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MEROMORPHIC FUNCTIONS THAT SHARE TWO

OR THREE VALUES

BY HONG-XUN YI

1. Introduction and Main Results.

Let f(z) and g{z) be two nonconstant meromorphic functions in the complex
plane. If / and g have the same a -points with the same multiplicities, we say
/ and g share the value a CM. (see [2]). It is assumed that the reader is
familiar with the fundamental concepts of Nevanlinna's theory of meromorphic
functions and their standard symbols, as found in [3]. It will be convenient
to let E denote any set of finite linear measure of 0<r<oo and let / denote
any set of infinite linear measure of 0<r<oo. The notation S(r, f) denotes any
quantity satisfying S(r, f)=o(T(r, /)) (r-»oo, rφ.E\

M. Ozawa proved the following result.

THEOREM A (see [5]). Let f and g be entire functions of finite order such
that f and g share 0, 1 CM. If <5(0, /)>l/2, then / g = l unless f=g.

In [9] H. Ueda showed that in Theorem A the order restriction of f and g
can be removed. He proved more generally the following result.

THEOREM B. Let f and g be meromorphic functions such that f and g share
0, 1, oo CM. If

then f-g or / £ = 1 .
Recently the present author proved the following result.

THEOREM C (see [13]). Let f and g be meromorphic functions such that f
and g share 0, 1, oo CM. If

r, f)<(λ+o(ί))T(r, f) (reI),

where A<l/2, then f=g or f g=ί.
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In order to state our first theorem, we introduce the following notations.
Let f(z) be a meromorphic function. We denote by n^r, 1//) the number

of simple zeros of / in \z\ ̂ r and by nλ{rf f) the number of simple poles of /
in IjsrI ̂ r. Nι(r, 1//) and ΛΓx(r, /) are defined in terms of Wi(r, 1//) and Πι{r, f)
respectively in the usual way.

Let f(z) and g{z) be meromorphic functions. We denote by T(r) the maxi-
mum of T(rf f) and T(r, g).

In this paper we prove the following result which is an improvement of
the above results.

THEOREM 1. Let f and g be meromorphic functions such that f and g share
0, 1, oo CM. If

N^r, j^+N^r, f)<(λ+o(l)mr) (re/), (1)

where Λ<l/2, then f—g or f g=l.

By Theorem 1 we immediately obtain the following corollary.

COROLLARY 1. Let f and g be meromorphic function such that f and g
share 0, 1, oo CM. If

then f—g or f g=l.

In [7] H. Ueda proved the following result.

THEOREM D. Let f and g be entire functions such that f and g share 0, 1
CM. If all zero-points of f excepting at most finite number have multiplicities
>2, then f=g or / £ = 1 .

From Theorem 1 we immediately deduce the following corollary which is
an improvement of Theorem D.

COROLLARY 2. Let f and g be meromorphic functions such that f and g
share 0, 1, oo CM. If all zero-points and pole-points of f excepting at most finite
number have multiplicities^?,, then f=g or f*g—l.

In [5] M. Ozawa proved the following theorem.

THEOREM E. Let f and g be entire functions such that f and g share 1 CM.
If <5(0, / ) > 0 and 0 is lacunary for g, then f—g or f-g=l.

Recently the present author proved the following result which is an exten-
sion of Theorem E.
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THEOREM F (see [11]). Let f and g be meromorphic functions such that f
and g share 1 CM. If δ(0, /)+3(0, g)>\ and δ{ooy /)=3(oo, g ) = l , then f=g
or f g=l.

In this paper we prove the following result which is an improvement of
the above theorems.

THEOREM 2. Let f and g be meromorphic functions such that f and g share
1, oo CM. If

where μ<l, then f—g or / g = l .

By Theorem 2 we immediately obtain the following corollary.

COROLLARY 3. Let f and g be meromorphic functions such that f and g
share 1, oo CM. If 3(0, /)+3(0, g)+2Θ(oo, / ) > 3 , then f=g or / £ = 1 .

Let f(z)=2e*(l-2e*), g(z)=(l/A)e-%2-e-z). It is easy to see that this ex-
ample shows that the theorems and corollaries in this paper are sharp.

2. Some Lemmas.

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. Let f and g be two nonconstant meromorphic functions, and let
cu c2 and c3 be three nonzero constants. If Cιf \ c2g^cZy then

T(r, /)<ΛΓ(r, J)+N(T, j)+N(r, f)+S(r,

Proof. By the second fundamental theorem, we have

T{r, f)<N(r, y)+Λf(r, (f~yl)+^r9 f)+S(r, f)

=N(r, j)+N(r, j)+ff(r, f)+S(r, /),

which proves Lemma 1.

L E M M A 2 (see [4]). Let fu f2, ••• , fn be linearly independent meromorphic
functions satisfying Σ ? = i Λ = l . Then for / = 1 , 2, •••, n, we have
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T(r, f})<H?-iN(r, γ)+N(r, f,)+N{r, £>)-Σ£

-N(r, jj)+O(\og r+log Tn(r))

where D denotes the Wronskian

D = f l , f ί

,f.

•,f'n

/ l > J2 > y In

and Tn{r) denotes the maximum of T(r, f t ) , 2=1, 2, •••, n.

LEMMA 3. Let flf f2 and /3 be three nonconstant meromorphic functions
satisfying Σ ! - i / * = l , and let g1=-fs/f2f g2=l/f2f gt=—fι/f1t. If fu f2 and
fz are linearly independent, then gu g2 and gs are linearly independent.

Proof. Suppose that gu g2 and g3 are linearly dependent. Then there exist
three constants (cu c2, CS)±F(0, 0, 0) such that

that is

ι — C2 . (3)

If c2=0, then c^O, c3^0, and

Cifs+C9fi=09

which contradicts our assumption.
If ^2=^0, from (3) we have

c2 c%

Noting Σt-iΛ=l» from (4) we get

(4)

which is impossible.

This completes the proof of Lemma 3.

LEMMA 4. Let h(z) be a nonconstant entire function. Then

eA)) (r$E).
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Proof. We have

T(r, λ')^T(r, A)+S(r, A).

On other hand, by Clunie's result (see, [3, pp 54]), we have

T(r, h)=
Thus

T{r, h')=o(T(r,

which proves Lemma 4.

3. Proof of Theorem 2.

By assumption, we have

(5)

where h is an entire function. Let fi=f, f2=eh, f3——ehg and T3(r) denote
the maximum of T(r, ft), i = l , 2, 3. From (5) we have

Σ ϊ - i / . = l , (6)

and

(7)

(8)

We discuss the following two cases.
a) Suppose that fu / 2 and /, are linearly independent. By Lemma 2 and

(8), we have

T{r,

where

, D)-N(r, ft)-N(r, fs)+o(T(r)) (r£E), (9)

D= fly fz> f%

{II {II {II
J If J 2ί J 3

(10)

From (6) and (10) we get

D=
ft, /'.

fί, r,
and hence

N(r, D)-N(r, f*)-N{r, f,)£N(r, g")-N{r, g)=2N(r, g)=2N(r,

From (7), (9) and (11) we obtain

(11)



368 HONG-XUN YI

T(r, /)<Λr(r,y)+Λr(r,-^)+2JV(r, f)+o(T(r)) {r£E). (12)

Let g^-fjf^g, g2=l/f2=e-h, gz=-fjf2=z-e-hf. From (6) we obtain

By Lemma 3 we know that glf g2 and g3 are linearly independent. In a similar
manner we get

T(r, g)<N(r,j)+N(r,j)+2N(r, f)+o(T(r)) (r£E). (13)

From (12) and (13) we deduce

T(r)<N(r,j)+N(r,j)+2N(r, f)+o(T(r)) (r£E). (14)
/ ' \ ' £ >

Combining (2) and (14) we get

(l-μ)T(r)<o{T(r)) (re/), (15)

which is impossible.
b) Suppose that fu f2 and / 3 are linearly dependent. Then, there exist

three constants (cu c2, cs)Φ(0, 0, 0) such that

^1/1+^2/2+^3/3=0. (16)

If ^ = 0 , from (16) we have c2φ0, csφ0 and

f = ——f

and hence

=£2.

which is impossible. Thus Ci^O and

Now combining (6) and (17) we get

We discuss the following three subcases.
bi) Assume Ci—c2. From (18) we have cxφcz and

f — Cl

j 3 — ,
C C
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that is

g= ^—e'K (20)
Cι C3

From (6) and (19) we get

that is

/ + * * = — _ £ ± _ ^ . (21)

If c3φ0, from (20) and (21) we have

and

which contradicts our assumption. Thus c3—0. From (20) and (21) we deduce
g——e~h and f——eh and hance / g = l .

b2) Assume Ci=c s. From (18) we have CιΦc2 and

that is

^ = 7=7* (22)

From (6) and (22) we get

f-^t^^—^t^' < 2 3 >
If c2φ0, by Lemma 1 we have

7(r)<ΛΓ(r,y)+ΛΓ(r,^)+JV(r, f)+S(r, f). (24)

By (2) and (24) we get

a-μ)nr)<o(T(r)) (re/), (25)

which is impossible. Thus c2=0. From (23) we deduce f=g.
b8) Assume Cχφc2 and cγΦcz. From (18) we have

g
^i £3 Ci

Now combining (17) and (26), we get

(26)
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C\ C3 C\ £3

From (26) and (27) we have

and

which contradicts our assumption.
This completes the proof of Theorem 2.

4. Proof of Theorem 1.

Suppose that fφg. By assumption we have with two entire functions a
and β,

f=ea'g, f-l=eβ-(g-l). (28)

Since fΦg, then eβΦl and eβ-"Φl. Thus from (28) we get

l—eβ

f~^ΪZ^ ( 2 9 )

and

) . (30)

If eβ=c, where c (Φ0, 1) is a constant, then from (29) we have

N(r,j)=0. (31)

If eβ is not a constant, let {zn} be all the roots of / = 0 with multiplicity^2,
then from (29) {,en} are the roots of (l—eβ)'=—β'eβ=0. Thus

N.(r, y ) - M ( r , y)^27V(r, ̂ ) ^ 2 T ( r , £')+0(1).

By Lemma 4 and (30) we have

N(r, y)^M(r, j)+o(T(r)) (r£E). (32)

If eβ-a=c (ΦQ, 1), then from (29) we have

# ( r , / ) = 0 . (33)

If β'9'* is not a constant, let {tn} be all the roots of l//=0 with multiplicity
^2, then from (29) {tn} are the roots of {l-eβ-a)' = -(β'-af)eβ-a=0. Thus
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N(r, /)-^(r, f)^2N{r,j^)^2T{r, a')+2T(r, j8'

By Lemma 4 and (30) we have

N(r, mNtir, f)+o(T(r)) {rφE). (34)

Noting N{r, ί/g)=N(r, 1//) and N{r, g)=N{r, /) , from (31), (32), (33) and
(34) we deduce

N(r,j)+N(r,-)+2N(r,f)<2N1(r,j)+2N1(r,f)+o(T(r)) (rφE). (35)
J o J

Now combining (1) and (35) we obtain

( r e / ) .

By Theorem 2 we deduce the conclusion of Theorem 1.

5. An Application of Theorem 1.

Let / be a nonconstant meromorphic function and S be a set in the com-
plex plane, and let

where any z which is a zero of multiplicity m is included in Ef(S), m times.
In [1] F. Gross and C. F. Osgood proved the following theorem.

THEOREM G. Let Si={ —1, 1}, S2=
:{0}. // / and g are entire functions of

finite order such that Ef(St)=Eg(St) (*'=1, 2), then f=±g or f-g—±l.

In [10] the present author proved that in the preceding theorem the order
restriction of / and g can be removed. The present author [12] and inde-
pendently K. Tohge [6] proved the following result which is an extension of
the above results.

THEOREM H. Let Si — {1, ω, •••, ωn~ι}f S2—{0} and S3={oo}, where n is an
integer (^2) and α>=cos(2π/w)4-2*sin (2π/n). If f and g are meromorphic func-
tions such that Ef(Sι)=Eg(St) ( ί=l, 2, 3), then fn=gn or fn gn=l.

Using Theorem 1, it is easy to give the proof of Theorem H. In fact, let
F=fn and G=gn, then F and G share 0, 1, ooCM and Nfc, 1/F)+N1(r, F)=0.
By Theorem 1, we get F-G or F G=1, that is fn~gn or fn gn=l. This
proves Theorem H.

Acknowledement. I am grateful to the referee for valuable comments.



372 HONG-XUN YI

REFERENCES

[ 1 ] F. GROSS AND C. F. OSGOOD, Entire functions with common preimages, Factori-
zation Theory of Meromorphic Functions, 19-24, Marcel Dekker, Inc., 1982.

[ 2 ] G. G. GUNDERSEN, Meromorphic functions that share three or four values, J.
London Math. Soc, (2), 20 (1979), 457-466.

[ 3 ] W. K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[ 4 ] R. NEVANLINNA, Le Theorems de Picard-Borel et la Theorie des Functions Mero-

morphes, Gauthier-Villars, Paris, 1929.
[ 5 ] M. OZAWA, Unicity theorems for entire functions, J. d'Anal. Math., 30(1976),

411-420.
[ 6 ] K. TOHGE, Meromorphic functions covering certain finite sets at the same points,

Kodai Math. J., 11 (1988), 249-279.
[ 7 ] H. UEDA, Unicity theorems for entire functions, Kodai Math. J., 3 (1980), 212-223.
[ 8 ] H. UEDA, Unicity theorems for meromorphic or entire functions, Kodai Math.

J., 3 (1980), 457-471.
[ 9 ] H. UEDA, Unicity theorems for meromorphic or entire functions II, Kodai Math.

J., 6 (1983), 26-36.
[10] HONG-XUN Yi, Meromorphic functions with common premages, J. of Math. (PRC),

7 (1987), 219-224.
[11] HONG-XUN Yi, Meromorphic functions with two deficient values, Acta Math.

Sin., 30 (1987), 588-597.
[12] HONG-XUN YI, On the uniqueness of meromorphic functions, Acta Math. Sin., 31

(1988), 570-576.
[13] HONG-XUN YI, Meromorphic functions that share three values, Chin. Ann. Math.,

9A (1988), 434-440.

DEPARTMENT OF MATHEMATICS

SHANDONG UNIVERSITY

JINAN, SHANDONG, 250100

P.R. CHINA


