemma 4.4. �
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Lemma 4.6 u1 has lower order at least 1.

Proof. This is a standard application of Lemma 3.4. Let Ω be a component
of the set {z : u1(z) > 0}. Let δ > 0. Then by Lemma 4.5 we have
θ∗Ω(t) ≤ π +2δ for all t in a set Eδ of lower logarithmic density at least 1− δ.
Lemma 3.4 gives

log B(2r, u1) − O(1) ≥
≥

∫ r

R0

πdt

tθ∗Ω(t)
≥ π

π + 2δ

∫
Eδ∩[R0,r]

dt

t
≥ (1 − δ − o(1))π log r

π + 2δ

as r → ∞, and since δ is arbitrary the result follows. �

Lemma 4.7 Let δ > 0. Then there exists c(δ) > 0 such that for all large r
we have

(4.10) |u1(w)| ≤ c(δ)|w|1−ε, |w| = r, δ ≤ | arg w| ≤ π − δ.

Proof. By (1.8) there exist c6 = c6(δ) > 0 and r1 > 0 such that

(4.11) |zn − w| ≥ c6 max{|zn|, |w|}, δ ≤ | arg w| ≤ π − δ, |w| = r ≥ r1.

For w as in (4.11) we get, without loss of generality,

0 ≤ log |1−w/zn| − log |1−w/zn| = log

∣∣∣∣1 − w/zn

1 − w/zn

∣∣∣∣ = log

∣∣∣∣1 +
w(zn − zn)

zn(zn − w)

∣∣∣∣ ,
and so (1.8) gives for large n, since log |1 + t| ≤ log(1 + |t|) ≤ |t|,

∣∣∣ log |1 − w/zn| − log |1 − w/zn|
∣∣∣ ≤ |w|

|zn|εc6 max{|zn|, |w|} .

This gives, for w as in (4.11), using (1.2),

|u(w)− u(w)| ≤
≤ O(log r) + c−1

6

∫ r

1

t−εdn(t) + c−1
6 r

∫ ∞

r

t−1−εdn(t) = O(r1−ε).(4.12)

But, by Lemma 4.5, u1(w) vanishes and so u(w) ≤ O(log r) on at least one
of the arcs V +(r, δ), V −(r, δ), and (4.10) now follows from (4.12). �

Let η be small and positive. Since u1 has finite order Lemma 3.3 gives a
positive constant c7 such that

(4.13) T (2r, u1) ≤ c7T (r, u1), r ∈ F1,

in which F1 has lower logarithmic density at least 1 − η/2.
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Let δ be small and positive, in particular so small that

(4.14) δ < η/2, 24δc7 < 1.

Using Lemma 4.7 we find that, for all r in a set F2 of lower logarithmic
density at least 1 − δ, we have

T (r, u1) ≤ 4δB(r, u1) + O(r1−ε) ≤ 12δT (2r, u1) + O(r1−ε).

This gives, by (4.13) and (4.14),

T (r, u1) = O(r1−ε), r ∈ F3 = F1 ∩ F2,

and F3 has lower logarithmic density at least 1 − η. This contradicts
Lemma 4.6, and the proof of Theorem 1.3 is complete.

5. Proof of Theorem 1.4

Suppose that f and S are as in the statement of Theorem 1.4, but that (1.15)
fails. Then we have S(∞) = 0, by Lemma 3.5. We may assume that all
the zn are non-zero. Throughout the proof we use c to denote a positive
constant, not necessarily the same at each occurrence. We also write

(5.1) z = reiθ, r = |z|, θ = arg z ∈ [0, 2π].

Lemma 5.1 If r is large and positive and none of the zn lie on |z| = r then

(5.2) cn(r) ≤
∫ 2π

0

|zf(z)|dθ.

Further,

(5.3) lim
s→∞

sM(s,H) = ∞, H(w) = f(w) − S(w).

Proof. We have, by the residue theorem,

I =

∫ 2π

0

zf(z)dθ = 2π
∑
|zn|<r

an

and so, using (1.14),

|I| ≥ 2π

∣∣∣∣
∑
|zn|<r

Re(an)

∣∣∣∣ = 2π(n+(r) − n−(r)) ≥ cn+(r) ≥ cn(r),

which proves (5.2). Now (5.3) follows from (1.13), (5.2) and Lemma 3.5. �
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Since (1.15) fails by assumption, it follows immediately from (5.3) and an
application to 1/H of the cos πρ theorem for functions with deficient poles
[13, p. 262] (see also [15]) that σ = 1

2
. We now write H = f1/f2, with f1, f2

entire functions of order at most 1
2

with no common zeros. By (1.4), (5.3)
and Lemma 3.5 we have

T (r,H) ≤ N(r,H) + O(1) ≤ N(r, 1/f2) + O(1).

Also, since (1.15) fails by assumption, we get

δ(0, H) = 1, N(r, 1/f1) = N(r, 1/H) = o(T (r,H)) = o(N(r, 1/f2)).

Now (5.3) gives

m0(r, f2) = min{|f2(z)| : |z| = r} = o(rM(r, f1)),

and exactly as in [11, pp. 282–284] we obtain

(5.4) log m0(r, f2) ≤ o(log M(r, f2)), log M(r, f1) ≤ o(log M(r, f2)).

Lemma 5.2 There exist a set E1 of logarithmic density 1 and, for each
r ∈ E1, a subset Ur of [0, 2π] such that

(5.5) m(Ur) = o(1), zf(z) = O(1), r = |z|, θ = arg z ∈ Vr = [0, 2π]\Ur,

in which m(Ur) denotes Lebesgue measure.

Proof. The relations (5.4) imply that f2 is extremal for the cos πρ theorem.
Let the positive function ψ(r) tend to 0 slowly as r → ∞. Results of Drasin
and Shea [8] (see also [19, section II]) give

log |f2(z)| ≥ ψ(r) log M(r, f2), |z| = r ∈ E1, arg z ∈ Vr.

Using (5.4) we get zH(z) = o(1) for z ∈ Vr and (5.5) follows, using (5.3)
and the fact that S(∞) = 0. �

We now apply to zf(z) the method of [24, Theorem 1]. Since n(r)
has order at most 1, we may apply [24, p. 198] with M = 6, ρ = 1 and
R0 = min{|zn|} to obtain (2.1) and (2.2) of [24] for all r in a set E = EM

of positive lower logarithmic density. Note that the lemma of [24, p. 198] is
stated only for integer-valued functions, but the proof goes through for n(r)
as in (1.2). We may assume that E ⊆ E1, with E1 as in Lemma 5.2, and
that E ∩ {|zn|} = ∅.



302 J.K. Langley and J. Rossi

Assume henceforth that r is large and in E, and that z satisfies (5.1).
Write

∑
|zn|<r

zan

z − zn

=
∑
|zn|<r

an

∞∑
m=0

(zn/z)m =
∑

m∈Z, m≤0

zm
∑
|zn|<r

anz−m
n

and

(5.6)
∑
|zn|>r

zan

z − zn

= −
∑
|zn|>r

zan

zn

∞∑
k=0

(z/zn)k = −
∞∑

m=1

zm
∑
|zn|>r

anz−m
n ,

the change of order of summation justified since the first double series in (5.6)
is plainly absolutely convergent. Thus

(5.7) zf(z) =
∑
m∈Z

bm(r)eimθ,

in which

(5.8) bm(r) = −
∑
|zn|>r

an(r/zn)m, m > 0,

and

(5.9) bm(r) =
∑
|zn|<r

an(r/zn)m, m ≤ 0.

Fix a large positive integer q, in particular with q > 2M(ρ + 1) = 24.
Then (2.1) and (2.2) of [24] may be applied to (5.8) and (5.9) exactly as
in [24, p. 202], to give (2.11) and (2.12) of [24], with bm(r, Fj) and nj(r)
replaced by bm(r) and n(r) respectively. This leads to

(5.10)
∑

m∈Z, m�∈{0,1,...,q}
|bm(r)|2 ≤ cn(r)2.

Write

(5.11) zf(z) = P (z) + s(r, θ), P (z) =

q∑
m=0

bm(r)eimθ.

Then (5.10) gives

(5.12) ‖s‖ = ‖s‖2 =

(
1

2π

∫ 2π

0

|s(r, θ)|2dθ

) 1
2

≤ cn(r).
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Set

(5.13) |P (z)|2 =

q∑
k=−q

hk(r)e
ikθ, hk(r) =

1

2π

∫ 2π

0

|P (z)|2e−ikθdθ,

so that

(5.14) |hk(r)| ≤ h0(r) = ‖P‖2 =

q∑
m=0

|bm(r)|2.

By (5.13), since [0, 2π] = Ur ∪ Vr,∫
Vr

|P (z)|2dθ = h0(r)m(Vr) −
∫

Ur

∑
k �=0

hk(r)e
ikθdθ

and so (5.5) and (5.14) give

(5.15)

∫
Vr

|P (z)|2dθ ≥ h0(r)(m(Vr) − 2qm(Ur)) ≥ (2π − o(1))h0(r).

But on Vr we have, using (5.5) and (5.11),

zf(z) = O(1), P (z) = −s(r, θ) + O(1),

and so (5.15) gives

h0(r) ≤ c

∫
Vr

(|s| + O(1))2dθ ≤ c

∫ 2π

0

(|s| + O(1))2dθ.

Thus, using (5.12),

(5.16) h0(r) ≤ c (‖s‖ + O(1))2 ≤ cn(r)2.

Now (1.13), (5.2) and (5.5) give

n(r)2 ≤ c

(∫
Ur

|zf(z)|dθ

)2

≤ cm(Ur)

∫
Ur

|zf(z)|2dθ

and so, using (5.5) again and (5.7), (5.10), (5.14) and (5.16), we get

n(r)2 ≤ cm(Ur)‖zf(z)‖2 ≤ cm(Ur)
∑
m∈Z

|bm(r)|2 ≤ o(n(r)2),

which is obviously a contradiction. Theorem 1.4 is proved.
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6. A theorem on zeros of entire functions

Theorem 1.3 leads to a result on the zeros of entire functions of small growth,
which will be required for the proof of Theorem 1.5. We begin with:

Lemma 6.1 Let h be transcendental and meromorphic of finite order in the
plane, with finitely many poles and with

(6.1) lim inf
r→∞

T (r, h)

r
= 0.

Assume that (zn) is a non-zero sequence tending to infinity without repetition
such that all but finitely many zeros of h lie in the set {zn}. Assume further
that 1/an = h′(zn) �= 0 for each n, and that

(6.2)

∞∑
n=1

∣∣∣∣an

zn

∣∣∣∣ < ∞.

Then we may write

(6.3)
1

h(z)
= f(z) − S(z),

where f is given by (1.1) and S is a rational function with S(∞) = 0.

Proof. Assume that h is as in the statement. Using (6.2), define f(z)
by (1.1). Then there exists a rational function S, with S(∞) = 0, such that

(6.4) g(z) =
1

h(z)
− f(z) + S(z)

is entire. By (1.4) we have

(6.5) T (r, f) ≤ N(r, 1/h) + o(1), T (r, g) ≤ 2T (r, h) + O(log r).

By (6.4) we need only show that g ≡ 0.

Choose ρ1 > ρ(h), and suppose that r is large and positive and the circle
|z| = r does not meet the union U0 of the discs B(zn, |zn|−ρ1). Then for
|z| = r we have

|f(z)| ≤
∑

|zn|≤r/2

∣∣∣∣an

zn

∣∣∣∣ +
∑

|zn|≥2r

2

∣∣∣∣an

zn

∣∣∣∣ + (2r)ρ1+1
∑

r/2<|zn|<2r

∣∣∣∣an

zn

∣∣∣∣ .

Hence using (6.2) there exist a set E0 of finite measure and a positive inte-
ger ρ2 such that

(6.6) |f(z)| ≤ rρ2 , |z| = r �∈ E0.
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Suppose first that g is transcendental, and set g1(z) = g(z)z−ρ2 . Let
r0 > 1 be so large that h has no poles in |z| ≥ r0 and

(6.7) M(r0, g1) > 4, M(r0, h) > 4 and |S(z)| < 1 for |z| ≥ r0.

Choose K > M(r0, g1) + M(r0, h) and let U1 be an unbounded component
of the set {z : |g1(z)| > K}, and U2 an unbounded component of the set
{z : |h(z)| > K}. Then both Uj lie in |z| > r0. For t > 0 and j = 1, 2, let
θj(t) be the angular measure of the intersection of Uj with the circle |z| = t,
and let θ∗j (t) = θ∗Uj

(t), as defined in Lemma 3.4.

Then by (6.4), (6.6) and (6.7) we have θ1(t) + θ2(t) ≤ 2π for r �∈ E0

and so

(6.8)
π

θ∗1(t)
+

π

θ∗2(t)
≥ 2, r �∈ E0.

Using (6.1) and (6.5) and the fact that E0 has finite measure, a standard
application of Lemma 3.4 and (6.8) now gives a contradiction.

Suppose finally that g is a polynomial. Lemmas 3.2 and 3.3 give ar-
bitrarily large r such that h is large on a subset Er of the circle |z| = r
of angular measure at least c3 > 0. Using (1.4), (6.4) and the fact that
S(∞) = 0 we get g(z) = o(1) for at least one z ∈ Er. Thus g ≡ 0. This
proves Lemma 6.1. �
Theorem 6.1 Let h be as in Lemma 6.1, and assume in addition that h′(zn)
is real and positive for each n. Then

∑∞
n=1 1/h′(zn) < ∞.

To prove Theorem 6.1, assume that h is as in the statement, but that∑∞
n=1 an = ∞, in which an = 1/h′(zn). Then we have (6.3) and, by (6.1)

and (6.5), f satisfies the hypotheses of Theorem 1.3. Thus f−S has infinitely
many zeros and this contradicts (6.3).

The hypothesis (6.1) is not redundant in Theorem 6.1. In [20] an entire
function E is constructed with zero sequence (zn) such that |zn+1/zn| > 2
and E′(zn) = 1 for all n, while T (r, E) = O(r) as r → ∞.

Corollary 6.1 Let 0 < c1 < c2 < ∞ and let h be transcendental and
meromorphic with finitely many poles in the plane. Assume that all but
finitely many zeros z of h have h′(z) ∈ R, c1 < h′(z) < c2. Then h has
order ρ(h) ≥ 1.

To prove Corollary 6.1, assume that h has order less than 1. Then we
may choose a sequence (zn) such that all but finitely many zeros of h lie
in {zn}, and h′(zn) ∈ (c1, c2), and such that

∑ |zn|−1 < ∞. Since
∑

1/h′(zn)
obviously diverges, this contradicts Theorem 6.1.

The obvious example h(z) = ez − 1 shows that Corollary 6.1 is sharp.
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7. Application of quasiconformal surgery

Lemma 7.1 Let 0 ≤ ρ < ∞, 0 < κ < 1, and let g be quasimeromorphic
with finitely many poles in the plane and with the following properties:

(i) there exist Jordan curves σn, τn in C such that σn lies in the interior
domain Vn of τn, for each n ∈ N, and Vn′ ∪ τn′ lies in the exterior
domain of τn, for n′ �= n;

(ii) g has no poles in Vn∪ τn and maps Vn into the interior domain Un

of σn;

(iii) g is conformal on Un, for each n, and meromorphic on

Y = C \
∞⋃

n=1

(Vn ∪ τn);

(iv) we have

(7.1) log M(r, g) < rρ+o(1), r → ∞;

(v) we have

(7.2) |gz| ≤ κ|gz| a.e.

Set K = 1+κ
1−κ

. Then there exist a K-quasiconformal homeomorphism φ of the
extended plane, fixing 0, 1,∞, and a function h meromorphic in the plane of
order at most ρK, with finitely many poles, such that g ≡ φ−1◦h◦φ. Further,
φ is conformal on W =

⋃∞
n=1 Un and on the interior of C \ ⋃∞

m=1 g−m(W ).

Proof. This is basically Shishikura’s lemma on quasiconformal surgery
[5, 28]. Let

W0 = W, Wm+1 = g−m−1(W )\g−m(W ), m ≥ 0, H = C\
∞⋃

m=0

g−m(W ).

Define a Beltrami coefficient µ(z) on C as follows. For z ∈ W0∪H set µ = 0.
Assuming that µ has been defined on Wm, define µ for w ∈ Wm+1 by

(7.3) µ(w) =
µg(w) + µ(g(w))A(w)

1 + µ(g(w))µg(w)A(w)
, A =

gw

gw

.

Thus µ is defined inductively a.e. in C. We assert next that (7.2) and (7.3)
give

(7.4) |µ(w)| ≤ κ a.e.
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This is obviously true for w ∈ W0 ∪ H, and we have (7.4) for w ∈ Vn

using (7.2), since µ(g(w)) = 0 for such w, by (ii). Now suppose that

w ∈ Wm, w �∈ E =

∞⋃
n=1

(Vn ∪ τn).

Then µg(w) = 0, by (iii), and so (7.3) gives |µ(w)| ≤ |µ(g(w))|. Thus
induction gives (7.4) on the Wm.

We then define φ to be a quasiconformal homeomorphism of the extended
plane fixing 0, 1,∞, and with complex dilation µ, and (7.3) gives µφ◦g = µφ

a.e., so that φ ◦ g = h ◦ φ, with h meromorphic, with finitely many poles.
It remains only to prove that h has order at most ρK. But this follows
from (7.1) and the fact that h = φ◦g◦φ−1, using the standard estimate [1, 22]

|φ(z)| ≤ c1|z|K , |φ−1(z)| ≤ c2|z|K , z → ∞. �
Next, for 0 < R < S < ∞, α ∈ C \ {0} and β ∈ [−π/2, π/2], define

ψ(z) = ψ(α, β,R, S, z) by

(7.5) ψ(z) = ψ(α, β,R, S, z) = αz (|z| ≤ R), ψ(z) = αzeiβ (|z| ≥ S),

and

(7.6) ψ(z) = ψ(α, β,R, S, z) = αz exp

(
iβ log |z|/R

log S/R

)
(R ≤ |z| ≤ S).

In the domain {z ∈ C : R < |z| < S, 0 < arg z < 2π} write

ζ = log z = σ + iθ,

φ(z) = log ψ(z)/α = σ + i(θ + β(σ − log R)(log S/R)−1)

with σ, θ real. Then

2φζ = φσ + iφθ = iβ(log S/R)−1, 2φζ = φσ − iφθ = 2 + iβ(log S/R)−1.

Thus ψ is quasiconformal in the plane, with

(7.7) |µψ|2 ≤ β2

4(log S/R)2 + β2
a.e.

Lemma 7.2 Let 0 < c < 1 and let F be meromorphic with finitely many
poles in the plane, and with order ρ < 1. Suppose that (un) tends to infinity
without repetition, and that all but finitely many fixpoints of F lie in the set
{un : n ∈ N}. Suppose further that, for each n ∈ N,

(7.8) F (un) = un, F ′(un) = λneiθn, 0 ≤ λn ≤ c < 1, θn ∈ R,
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and that θn satisfies

(7.9) min{|θn|, |θn − π|} ≤ δn ≤ π/2.

Then

(7.10) lim sup
n→∞

qn ≥ 1 − ρ

1 + ρ
, qn =

δn√
4(log 1/λn)2 + δ2

n

.

In (7.10) we set qn = 0 whenever λn = 0.

Proof. Assume that F, un are as in the statement, but that (7.10) fails.
Then we may assume that there exists κ0 ∈ (0, 1) such that, for all n,

(7.11) qn =
δn√

4(log 1/λn)2 + δ2
n

≤ κ0, ρK0 < 1, K0 =
1 + κ0

1 − κ0

.

We define a quasimeromorphic function g by modifying F as follows.
Let un be such that λn �= 0. Then (7.8) and Schröder’s functional equation
[29, p. 66] give a neighbourhood B(un, ρn), with ρn small and positive, and
a function φn defined and conformal on B(0, ρn) such that

(7.12) φn(0) = 0, φ′
n(0) = 1, F (z) − un = φ−1

n (λneiθnφn(z − un)),

for z ∈ B(un, ρn). Take a small positive rn, with B(0, rn) ⊆ φn(B(0, 1
2
ρn)),

and define ψn by

ψn(w) = ψ(λneipn, θn − pn, λnrn, rn, w),

with ψ as in (7.5) and (7.6). Here pn is 0 or π and is chosen according
to (7.9) so that |θn − pn| ≤ δn. Then (7.7) gives |µψn| ≤ κ0, with κ0 as
in (7.11). Set

Un = {un + v : φn(v) ∈ B(0, λnrn)}, Vn = {un + v : φn(v) ∈ B(0, rn)},

so that Un ⊆ Vn ⊆ B(un,
1
2
ρn), and set

g(z) − un = φ−1
n (ψn(φn(z − un))), z ∈ Vn.

Then g is conformal on Un with

g(z) − un = φ−1
n (±λn(φn(z − un))), g′(un) = ±λn ∈ [−c, c].

Also g maps Vn into Un. For z not in the union of the Vn, we set g(z) = F (z).
Thus g is quasimeromorphic and has the same poles and fixpoints as F .
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By Lemma 7.1 there exist a quasiconformal homeomorphism φ of the
extended plane, fixing 0, 1,∞, and a function H meromorphic with finitely
many poles in the plane, and with order at most ρK0 < 1, with K0 as
in (7.11), such that g ≡ φ−1 ◦H ◦ φ. Also φ is conformal on the union W of
the Un, and on the interior of C \ ⋃∞

m=1 g−m(W ).

Obviously z is a fixpoint of g if and only if φ(z) is a fixpoint of H. If un

has λn �= 0 then g and φ are conformal on Un and we get

H(wn) = wn, H ′(wn) = g′(un) = ±λn ∈ [−c, c], wn = φ(un).

Suppose next that un has λn = 0. Then un lies in an open disc Yn disjoint
from the closures of the Vm, with F (Yn) ⊆ Yn, and g = F on Yn. Hence g
and φ are analytic on Yn and in this case we get H ′(wn) = 0.

The function h(z) = z − H(z) thus satisfies the hypotheses of Corol-
lary 6.1, since

h(wn) = 0, h′(wn) ∈ [1 − c, 1 + c].

But h has order less than 1, and this contradiction proves Lemma 7.2. �

8. Proof of Theorem 1.5

Assume that f and S are as in the statement, but that f − S has finitely
many zeros. Define F by

1

z − F (z)
= f(z) − S(z).

Then F is transcendental and meromorphic in the plane, with finitely many
poles, and with order ρ < 1. Further, each pole zn of f is, for large n,
a fixpoint of F with

F ′(zn) = bn, bn = 1 − 1

an

= 1 − r−1
n e−itn .

By (1.16) we have

λ2
n = |bn|2 =

1 + r2
n − 2rn cos tn

r2
n

< M0 < 1, Re(bn) = 1 − r−1
n cos tn > 0

and

arg bn = θn ∈ (−π/2, π/2), tan(θn) =
sin tn

rn − cos tn
.

Applying Lemma 7.2 gives (7.10), which contradicts (1.17).
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9. Proof of Theorem 1.6

Assume that f and σ are as in the statement, but that δ(0, f − S) ≥ σ, for
some rational function S. By Lemma 3.5 we have S(∞) = 0. The second
condition of (1.18) allows us to assume that b < π/2. Choose b0, b1, b2 with

b < b0 < b1 < b2 < min{π/2, C(µ, σ)}.
Lemma 9.1 There exists M1 > 0 such that for all large z lying outside the
region | arg z| < b0 we have |f(z)| ≤ M1.

Proof. This follows from (1.1), since there exists M2 > 0 such that for
such z we have |z − zn| ≥ M2|zn| for all n. �

Since δ(0, f − S) ≥ σ, Baernstein’s spread theorem [2] gives a sequence
rm → ∞ and, for each m, a subset Im of the circle |z| = rm, of angular
measure at least

min{2π, 2C(µ, σ)} − o(1) ≥ 2b2,

such that
log |f(z) − S(z)| < −T (rm, f)

1
2 , z ∈ Im.

For large m, we consider the subharmonic function v(z) = log |f(z) − S(z)|
on the domain

Ω = {z : rm/4 < |z| < rm, b0 < arg z < 2π − b0},
and v is bounded above on Ω, by Lemmas 3.5 and 9.1. Since the intersection
Jm of Im with the arc {z : |z| = rm, b1 < arg z < 2π−b1} has angular measure
at least 2(b2 − b1), the two-constants theorem [26] and a standard estimate
via conformal mapping for the harmonic measure of Jm at −rm/2 now give

rm(f(−rm/2) − S(−rm/2)) → 0, m → ∞.

Since S(∞) = 0, applying the next lemma gives a contradiction.

Lemma 9.2 We have lim r∈R, r→+∞ r|f(−r)| = ∞.

Proof. If r > 0 then (1.18) gives | arg(r + zn)| ≤ | arg zn| and so there exists
M3 > 0 such that

Re

(
an

r + zn

)
> M3

∣∣∣∣ an

r + zn

∣∣∣∣.
This gives, as r → ∞, using (1.13),

r|f(−r)| ≥ M3r
∑
|zn|≤r

∣∣∣∣ an

r + zn

∣∣∣∣ ≥ M3

2

∑
|zn|≤r

|an| → ∞.

�
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10. Proof of Theorem 1.7

Assume that F is transcendental and meromorphic with finitely many poles
in the plane, of order at most 1

2
, and that all but finitely many fixpoints w

of F have |F ′(w)| < c < 1. Set h(z) = z−F (z). Then h has infinitely many
zeros w, of which all but finitely many have

|1 − h′(w)| < c < 1, 1 − c < |h′(w)| < 1 + c.

By Lemma 6.1 we have (6.3), in which S is a rational function and

an = 1/h′(zn), |an| ≥ 1/(1 + c), sup{| arg an| : n ∈ N} < π/2,

and each zn is a zero of h and so a fixpoint of F . The function f thus satisfies
the hypotheses of Theorem 1.4. But this implies that f − S has infinitely
many zeros, contradicting (6.3). This proves Theorem 1.7.

11. Proof of Theorem 1.8

Assume that F, ρ and d are as in the hypotheses. Since ρ < 1 and F is
transcendental with finitely many poles, F has infinitely many fixpoints u.
If we assume that all but finitely many of these have |F ′(u)| ≤ d, then
applying Lemma 7.2 with δn = π/2 gives a contradiction.

12. Proof of Theorem 1.9

We need the following special case of a result of Frank and Weissenborn.

Theorem 12.1 ( [12] ) Let f be transcendental and meromorphic in the
plane with only simple poles, and let k ≥ 2 be an integer. Then

(k − 1)N(r, f) < N(r, 1/f (k)) + o(T (r, f))

as r → ∞ outside a set of finite measure.

Assume now that F is as in (1.19). Then we have

F = f (k), f(z) =

∞∑
n=1

an(−1)kzk

(z − zn)k!zk
n

.

Applying (1.4) to f(z)z−k, with an replaced by an(−1)k(k!)−1z−k
n , and us-

ing (1.19), we get

m(r, f) ≤ o(1) + k log r, T (r, f) ≤ N(r, f) + O(log r).
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Thus (1.4), (1.19) and Theorem 12.1 give

T (r, F ) ≤ N(r, F ) + S(r, f) ≤ (k + 1 + o(1))N(r, f)

≤
(

k + 1

k − 1
+ o(1)

)
N(r, 1/F )

outside a set of finite measure. This proves Theorem 1.9.

13. Proof of Theorem 1.10

Assume that F is as in the statement of Theorem 1.10, but with δ(0, F ) = 1.
The assumptions (1.22) give

F (z) = f ′(z), f(z) = −
∞∑

n=1

an

z − zn

,

in which f is meromorphic of finite order, using (1.4). Then

N(r, 1/f ′) = N(r, 1/F ) = o(T (r, F )) = o(T (r, f))

and so the counting function of the multiple points of f is o(T (r, f)).

By a theorem of Eremenko [10], the function f has positive order ρ and
sum of deficiencies 2, and at least one deficient value, a say, of f is non-zero.
But then the results of [10] show that there exist arbitrarily large r such
that f(z) is close to a on a subset of the circle |z| = r of angular measure
close to π/ρ, and this contradicts (1.4).
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