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MEROMORPHIC FUNCTIONS THAT SHARE FOUR VALUES
BY

GARY G. GTJNDERSEN

Abstract. An old theorem of R. Nevanlinna states that if two distinct nonconstant
meromorphic functions share four values counting multiplicities, then the functions
are Möbius transformations of each other, two of the shared values are Picard values
for both functions, and the cross ratio of a particular permutation of the shared
values equals -I. In this paper we show that if two nonconstant meromorphic
functions share two values counting multiplicities and share two other values
ignoring multiplicities, then the functions share all four values counting multiplici-
ties.

1. Introduction. We say that two meromorphic functions / and g share the value c
(c = oo is allowed) provided that /(z) = c if and only if g(z) = c. We will state
whether a shared value is by CM (counting multiplicities), by IM (ignoring multiplic-
ities), or by DM (by different multiplicities at one point or more). In this paper the
term " meromorphic" will mean meromorphic in the whole complex plane.

R. Nevanlinna proved the following two well-known theorems.

Theorem A [5, p. 109]. If two nonconstant meromorphic functions f and g share five
values IM, then f = g.

Theorem B [5, p. 122]. If two distinct nonconstant meromorphic functions f and g
share four values {a,}?=, CM, then fis a Möbius transformation ofg, two of the shared
values, say ax and a2, must be Picard values, and the cross ratio (a,, a2, a3, a4) = -1.
{We mention that it is written incorrectly as (ax, a3, a2, a4) = -1 in [5].)

For example, if « is a nonconstant entire function then eh and e~h share 0, oo, ± 1
CM. Recently the author has shown that the hypothesis of Theorem B can be
relaxed somewhat by proving the following result.

Theorem C [2]. // two nonconstant meromorphic functions f and g share three values
CM and share a fourth value IM, then f and g share all four values CM ( hence iff ^ g
the conclusions of Theorem B hold ).

On the other hand the following example [2] shows that we cannot simply replace
"CM" by "IM" in Theorem B. If « is a nonconstant entire function and b is a
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546 G. G. GUNDERSEN

nonzero constant then

m t       e" + b a (eh + b)2(1) f—-    and   g = —4—;—-—
K} ie»-b)2 Sb2ie"-b)

share 0, oo, 1/b, and -l/Sb by DM at every point. In contrast to Theorem B,/is not
a Möbius transformation of g, none of the shared values are Picard values, and the
cross ratio of any permutation of the shared values does not equal -1.

The main purpose of this paper is to further "close the gap" between Theorem C
and example (1) by proving the following result.

Theorem 1. // two nonconstant meromorphic functions f and g share four values
{a¡}f=,, ax and a2 both CM and a3 and a4 both IM, then f and g share all four values
CM.

At the Classical Complex Analysis Conference (Purdue University, March, 1980),
Erwin Mues showed the author a proof of the following special case of Theorem 1.

Theorem D. // two nonconstant meromorphic functions f and g share 0,1 CM and
oo, j" IM, then f and g share all four values CM.

Mues had several proofs of Theorem D; they involved using results from [2] and
choosing linear combinations of logarithmic derivatives in clever ways so that the
Nevanlinna theory could be applied. With these methods he also had a proof of
Theorem C that is different from the author's in [2]. His proofs of Theorems D and
C directly yield all the conclusions of Theorem B (when/ z g) without appealing to
Theorem B.

For the proof of Theorem 1 we shall use results from [2], some preliminary
lemmas and corollaries, the ideas of Mues, plus variations, extensions, and refine-
ments of the ideas of Mues. We mention that some of the methods and ideas used in
the proof of Theorem 1 were used to solve another shared value problem in [3].

Our proof of Theorem 1 will consist of proving the following two theorems.

Theorem E. // two nonconstant meromorphic functions f and g share 0, oo CM and
a, -a IM (a ¥= 0, oo), then f and g share all four values CM.

Theorem 2. // two nonconstant meromorphic functions f and g share 0, oo CM and
a, b IM (a, b ¥= 0, oo; a ¥" ±b), then f and g share all four values CM.

Theorem 1 follows immediately from Theorem E, Theorem 2, and a Möbius
transformation. Theorems E and D are equivalent because the Möbius transforma-
tion Liz) = az/iz — 1) carries the points 0, l,oo,^ into the points 0, oo, a, -a
respectively. We will not appeal to Theorem C in our proofs of Theorems E and 2.

There is one more "gap" between Theorem 1 and example (1), namely the open
question: Does there exist two distinct nonconstant meromorphic functions that
share three values by DM and a fourth value CM?

We also mention the following open question. If two distinct nonconstant mero-
morphic functions share four values IM and the cross ratio of at least one
permutation of the shared values is equal to -1, then do the functions necessarily
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MEROMORPHIC FUNCTIONS THAT SHARE FOUR VALUES 547

share all four values CM? This open question is suggested by Theorem B, example
(1), and Theorem D. Regarding Theorem D (where for example, (0,1, oo, j) = -1) it
should be mentioned that when Mues started from the hypothesis of Theorem D
with Ml" replaced by a constant "c" (c ^ 0,1, oo,otherwise arbitrary) and tried to
obtain the conclusion of Theorem D, he found that in order for each one of his
proofs to work it seemed necessary that c — \. The reader can see the analogous
situation for Theorem E (where for example, (0, oo, a, -a) — -1) in Remark 3 in §4.

Lee A. Rubel originally posed the question to the author of, what can be said
when "CM" is replaced by "IM" in the hypothesis of Theorem B?

This paper is organized as follows.
In §2 we exhibit some general results on distinct nonconstant meromorphic

functions that share four values. In §3 we prove Theorem E. In §4 we make some
remarks about the proofs of Theorems E and 2. In §5 we prove Theorem 2. Finally,
in §6 we use the methods in this paper to give a proof of Theorem B.

These proofs of Theorems E, 2 and B all use the results from §2.
I would like to thank the referee for many comments and suggestions.

2. Some general results. In this section we will exhibit some results on distinct
nonconstant meromorphic functions that share four values. These results will be
used in the proof of Theorem 1.

We will assume that the reader is familiar with the basic notations and fundamen-
tal results of Nevanlinna's theory of meromorphic functions, as found in [4]. We
make the following two definitions.

Definition 1. If two meromorphic functions / and g share the value c, then we set
Ñ(r, c) = Ñ(r, /, c) = Ñ(r, g, c).

Definition 2. We will denote by Sir, f) any quantity satisfying

S(r,f) = o(l)T(r,f)

as r -» oo, possibly outside of a set of finite linear measure.
We will use the following result throughout the paper.

Theorem F. // two distinct nonconstant meromorphic functions f and g share four
values {a¡}1=x IM, then the following conditions hold:

(2) Tir,f) = T{r,g) + S{r,g);

(3) ZÑ(r,a¡) = 2T(r,f) + S(r,f);
í=i

(4) Ñ(r,f,c) + S(r,f) = T(r,f)    and   Ñ(r, g,c) + S(r, g) = T(r, g)

if c* a, (i =1,2,3,4).

Equations (2) and (3) are proven in [2], while (4) is an immediate consequence of
(2), (3), and Nevanlinna's second fundamental theorem.

We will now prove some results.
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548 G. G. GUNDERSEN

Lemma 1. Let f and g be two distinct nonconstant meromorphic functions that share
four values {a,}?=, IM. Then the following properties hold:

(5) 2N(r,a,) = N(r,f-g,0) + S(r,f)
i=\

ifa¡ ¥= oo for i = 1,2,3,4;
4

(6) 2N(r,a,)=N(r,f-g,0) + S(r,f)    ifax = œ;
i=2

(7) N(r,f-g,0) = Ñ(r,f-g,0) + S(r, /);
(8) N5(r,f-g,0) = S(r,f)

where A/5(r, /— g,0) "counts" only those points z such that /(z) = g(z) ^ a, /or
/ = 1,2,3,4.

Remark. We mention that (8) was proven in [2].
Proof of Lemma 1. First suppose that a¡ ¥= oo for i: — 1,2,3,4. From (2), (3), and

Jensen's theorem we obtain the following inequalities:

4

(9) 27(r, /) + Sir, /) = 2 Ñ(r, a¡) < 7V(r, /- g,0)
i=i
4

< S^('-^,) + /V5(r,/-g,0)
/=i

<Nir,f-g,0)<Tir,f-g,0)
= T(r,f-g) + 0(l)
<r(r,/) + r(r,g) + 0(l)
= 2r(r, /) + S(r, /).

It follows that all the expressions in (9) are equal to 2T(r, /) + Sir, /). Thus we
see that (5), (7), and (8) hold.

Now suppose that a, = oo. Let c be a constant that is not one of the shared values
and set

(10) ^ = -7-^—    and    G = —!—.
f-c g-c

Then £ and G share four finite values IM. Since

f _  (^ — _o        J_
if-c)ig-c)'

it follows that

(11) N(r, f- g,0) - Njr,f-g,0) + Ñ(r, oo) < N(r, F- G,0)
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where A/cc(r, / — g, 0) "counts" only those points z such that/(z) = giz) — c. From
(2), (3), (10), (11), and Nevanlinna's first fundamental theorem we obtain the
following inequalities:

4

(12) 2r(r,/) + S(r,/)= 2 M>% «,)
¡ = i

< N(r,f-g,0) - Ñccir,f-g,0) + Ñ(r, oo)
4

< N5(r,f-g,0) - Njr,f- g,0) + 2 N(r, a,)
i=i

^ N(r, f- g,0) - Njr, f- g,0) + Ñ(r, oo)
<yV(r, F- G,0)
*¿T(r,F) + T(r,G) + 0(l)
= 2T(r,f) + S(r,f).

Thus all the expressions in (12) are equal to 27\r, /) + 5(r, /). It follows that

(13) N5ir,f-g,0) - Nccir,f-g,0) = 5(r, /).

Hence if b is not a shared value and b ¥= c then from (13) we obtain

(14) Nbbir,f-g,0) = Sir,f).

Since c was an arbitrarily chosen nonshared value, it is clear from (14) that

(15) Nccir,f-g,0) = Sir,f).

If we substitute (15) back into (13) and (12) we will obtain (6), (7), and (8). The
proof of Lemma 1 is now complete.

Corollary 1. // two distinct nonconstant meromorphic functions f and g share four
values {«,}?=, IM then we have the following two properties:

I. If üj is shared CM then

(16) N(r, f, aj) = N(r, g, 0j) = Ñ(r, a,) + S(r, /).

II. // N4(r, a¡) refers only to those appoints that are multiple for both f and g and
"counts " each point the number of times of the smaller of the two multiplicities, then

4
(17) 2N4ir,a¡) = SÍr,f).

i=i

Proof. We can assume that all the shared values are finite because if a, = oo we
can consider F and G in (10). From (5) and (7) we obtain

4
(18) 2 N(r, a,) + S(r, f) = N(r,f-g,0).

i=i
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550 G. G. GUNDERSEN

Suppose that a} is shared CM. If / and g both have an appoint of multiplicity k,
then/ — g has a zero of multiplicity at least k. Hence

4

(19) N(r,f,aJ)-N(r,aJ)+ 2 N(r, a,) < N(r, f - g,0).
i=i

From (18) and (19) we obtain (16).
Now suppose that z, is an a,-point of multiplicity k > 2 for/and of multiplicity

m > 2 for g, and set « = min(A:, m). Then z, will be a zero of multiplicity at least «
for/ — g. Since z, is "counted" exactly « times in N4(r, at) we see that

4 4

(20) 2(tf4(r,fl,)-Jv4(r,fll.))+ 2 #('.*■)< M',/" *,0).
i=l f=i

From (20) and (18) we obtain
4

(21) 2{N4(r,ai)-N4(r,al)) = S(r,f).
i = i

Since N4(r, a¡) > 2N4ir, a¡) for each i, we see that (17) follows from (21).
The next result was stated in [2].

Lemma 2. // two distinct nonconstant meromorphic functions f and g share four
values {a,}f=, IM, then

(22) No(r,f',0) = S(r,f)   and   N0ir, g',0) = S{r, g),
where N0ir, /', 0) refers only to those roots of f'(z) = 0 such that f(z) ¥" a¡ for
i — 1,2,3,4 (N0(r, g',0) is similarly defined).

Proof. From the second fundamental theorem we obtain

4

2Tir,f) < 2 N(r, a,) - N0(r, f',0) + Sir, /).
i=i

Thus N0(r, /', 0) = S(r, f) from (3). The proof that N0ir, g', 0) = S(r, g) is similar.
We next make some observations. First note that example (1) satisfies the

following properties:

2 N(r, f, a,) + 2 N(r, g, a,) = 6T(r, f) + S(r, /);
i=i i=i

N(r,f',0)      \       N(r,g',0)     2
T(rJ')    "3'       T(r,g')    "3

as r -» oo, perhaps outside a set of finite linear measure. On the other hand, let/and
g be functions as in Theorem B. From the second fundamental theorem, Theorem B,
and (2) we obtain

4 4

2 N(r, f, a,) + 2 N(r, g, a,) = 4T(r, f) + S(r, /).
i=i i=i
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Since/and g both have two Picard values it is easy to deduce that

(23) N(r,f',0) = S(r,f)    and   N(r, g',0) = S(r, g').
Regarding (23) we mention the book of Wittich [6, II, 3].

This leads to the following two open questions. Let / and g be two distinct
nonconstant meromorphic functions that share four values {a,}f=, IM.

1. Is2f=,iV(r, /, a,) + 2?= ,#(/■, g, a,) < 6T(r, /) + S(r, /)?
2. Is N(r, f',0)/T(r, /') + N(r, g',0)/T(r, g') ^ 1 + oil) as r -> oo outside a

possible exceptional set of finite linear measure?
I would like to thank Thomas P. Czubiak and the referee for the same remark that

concerned question 1.
We conclude this section by noting the following result.

Theorem G. If two distinct nonconstant meromorphic functions share four values IM
then both functions are transcendental.

Proof. Since the two functions share four values it follows from Picard's theorem
that either both functions are rational or both functions are transcendental. Adams
and Straus [1] have shown that two nonconstant rational functions that share four
values IM are identical. Theorem G follows.

Remark. It has not been necessary to distinguish between rational and transcen-
dental functions in our proofs here or in [2].

3. Proof of Theorem E. There will be a recurring theme in the proof. The purpose
of Remark 1 in §4 is to illustrate this theme; hence the reader may want to read this
remark before reading the proof here.

The next result will play an important role in the proofs of Theorems E and 2.

Lemma 3. If h is a meromorphic function that has a zero of order k at z0, then in the
Laurent expansion ofh'/h about z0,

h'jz) _      k
«(z)       z - z, +   lA„iz-z0)\

n = 0

i     ft(*+1)U)
k+1     hw(z0)

h'"iz0)      i h"(z0)

we have

(24) A0

Ifk=l then

(25) ÁX = 3«'(z0)      \ 2«'(z0)

The proof of Lemma 3 is elementary.
The first part of the proof of Theorem E (through (40)) is a rearrangement of the

proof of Theorem D that was shown to the author by Mues. The author does not
know what similarities (if any) exist between the remaining part of the proof of
Theorem E and the proofs of Theorem D by Mues. An idea of Mues that will be
utilized in this remaining part is stated in Remark 1 after the proof.
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We now begin the proof of Theorem E. We will assume that / s g because there is
nothing to prove if/ = g. Consider the following function:

(26) Y, =TT-7^-71—- 2^-4 + -^ + -^ + 1-.y    ' f       f-a     f+a f      g'      g-a     g + a g
We will show that T(r, yx) = S(r, /). It is well-known [5,pp. 103-104] that Nevan-
linna's fundamental estimate of the logarithmic derivative can be used to show that
T(r, «') < 2T(r, h) + Sir, h) holds for any meromorphic function «. Hence from
(26), Nevanlinna's fundamental estimate, and (2) it follows that

(27) m{r, yx) < S(r, /') + S{r, f) + 5(r, g') + S(r, g) = S(r, /).
Now we note that since y, is the logarithmic derivative of

(28) H=f'(g-")(g + a)g\
g'(f-a)if+a)f2'

this means that

(29) NÍr,yx) = Ñir,H,0) + Ñir,H).
Since /and g share 0, 00 CM and a, -a IM, it can be seen from (28) and (22) that

(30) Nir,H,0)<N0{r,f',0) = Sir,f),
and

(31) N(r,H)<N0(r,g',0) = S(r,g).

Consequently, from (31), (30), (29), and (2) we obtain

(32) N(r,yx) = S(r,f).
From (27) and (32) we have

(33) T(r,yx) = S(r,f).
Now suppose that z0 is a simple zero of / and g. Since z0 is neither a zero or a pole

of H in (28), y, is analytic at z0. Furthermore, if equation (24) is applied to (26), it
will be found that

(34) Y,U) = 0.
Now suppose that Y) ̂  0. Then because of (34) we can say that

(35) Ñ(r,0) < N(r, yx,0) + N(r, f,0) - Ñ(r,0).
From Jensen's theorem and (33) we obtain

(36) N(r, Yl,0) < T(r, y„0) = T(r, yx) + 0(1) = S(r, /).
Since /and g share 0 CM, we have

(37) N(r,f,0)-N(r,0) = S(r,f)
from (16). Substituting (37) and (36) into (35) gives Ñ(r,0) = S(r, /). We have
shown that

(38) if y, SO   then7V(r,0) = S(r, /).
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Now set F = 1/f, G = 1/g, A = I/o, and

f*Q\        = F" F' F'        ? F'     G" G' G' G'y^)   Y2      F      F_A      F + A     ¿ p      G'G-AG + AG'

Then F and G satisfy the hypothesis of Theorem E, and by inspection of (26), (38),
and (39) we can deduce that

(40) ify2^0   then Ñ(r, oo) = S(r,f).
Four cases result from (38) and (40).
Case 1. y, = y2 = 0. From integration of y, =0 we obtain

f'(g2-a2)g2(4i) J %     ,; , = c
V    ' g'(f2-a2)f2

where C is some nonzero constant, while from integration of y2 = 0 we will obtain

g(f  -a )g
where K is some nonzero constant. Combining (41) and (42) we get C/4 = Kg4.
Hence /and g share a and -a CM.

Case 2.y,ïfl and y2 £ 0. Since iV(r,0) = S(r, f) and A^(r, oo) = S(r, f) from
(38) and (40), it follows from the second fundamental theorem that

(43) Ñ(r,a) + S(r,f) = T(r,f)   and   Ñ(r,-a) + S(r, /) = T(r,f).
That / and g share a and -a CM will follow from

Lemma 4. //, in addition to the hypothesis of Theorem E, (43) holds, then

(44) (g-a)2(f+a)2=(f-a)2(g + a)2.
Proof of Lemma 4. From (43), the first fundamental theorem, and (2) we obtain

(45) N(r,f,a)-Ñ(r,a) = S(r,f),   N(r, g, a) - Ñ(r, a) = S(r, /),
and

(46) N(r,f,-a)-Ñ(r,-a) = S(r,f),   N(r, g,-a) - Ñ(r,-a) = S(r, /).
We shall now consider the following two functions:

(47) /'(/+«) _g'(g + *)
{)                                    Y3      f(f-a)       g(g-a)'
(48) y  =nf-a)-S'(s-a)
{) Y4      f(f+a)      g(g + a)-
Since

/'(/+a)=?   /'        /'
/(/-a)        /-a      /'

we see from (47), (48), the fundamental estimate of the logarithmic derivative, and
(2) that
(49) m(r,yi) = S(r,f)    for/= 3,4.
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If z0 is a zero of order k of /and g, then from (47) and (48), the principal parts of y3
and y4 at z0 will both equal

hence y3 and y4 are analytic at the zeros of / and g. y3 and y4 are also analytic at the
poles of /and g. Furthermore, y3 (y4) is analytic at a-points ((-a)-points) that are
simple for both/and g. Therefore, any pole of y3 (y4) must occur at an a-point (a
(-a)-point) of / and g that is multiple for either / or g or both. Since any pole of y3
(y4) will be simple, it follows from (45) and (46) that

(50) N(r,y¡) = S(r,f)    for/=3,4.
From (49) and (50) we have

(51) T(r,y,) = S(r,f)    for; = 3,4.
If y3 s 0 then from (47) and (51) we obtain

Ñ(r,-a)<Ñ(r,y3,0)<T(r,y3,0)

= T(r,y3) + 0(l) = S(r,f),

which contradicts (43). Hence y3 = 0. We can deduce similarly that y4 = 0. Combin-
ing y3 = 0 and y4 = 0 gives (44). This proves Lemma 4.

Case 2 is now complete.
Case 3. y, = 0 and y2 s 0. If z0 is an a-point (a (-a)-point) of order k for/and an

a-point (a (-a)-point) of order m for g, then from (41) we find that

(52) k = Cm.
We will now consider the function

f'f c    g'g
f2-a2 g2-a2

An analysis similar to that used to obtain (49) from (47) and (48) will show that

(54) m(r,y5) = S(r,f).

Because of the condition (52), an analysis of (53) similar to that used on (47) and
(48) (e.g. see the sentence that follows (49)) will show that y5 is analytic at a-points
and (-a)-points of/ and g. Since

(55) Ñ(r,co) = S(r,f)

because of (40), it follows from inspection of (53) that

(56) N(r,y5) = S(r,f).

From (54) and (56) we have

(57) T(r,y5) = S(r,f).
If Yj = 0 then from (53) and (41) we obtain/3 = g3. Hence/and g share a and -a

CM.

(53) y5 = 7^3 - C-
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Now suppose that y5 2 0. Then from (53) and (57) we obtain

(58) Ñ(r,0)<Ñ(r,y5,0)<T(r,y5,0)
= T(r,y5) + 0(l) = S(r,f).

Combining (58) and (55) with the second fundamental theorem implies that (43)
holds. Then/and g share a and -a CM from (44).

Case 4. y, z 0 and y2 = 0. We can deduce that / and g share a and -a CM from
Case 3.

Thus in all four cases of (38) and (40) we have found that/and g share a and -a
CM. The proof of Theorem E is complete.

Remark 1. The idea of using expressions like (47) and (48) for problems on
meromorphic functions that share values is due to Mues. The use of (53) is a
variation of this idea to fit the particular situation of Case 3.

Remark 2. When / *= g the conclusions in Theorem B can be obtained directly
from this proof of Theorem E. We now indicate how this can be done but will leave
out most of the details.

In the proof of Theorem E it can be found that:
(i) Case 1 led to C/4 = Kg4;

(ii) Case 2 led to (g - a)2(f+ a)2 =(f- a)2(g + a)2;
(iii) Case 3 led to/3 = g3 and (g - a)2(f+ a)2 = (f~a)2(g + a)2;
(iv) Case 4 will lead to (l//)3 = (1/g)3 and (1/g - l/a)2(l//+ 1/a)2 =

(l//-l/a)2(l/g+l/a)2.
There are only three distinct identities in (i)-(iv).
Regarding (i), suppose that C/4 = Kg4. From this identity it follows that f=Dg

where D is a nonzero constant. Since D ^ 1, this implies that a and -a must be
Picard values of/and g. Since/and g can have no other Picard values from Picard's
theorem, it follows that a = -Da, or D = -1. Thus/= -g. Since (a,-a,0, oo) = -1
we have obtained the conclusions of Theorem B.

Elementary analysis can also be used on the remaining identities (g — a)2(/ + a)2
= if-a)2ig +a)2 andp=g\

4. Some remarks on the proofs of Theorems E and 2. First we make the following
comments about the preceding proof of Theorem E.

1. Five different linear combinations {y,}^=, of logarithmic derivatives were
constructed from /, g, /', and g', so that each y, satisfied the following three
conditions:

(a)W(r,y,) = 5(r,/);
(b)N(r,yi) = S(r,f);
(c) the zeros of y¡ contained all or "essentially all" of the roots of/(z) = giz) = d¡

where di was one of the shared values.
Condition (a) was always an easy consequence of Nevanlinna's fundamental

estimate of the logarithmic derivative and (2). Conditions (b) and (c) were always
accomplished by using the shared value properties of / and g. If y, = 0 then this
condition was utilized. If y, z 0 then N(r, d¡) = Sir, f) followed from (a), (b), and
(c). The second fundamental theorem was then utilized.
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2. The second fundamental theorem (when used) was always applied to / or g
(which were assumed to be nonconstant) and never to any of the y,'s. Thus it was
valid to consider only whether y, = 0 or y, 2 0; i.e. we did not have to consider
separately the possibility of y, = C where C is a nonzero constant.

3. A natural question to ask is whether some generalization of the proof of
Theorem E can be used to prove Theorem 1? The author has been unable to obtain
such a generalization; Mues was earlier unable to obtain such a generalization of any
of his proofs of Theorem D. The following observation illustrates the problem that
we both have had with finding such a generalization. This observation is a rearrange-
ment of the observation that Mues made about his proofs of Theorem D referred to
in the Introduction.

Suppose that we start with the hypothesis that / and g are two nonconstant
meromorphic functions that share 0, oo CM and a, b IM (a, b ¥= 0, oo; a ¥= b).
Consider the function

(59) y = Ç--/^-7L\-Xf--^7 + ^^ + ^-r + X^,f      f-a     f-b        f      g       g-a     g-b        g
where X is an arbitrarily fixed complex number. Note that when X — 2 and a = -b
then y = y, in (26). From the analysis used on (26) we see that w(r, y) = 5(r, /).
Since

£__£_  and  C..JL.
/       f-a g       g-a

both have a simple pole with residue -1 at a-points of / and g, we see that y is
analytic at such points, y is also analytic at ¿»-points of /and g. Since/and g share 0
and oo CM we can determine from (59) that y is analytic at the zeros and poles of /
and g. Thus from (59), (22), and (2) it follows that N(r, y) = Sir, /). Hence
Tir, y) = Sir, /).

Now suppose that z0 is a simple zero of both / and g. Formula (24), when applied
to (59), shows that

Hence if X = 2 and a = -b we obtain y(z0) = 0; in this case y = y, in (26) and
y(z0) = 0 is condition (34). On the other hand, if X =£ 2 or a =£ -b, it was not clear
to Mues and it is not clear to the author whether y(z0) = 0 can be concluded; this
was the problem that we both have had in finding the stated generalization.

Now we will remark on the upcoming proof of Theorem 2 in §5. Due to the length
of this proof it may be worthwhile to give the following brief outline.

We will start with the assumption that either a or b is shared by DM. It will be
shown that

(60) Ñ(r,a) + S(r,f)>±T(r,f),
and

(61) Ñ(r,b) + S(r,f)>irT(r,f).
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We will partition the set of a-points of fand g into six disjoint subsets {£,}*=1. It will
be shown that Ex and E2 contribute Sir, f) to N(r, a). For the sets E3 and E4 we
will find corresponding functions u3 and u4 respectively such that the following
conditions are satisfied (for /' = 3,4):

(A) T(r, «,) = S(r, /);
(B) if z0 G E¡ then u¡(z0) = 0;
(C) «, SO.

From (A), (B), and (C) it follows that E3 and E4 contribute Sir, f) to N(r, a). This
will immediately imply that E5 and E6 must also contribute S(r, /) to N(r, a). But
then it will follow that N(r, a) = S(r, /), which contradicts (60). This contradiction
will mean that our original assumption is false, and hence will prove Theorem 2.

We have two further remarks about the proof of Theorem 2.
(i) We will create several linear combinations {p} of logarithmic derivatives from

/, g, /', and g', and use variations, extensions, and refinements of the ideas in the
proof of Theorem E.

(ii) In the proof there exists a nonconstant entire function w such that / = ewg
because / and g share 0 and oo CM and either a or b is assumed to be shared by
DM. We mention that the following two properties (which will be proved) will play
key roles in obtaining the contradiction:

Tir, w') = Sir, /);    Ñ(r, e™, 1) = Ñ(r, a) + Ñ(r, b) + 5(r, /).

Concluding remark. Each linear combination tj of logarithmic derivatives in
this paper was constructed with the following motivations:

(a) to obtain w(r, tj) = 5(r, /) as an easy consequence of the fundamental
estimate and (2);

(b) to use the shared value properties of/and g to accomplish two things: (i) to
make N(r, tj) as "small" as possible, and (ii) to have the zeros of tj (or the function
created from tj) contain as "many" as possible of the roots of /(z) = g(z) = a
where a ■ is one of the shared values.

5. Proof of Theorem 2. Before we begin the proof, we have two comments.
(i) The proof of Theorem 2 will be by contradiction. The proof will consist of

proving the statements referred to in the outline of the proof that was given in §4.
(ii) The proofs of Theorems E and 2 can be combined in a natural way;

specifically, the proof of Theorem E can be naturally incorporated into the proof of
Theorem 2 (see the remark at the end of this section).

We now begin the proof of Theorem 2. We make the assumption that either a or b
is shared by DM. Then/Zg. First we prove

Lemma 5. The hypothesis of Theorem 2 and our additional assumption imply that the
following properties hold:

(60) Ñ(r,a) + S(r,f)>{T(r,f);
(61) Ñ(r,b) + S(r,f)>2-T(r,f);
(62) Ñx(r,a) + Ñx(r,b) = S(r,f)
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where Nx(r, a) "counts" only those a-points that are simple for both f and g iand
similarly for Nx(r, b)).

Proof of Lemma 5. We will first consider the function

f*n ,_/'(/-«)    g'(g-q)

From the analysis previously used on (47) and (48) we find that

(64) m(r,xp) = S(r,f),
and also that xp is analytic at (i) the zeros and poles of / and g (since / and g share 0
and oo CM) and (ii) the ¿-points that are simple for both / and g. For a
meromorphic function « and a constant c ^ oo we define N2(r, «, c) to "count" only
multiple zeros of «(z) — c and "count" them once each. It then follows from (63)
that

(65) N(r,i>)<Ñ2(r,f,b) + Ñ2(r,g,b).
From (64) and (65) we have

(66) Tir, xp) < 7V2(r, /, b) + Ñ2(r, g, b) + S(r,f).

If xp = 0, then from (63) it can be seen that / and g would share a and b CM,
which contradicts our assumption. Thus xp z 0. Then from (63), (17), and (66), it
follows that

(67) Ñ(r, a) < Ñx(r, a) + Ñ2(r, f, a) + Ñ2(r, g, a)
= Ñ{r, a) + Ñ4(r, a) *£ N(r, xp,0) + S(r, f)
<T(r,xp) + S(r,f)
*íÑ2ir,f,b) + Ñ2ir,g,b) + Sir,f)
^Ñir,b) + Ñ4ir,b) + Sir,f)
= Ñir,b) +S(r,f).

If we interchange a and b in (63) and repeat this argument we will obtain

(68) Ñ(r, b) < Ñxir, b) + Ñ2(r, f, b) + Ñ2ir, g, b)
<Ñ2(r,f,a) + Ñ2(r,g,a) + S(r,f)

<Ñ(r,a) + S(r,f).

We can deduce from (67) and (68) the following three properties:

(69) Ñ(r,a) = Ñ(r,b) + S(r,f);
(70) Ñ2(r, f, a) + Ñ2(r, g, a) = Ñ(r, a) + S(r, f);
(71) JV2(r, /, b) + Ñ2(r, g, b) = Ñ(r, a) + S(r, f).

If we substitute (71), (70), and (69) back into (67) and (68) it can be seen that (62)
holds.
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Now consider the following function:

(72) *'"/'      f-a + a(f-b)      2f      g'+g~a      a(g-b)+2g-

From the analysis that was used on (26) we obtain

(73) m(r,*l) = S(r,f).

By using the analysis that was applied to (59) it can be seen that </>, is analytic at
a-points, zeros, and poles of /and g. Thus it follows from (72), (22) and (2) that

(74) N(r, <¡>x) < Ñ(r, b) + N0(r, f',0) + N0(r, g',0)

= Ñ(r,b) + S(r,f).

From (73) and (74) we have

(75) T(r,<j>x)^Ñ(r,b) + S(r,f).
Suppose that z0 is a simple zero of / and g. Formula (24), when applied to (72),

shows that

(76) <px(z0) = 0.
Suppose that <i>, =0. If z, is a ¿-point of order k for/and of order m for g, then

by equating the principal part of <j>, at z, to zero we will obtain from (72) that
(k — m)(b/a + 1) = 0. Since a + b ¥= 0 from the hypothesis, this means that k — m.
Then b is shared CM by /and g. But if we let tj, be <j>x in (72) with "a" and "b"
interchanged, repeat this argument, and assume that tj, = 0, then we will obtain that
a is also shared CM. Since this would contradict our original assumption we must
have either <£, z 0 or tj, z 0. If <#>, z0, then since

(77) N(r,f,0)-N(r,0) = S(r,f)
from (16), it will follow from (75), (76), and (77) that

(78) N(r,0) < Ñ(r, <¡>x,0) + S(r, f) =£ T(r, <¡>x) + S(r, f)

<Ñ(r,b) + S(r,f).
If tj , z 0 then we obtain

(79) Ñ(r,0)<Ñ(r,a) + S(r,f).
Since either (78) or (79) must hold, it follows from (69) that

(80) Ñ(r,0)<Ñ(r,a) + S(r,f).
If we let <p2 be <i>, in (72) with/, g, a, b, replaced by F = 1//, G = 1/g, A = 1/a,

B = l/b, respectively, and repeat this argument, we will obtain

(81) Ñ(r,oo)<Ñ(r,a)+S(r,f).

Inequalities (60) and (61) are now a consequence of (81), (80), (69), and (3) (or we
could use the second fundamental theorem instead of (3)). Since we have already
shown that (62) holds, the proof of Lemma 5 is now complete.
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Proceeding with the proof of Theorem 2 we next note that since/and g share 0, oo
CM and either a or b is assumed to be shared by DM, there exists a nonconstant
entire function w such that

(82) f=e»g.
From (82) and (2) we obtain

(83) T(r, e») < T(r, f) + T(r, g) + 0(1) = 2T(r, /) + S(r, /).
Since w' is the logarithmic derivative of ew, a consequence of the fundamental
estimate and (83) is that

(84) T(r,w') = S(r,f).
Now (82) can be rewritten as

(85) ew-l=£^-.
g

Of course/ z g and ew z 1. If z0 is a zero of /and g such that ew<-Zo) = 1, then from
(85) we see that z0 will be a multiple zero of/— g. Since from (82), 1/g = ew ■ 1/f,
we can deduce that if z, is a pole of / and g such that ew{Zi) — 1, then z, will be a
multiple zero of 1/g — 1/f. Therefore, from (85) we can say that

(86) Ñ(r, ew, 1) < Ñ(r, a) + Ñ(r, b) + N(r,f- g,0) - N(r,f-g,0)

+ 7v(r,^-y,o) -^(r,i-j,o) +Aj(r,/-g,0)

where N5(r, f— g, 0) "counts" only those points z such that f(z) = g(z) ¥=
0, a, b, oo. Noting that 1/g and 1//share four values, an application of (7) and (8)
to (86) yields

Ñ(r, ew, I) =S Ñ(r, a) + Ñ(r, b) + S(r, f).
Since N(r, a) + N(r, b) < N(r, ew, 1) is obvious from (82), we obtain that

(87) Ñ(r, ew, 1) = Ñ(r, a) + Ñ(r, b) + S(r, f).
The properties (84) and (87) will play an important role in this proof. We will now

consider the following two functions:

(W\ n   -f" f f      4-    W'eW    ■
/'      f-a     f-b     e"-r
g"        g' g' w'e»

(89) °2      g'      g-a     g-b  '  e--r
From (83) we obtain

(90) m(r, a,) « S(r, f) + S(r, e» - l) « S(r, /).
Since «, is the logarithmic derivative of

(91) H =     f{eW " °

we have that N(r, ax) = N(r, Hx,0) + iV(r, //,). Since a-points and ¿-points of /are
zeros of ew — 1 from (82), we see that Hx has no poles. On the other hand, if z0 is a
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zero of Hx, then by inspection of (91), it can be seen that z0 will have to satisfy one
of the following four conditions:

(i) z0 is a multiple pole off;
iii) f'iz0) = 0 and fiz0)^ a, b;

(üi)eM,(z°)= 1 and/(z0) ¥= a, b;
(iv) z0 is a multiple zero of ew — 1 and is also either an a-point or a ¿-point of /.

Note that w' z 0 from (82). Therefore, since A/(r, a,) = N(r, Hx,0), we can say that

(92) Nir, ax) < N(r, f) - Ñ(r, oo) + N{r, f,0) - JV(r,0) + N0(r, f',0)
+Ñ(r, ew, 1) - Ñ(r, a) - Ñ(r, b) + N(r, w',0),

where N0(r, f',0) refers to those roots of/'(z) = 0 such that /(z) ¥= 0, a, b. Hence
from (92), (16) with a, = 0 and a2 = oo, (22), (87), and (84) we deduce that

(93) JV(r,«,) = S(r,/).
From (90) and (93) we have

(94) T(r,ai) = S(r,f).
From inspection of (88) and (89) we can use (2) and deduce that

(95) T(r,a2) = S(r,f).
Next we note that, in view of (60), (61), (62), and (17), "essentially all" of the

a-points and ¿-points of / and g are simple for one of the functions and multiple for
the other function. If z0 is such an a-point or ¿-point then from (85) we obtain

(96) e^o)=i    and   w'(z0)#0.

If we can show that either A/(r, a) = S(r, /) or 7v*(r, ¿) = 5(r, /), then because
of (60) and (61) we will have a contradiction. Our goal will be to show that
N(r, a) = Sir, /). To this end, we shall now prove the following two statements.

I. If z0 is a simple a-point of/and a double a-point of g then a, is analytic at z0
and
(97) a\iz0) = /?,(z0)

where

/    x w'" h,h2      ¡5 a     \ ¡3 ab      \,    ,2(98) /3, = — + 4«, + 8-4^+    - +-r K'+    --~X1       w' ' w'        \2      a-b) \ 4      (a _ b^

3/.      , a + b   ,     w"\2     2aw'ax      1 I w" ^2/«,      ,  a + b   ,     w"\•2a, +-t-w'-r\ a — b w  I4\'      a — b w' a — b      4 w
for

w,™s , ,      ,  biw'f        „ , I w"      I(99) «, = w'ax +    v    '   - w"    and    «2 = a2 - - — - -
1 '      a — b 2 w       2

II. If z0 is an a-point that is simple for/and is of multiplicity at least three for g,
then a, is analytic at z0 and

(100) °'<z°) = íey + irV<2»>-
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The proof of assertion I will involve some tedious calculations. Suppose that z0 is
a simple a-point of fand a double a-point of g. From (96) and (88) it follows that a,
is analytic at z0. By using (25) with h—f—a and « = ew — 1 we can make a
calculation and verify from (88) that the coefficient of (z — z0) in the Taylor series
of a, about z0 will be equal to the following:

non     /(^-2f'"(zo)    3//"(z0)\2    f"(z0)    (f(z0)f

+ i  >/■    ^T*" (zo)+tt(vv(zo))  -t      >/    \     •3w(z0)      2 12 4\w(z0)/

We will now derive expressions for f'(z0), f"(z0), and /'"(z0) in order to
substitute back into (101). First we differentiate (82) three times. If we substitute
z — z0 into the three equations and note that e"<Zo) = 1 and g'(z0) = 0, then we will
obtain the following three equations:

(102) f'(z0) = aw'(z0),

(103) f"(z0) = aw"(z0) + g"(z0) + a(w'(z0))\

(104) f'"(z0) = aw'"(z0) + 3w'(z0)g"(z0) + g'"(z0)

+ 3aw'(z0)w"(z0) + a(w'(z0))\

Now formula (24), when applied to (88) and (89), will yield the following two
equations:

(105) a'(z°)-27üT^+      m¡¡)      '

(106) a2(z0)=fäH+""(Zo)+(M''(Zo))2
6g"(z0) 2w'(z0)

Substitution of (102) into (105) gives

(107) f"(z0) = 2aw'(z0)axiz0) + ^^J^   - aw"iz0) - a(w'(z0))2.

Then substitution of (107) into (103) will yield
(108) g"(z0) = 2a«,(z0)

where «, is given in (99). From (108) and (106) we obtain

(109) g'"(z0) = 12a«,(z0)«2(z0)

where h2 is given in (99). Now we substitute (109) and (108) back into (104) and
obtain
(110) f'"(z0) = aw'"(z0) + 6aw'(z0)«,(z0) + 12a«,(z0)«2(z0)

+ 3aw'(z0)w"(z0) + a(w'(z0))\

Finally, we substitute (110), (107), and (102) back into (101). After simplification
this will reduce to the equation a'x(z0) = ßx(z0) where /?, is given by (98). This
proves (97).
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To prove (100), suppose that z0 is an a-point that is simple for / and is of
multiplicity at least three for g. Then a, is analytic at z0 from (96) and (88). Formula
(24), when applied to (88), shows that

,..., ,      , 1   /"(Z.)        /'(*.)    ,    »"(»p) + (»'(*.))'(ll,) "'(Z») = 2 7ÜT-^1T +-m^)-■
From (82) we obtain

(112) f'(z0) = aw'(z0)   and   f"(z0) = aw"(z0) + a(w'(z0)f.

Substitution of (112) into (111) will give (100).
For our proof we shall also need to show that

(113) a, Za2.

To prove (113) we will make the assumption that a, = a2. From integration of
a, = a2 we obtain from (88) and (89) that

(114) r^-a)(tt-b)
K     } g'(f-a)U-b)
where C is some nonzero constant. If z0 is an a-point (a ¿-point) of order k for / and
an a-point (a ¿-point) of order m for g, then from (114) it follows that

(115) k = Cm.
Now either a or b is shared by DM, and neither a or b is a Picard value for / and g
from (60) and (61). Hence from (115), C is a positive rational number such that
C ¥= 1. Suppose that C > 2. Then from (115), all the a-points (and ¿-points) of/are
of multiplicity at least three. But then

3Ñ(r, a) < N(r, f, a) < T(r,f) + 0(1),
which contradicts (60). Hence C < 2. From (115) we can deduce that C < \ is also
impossible. On the other hand, if 1 < C < 2 or {- < C < 1, it can be seen from (115)
that all the a-points (and ¿-points) of / and g will be multiple for both / and g. But
then Nir, a) = S(r, /) from (17), which contradicts (60). Hence we have shown that
either C — 2 or C = {~.

Suppose that C = {, and consider the following function:

(116) a-—a+7^b-J^-a-J^b+^-l-T + ^-
From (83) and (2) we obtain

(117) m(r,a) = S(r,f).
From (115) with C = \ we have the following two conditions.

(A) If z0 is a simple a-point ( ¿-point) of / then
z0 is a double a-point (¿-point) of g. In view

,      . of (96) we will find from inspection of (116) that
(118) .        ,   .a is analytic at z0.

(B) If z0 is a multiple a-point (¿-point) of/, then
z0 is a multiple a-point (¿-point) of g.
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Also, we will find from inspection of (116) that a is analytic at simple poles of/and
g that are not zeros of ew — 1.

Therefore we can deduce from (116) that if z0 is a pole of a then z0 will satisfy at
least one of the following conditions:

(i) z0 is either an a-point, a ¿-point, a pole, or a zero of /and g and is multiple for
both / and g;

(n)ew(z")= land/(z0)^a, b;
(iii)/'(z0) = Oand/(z0)^0,a,¿;
(iv)g'(z0) = Oandg(z0)^0,a,¿.

By combining (i), (ii), (iii), (iv), and (116) with (17), (87), and (22) we see that

(119) N(r,a) = S(r,f).

From (119) and (117) we have

(120) T(r,a) = S(r,f).

Now suppose that z0 is a simple a-point of / and a double a-point of g. Then a is
analytic at z0 from (118), and/'(20) = aw'iz0) from (82). Thus if we apply (24) to
(116) we can deduce that

fnn 2aw'(z0)       w"(z0) + (w'(z0))2(121) a(Zo)-^^T + -^j-■

If a z 2aw'/(a - b) + w"/w' + w' (note that w'zO from (82)), then it follows
from (121), (118), (120), (84), and (17) that

Ñ(r,a)<Ñ(r,a-^ - ^ - w',o) + Ñ4(r, a)

*Í'>«-^b-%-»')+S(r,f) = S(r,f),

which contradicts (60). Therefore

2aw'        w"
+ —r +w'.a — b       w'

Since a is symmetric in a and b in (116), this implies that we also have

2¿w'        w"
a = --1-- + w .

b — a       w

This implies that a + b = 0 which contradicts our hypothesis. We have therefore
shown that (113) holds.

We can now complete the proof of Theorem 2. Suppose that a'x = ßx where /?, is
given in (98). We note that a, and a2 are symmetric in a and b in (88) and (89). Then
a'x is symmetric in a and ¿. Since a'x = ßx it follows that /?, is symmetric in a and b;
that is ßx = ß2 where ß2 is ßx in (98)with "a" and "¿" interchanged ("a" and "¿"
are interchanged in «, also). If we appropriately use (99) in the identity ßx = ß2 and
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cancel identical terms in /?, and ß2 we will then obtain

4¿(w')2       8¿w' / 1/       1    ,\   ,
—    i   + -Z \a2 - 7 —7 - ï">    +a — b a — b\ 2 w        2/ a-b

31.    a + b   ,     „a + b   ,\      2aw'ax
—  4a,-tw — 2--w     -4 \      a — b a — b     I       a — b

4a(w')2       8aw' / 1 w"       1   ,\   ,
a-, — — —- — —w    +

b- a        b- a\   2      2 w'       2    )      b
3(A    b + a   ,     „¿ + a   „\       2¿w'a,

--r  4a,--iv -2-r-w4\     ' b — a b — a
This identity reduces to (a + ¿)w'(a, — a2) = 0. Since a + ¿ t^ 0 from our hy-
pothesis, w' z 0 from (82), and a, z a2 from (113), we have a contradiction.
Therefore
(122) a;zj8,.

Since a, is symmetric in a and ¿ we can also deduce that

(123) a, z— +-.
w b — a

If iV12(r, a) "counts" only those a-points that are simple for/and multiple for g,
then from (97), (100), (122), and (123) we obtain

(124) NX2(r,a)<N(r,a'x-ßx,0) + N(r,ax - ^ - -^-_,0).

From (124), (84), (94), (95), (98), and (99) it follows that

(125) ÑX2(r,a) = S(r,f).
If N2X(r, a) "counts" only those a-points that are multiple for / and simple for g,
then we can deduce that

(126) Ñ2l(r,a) = S(r,f).
But then from (126), (125), (62), and (17) we obtain that Ñ(r,a) = Sir, /), which

contradicts (60). This contradiction shows that our original assumption that either a
or b is shared by DM cannot be true. The proof of Theorem 2 is now complete.

Remark. The proof of Theorem E can be naturally incorporated into the proof of
Theorem 2. Indeed, if a = -b then <#>, in (72) is identically y, in (26) and <>2 (see
(81)) is identically y2 in (39).

6. A proof of Theorem B with these methods. There are many ways to prove
Theorem B with the methods in this paper, and we shall now give one of them.

With no loss of generality we can assume that all the shared values are finite.
Consider the following four functions:

f" f s" e'
127) pi=J-7r-2-Fi-^t+2-^—,       ; = 1,2,3,4./ f-a,       g g-a,

Then from (2) we obtain
(128) m(r,p¡) = S(r,f)   for /= 1,2,3,4.
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Since each ak is shared CM it follows from (127) that each ¡u, is analytic at the
appoints of / and g for k = 1,2,3,4. If z0 is a simple pole of / or a simple pole of g
or both, then it follows from (127) that each p¡ is analytic at z0. Thus from
inspection of (127) we can deduce from (4) (with c — oo) and (22) that

(129) N(r, p,) < N(r, f) - Ñ(r, f) + N(r, g) - Ñ(r, g)
+ Noir,f',0)+No{r,g',0)

= S(r,f)    for/= 1,2,3,4.
From (128) and (129) we have
(130) T(r,p,) = S(r,f)    for/= 1,2,3,4.

Now let z0 be a simple a,-point of / and g. Formula (24), when applied to (127),
shows that

(131) M,U) = 0.
Suppose that pj z 0 for some particular j. Then from (131), (130), and (17) we

obtain

(132) Ñ(r, aj) < Ñ(r, pp0) + Ñ4(r, 0j) < T(r, py) + S(r, /) = S(r, /).

Hence from (2) (or the second fundamental theorem), it follows from (132) that at
least two of the functions px, p2, p3, p4 must be identically zero. With no loss in
generality we can assume that px = p2 = 0.

From integration of px =0 and p2 = 0 we obtain from (127) that

/(g~a')9 =q   for/= 1,2,
g'(f-a,f

where C, and C2 are nonzero constants. From these two identities we can obtain that

(133) /ZÜL=C/-«2
g-ax g~a2

for some nonzero constant C. Thus

(a, - Ca2)g + axa2(C- 1)
(134) /: (1-C)g+Ca,

If C = 1 then/ = g. Hence C ¥= 1. Then a3 and a4 must be Picard values of/and
g from (133).

We will now finish the proof with Nevanlinna's reasoning [5, p. 124]. Set/ = L(g)
where L is the Möbius transformation given by (134). Since L(z) Zz (because
/ z g), L can have at most two fixed points. Of course neither / nor g could have
another Picard value besides a3 and a4. Since/ and g share a,, a2, a3, a4, it then
follows that

L(ax) = a,,    L(a2)—a2,    L(a3) = a4,    and   L(a4) = a3.

The last two equations are

(135) (1 — C)(a4a3 + axa2) = axa3 — Ca2a3 + a2a4 — Caxa4,
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and

(136) (1 — C)(a4a3 + axa2) = axa4 — Ca2a4 + a2a3 — Caxa3,

respectively. Combining (135) and (136) we obtain (1 + C)(ax — a2)ia3 — a4) = 0,
which yields C = -1. By substituting C = -1 into ( 135) we will get

_ ja2- a3)jax - a4)
(a3,a4,ax,a2) - -—-r--r- = -1.

(a2- a4)(ax - a3)

This completes our proof of Theorem B.
Note that from (134) and C = -1 we obtain

(a, + a2)g- 2axa2
2g-(a, +a2)
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