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MEROMORPHIC FUNCTIONS THAT SHARE TWO
OR THREE VALUES

By HonG-XUN Y1

1. Introduction and Main Results.

Let f(z) and g(z) be two nonconstant meromorphic functions in the complex
plane. If f and g have the same a-points with the same multiplicities, we say
f and g share the value a CM. (see [2]). It is assumed that the reader is
familiar with the fundamental concepts of Nevanlinna’s theory of meromorphic
functions and their standard symbols, as found in [3]. It will be convenient
to let E denote any set of finite linear measure of 0<<r<co and let I denote
any set of infinite linear measure of 0<<r<<co. The notation S(r, f) denotes any
quantity satisfying S(r, f)=o(T(r, f)) (r—co, r&E).

M. Ozawa proved the following result.

THEOREM A (see [5]). Let f and g be entire functions of finite order such
that f and g share 0, 1 CM. If &0, f)>1/2, then f-g=1 unless f=g.

In [9] H. Ueda showed that in Theorem A the order restriction of f and g
can be removed. He proved more generally the following result.

THEOREM B. Let f and g be meromorphic functions such that f and g share
0,1, co CM. If
1
2 ’

i sup M VNG £)

s T )

then f=g or f-g=1.
Recently the present author proved the following result.

THEOREM C (see [13]). Let f and g be meromorphic functions such that f
and g share 0, 1, oo CM. If

N(r, )+ R, H<GHOITC, ) (D),

where A<1/2, then f=g or f-g=1.
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In order to state our first theorem, we introduce the following notations.

Let f(z) be a meromorphic function. We denote by n,(r, 1/f) the number
of simple zeros of f in |z|<r and by n,(r, f) the number of simple poles of f
in |z|<r. Ny(r, 1/f) and Ny(r, f) are defined in terms of n,(r, 1/f) and n,(r, f)
respectively in the usual way.

Let f(z) and g(z) be meromorphic functions. We denote by T(r) the maxi-
mum of T(», f) and T(r, g).

In this paper we prove the following result which is an improvement of
the above results.

THEOREM 1. Let f and g be meromorphic functions such that f and g share
0, 1, o CM. If
1
, f
where A<1/2, then f=g or f-g=1.

Ni(r, )+ Nir, N<QA+oT()  (reD), M

By Theorem 1 we immediatély obtain the following corollary.

COROLLARY 1. Let f and g be meromorphic function such that f and g
share 0, 1, o CM. If
1
2 ’

lim sup Ny(r, 1/ F)+Ni(r, f)

T T(r) <

then f=g or f-g=1.
In [7] H. Ueda proved the following result.

THEOREM D. Let f and g be entire functions such that f and g share 0, 1
CM. If all zero-points of f excepting at most finite number have multiplicities
=2, then f=g or f-g=1.

From Theorem 1 we immediately deduce the following corollary which is
an improvement of Theorem D.

COROLLARY 2. Let f and g be meromorphic functions such that f and g
share 0, 1, oo CM. If all zero-points and pole-points of f excepting at most finite
number have multiplicities=2, then f=g or f-g=1.

In [5] M. Ozawa proved the following theorem.

THEOREM E. Let f and g be entire functions such that f and g share 1 CM..
If 600, f)>0 and 0 is lacunary for g, then f=g or f-g=L.

Recently the present author proved the following result which is an exten-
sion of Theorem E.
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THEOREM F (see [11]). Let f and g be meromorphic functions such that f
and g share 1 CM. If 600, f)+0(0, g)>1 and &(co, f)=d&(c0, g)=1, then f=g
or f-g=1.

In this paper we prove the following result which is an improvement of
the above theorems.

THEOREM 2. Let f and g be meromorphic functions such that f and g share
1, o CM. If
1
g
where u<l, then f=g or f-g=1.

N(r, 71,—>+N<r, )+2N(r, H<(u+o)T() (D), @
By Theorem 2 we immediately obtain the following corollary.

COROLLARY 3. Let f and g be meromorphic functions such that f and g
share 1, oo CM. If 800, )+8(0, g)+26(co, f)>3, then f=g or f-g=1.

Let f(2)=2e*(1—2¢*), g(z)=(1/4)e *(2—e"*). It is easy to see that this ex-
ample shows that the theorems and corollaries in this paper are sharp.

2. Some Lemmas.

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. Let f and g be two nonconstant meromorphic functions, and let
¢1, ¢y and cy be three nonzero constants. If c¢,f-+c.g=c;, then

T(r, f)<N(r, %)-i—N(r, é)—}—]\—/(r, H+S, .

Proof. By the second fundamental theorem, we have

70, N<N(r, 1)+, (F= ) )+ R, 4, 1)

1 1\ =
=N(r, 2)+N(r, 2)+N e, 450, 1),
which proves Lemma 1.

LEMMA 2 (see [4]). Let fi, fs **+, fn be linearly independent meromorphic
functions satisfying 2%,f.=1. Then for j=1, 2, ---, n, we have
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TG, £)<SEaN(r, £)+N G, 3N, D=SLNG, £

~N(r, £)+0Uog r+log Tor)  (r£E),

where D denotes the Wronskian

fl ;f2 7""fn
D= f{ 7fé 7"';f¢t

fl(n_l)’ fén—l)’ ) f;l.n—l)

and T .(r) denotes the maximum of T(r, f.), i=1,2, -+, n.

LEMMA 3. Let f,, f. and fs be three nonconstant meromorphic functions
satisfying Xi-1f.=1, and let g.=—fs/fe, 82=1/fs, gs=—f1/fo. If f1, fo and
fs are linearly independent, then g., g, and g, are linearly independent.

Proof. Suppose that g,, g, and g, are linearly dependent. Then there exist
three constants (c,, ¢, ¢5)>(0, 0, 0) such that

€181+ C282+€:8:=0,
that is
cifstesfi=cs. 3)

If ¢,=0, then ¢,>0, ¢;>0, and

c1fstesf1=0,

which contradicts our assumption.
If ¢,%0, from (3) we have

4 Cs »
a a+2:—2‘ 1—1 . (4)
Noting 33%.,f.=1, from (4) we get
Cs €1\,
( —Z)f’+f2+( —a)fs—o.

which is impossible.
This completes the proof of Lemma 3.

LEMMA 4. Let h(z) be a nonconstant entire function. Then

T(r, h")=o(T(r, e*)) (r&E).
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Proof. We have
T(r, W)XT(r, h)+S(r, h).

On other hand, by Clunie’s result (see, [3, pp 54]), we have

T(r, h)=o(T(r, e)).
Thus

T(r, h)=0o(T(r, e")) (r&E),

which proves Lemma 4.

3. Proof of Theorem 2.

By assumption, we have
f—1=e(g-1), %)

where h is an entire function. Let f,=f, f,=e", fs=—e"*g and Tyr) denote
the maximum of T(r, f,), i=1, 2,3. From (5) we have

2iaif=1, (6)
SN (n ) =N(r5)+N(r3) @

and
Ty(r)=0(T(r)). ®

We discuss the following two cases.
a) Suppose that f,, f, and f, are linearly independent. By Lemma 2 and
(8), we have

T, N<ERN (1, 3)+NG, DI=NG, f0=N, f0+oT0) (r£E) ©)

where
fl: fz; f3
D=|f1, fi, f3 |- (10)
1, 1%, f%
From (6) and (10) we get
£ f;l
4

and hence
N(r, D)—N(r, f)—Nr, f)<N(r, g”)—N(r, §)=2N(r, 8)=2N(r, f). (11)
From (7), (9) and (11) we obtain
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1 1 =
Tlr, DN(r, 2)+N(r 2)+2N0, DT B, (12)
Let gi=—7+/fo=g, g.=1/fr=e"", gs=—f1/fr=—e"f. From (6) we obtain

2g=1gz:1 .

By Lemma 3 we know that g,, g, and g; are linearly independent. In a similar
manner we get

1 1\, o
T(r, O<N(r, )+ N(r, ) +2N e, D+aTE)  ¢£E). 13
From (12) and (13) we deduce
1 1\, on .
TN (r, 2)+N(r, o) +2N(r, y+oTr) (). G4

Combining (2) and (14) we get

I=-T(N<o(T(r)) (r&l), (15)

which is impossible.
b) Suppose that f,, f. and f; are linearly dependent. Then, there exist
three constants (c,, ¢, ¢3)#(0, 0, 0) such that

cifitcafatesfs=0. (16)

If ¢,=0, from (16) we have ¢,#0, ¢;#0 and

c

f §— C_:f 2
and hence
i
=
which is impossible. Thus ¢,;#0 and
G &
fi==fam o (7
Now combining (6) and (17) we get
Cg Cg _
(1=-2) st (1-2) =1 (18)

We discuss the following three subcases.
b.) Assume ¢;=c¢,. From (18) we have c¢,#c¢; and

fa=—t (19)

ci—¢g’
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that is
& -h
g= 61_63e . (20)
From (6) and (19) we get
—_— 63_
fl+f2— 61_63 13
that is
B Cs
fHe e (21)

If ¢,#0, from (20) and (21) we have

T#»)=T(r, e®)+0()
and
1 1 —
N(r,5)+N(r, )+ 2N, N=T(r, )+, H=(1+T() (rEE),
which contradicts our assumption. Thus ¢;=0. From (20) and (21) we deduce
g=—e " and f=-—e" and hance f.-g=1.
b.) Assume ¢;=c¢;. From (18) we have c,+#c, and

—_ C1
fa= p—
that is
er=—51 (22)
C1—Cq
From (6) and (22) we get
Cy . C
f a0 (23)
If ¢,#0, by Lemma 1 we have
1 1\, =
TN (r, 5)+N(r, 2)+ N N+8( . (24)
By (2) and (24) we get
A=) T<o(T(r)) (rel), (25)

which is impossible. Thus ¢,=0. From (23) we deduce f=g.
bs) Assume c¢,#c¢; and ¢;#c¢;. From (18) we have

g:cl_‘—c_z__._.fl__e—h. (26)

(,'1-—(,‘3 (,'1‘_63

Now combining (17) and (26), we get
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__—Cz"“(:3 h_ C3
f= ——cl_%e P (27)
From (26) and (27) we have

T@)=T(r, e")+0Q)
and

N(r,3)=T(r, 45, =(+aITC) 2B,

which contradicts our assumption.
This completes the proof of Theorem 2.

4. Proof of Theorem 1.

Suppose that f#g. By assumption we have with two entire functions a
and B,

f=e*g, f—1l=eP-(g-1). (28)
Since f#g, then ef#1 and ef-*+#1. Thus from (28) we get
1—ef
f-l*"—‘_e,e_a (29)
and
T(r, e)+T(r, e$)=0(T(r)). (30)
If ef=c, where ¢ (#0, 1) is a constant, then from (29) we have
1
N(r, 7)_0. @31)

If ¢f is not a constant, let {z,} be all the roots of f=0 with multiplicity=2,
then from (29) {z,} are the roots of (1—ef)=—pf'¢#=0. Thus

N(r, -}—)——Nl(r, %)éZN(r, %)ng(r, B)+0().

By Lemma 4 and (30) we have

1 1
N(r, -f—)gzvl(r, 7)+o<T(r» (r&E). (32)
If ef-2=¢ (+0, 1), then from (29) we have
N(r, f)=0. (33)

If ¢#-% is not a constant, let {{,} be all the roots of 1/f=0 with multiplicity
>2, then from (29) {t,} are the roots of (1—ef-*)Y=—(B'—a’)ef-*=0. Thus
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NG, P=Nir, NSIN(r, 522 S2T(r, a0 +2TCr, B0,
By Lemma 4 and (30) we have
N(r, )SNA(r, [)+o(T(r))  (r&E). (34)

Noting N(r, 1/g)=N(r, 1/f) and N(r, g)=N(r, f), from (31), (32), (33) and
(34) we deduce

N(r,%)—!—N(r,%)—}—ZA—/(r, f)<2N1<r,%)+2Nl(r, Ho(Tir) (r&E). (35)

Now combining (1) and (35) we obtain
1 1 — )
N(r, )+ N (r, o) 12N, HN<@r+aTE)  (reD).

By Theorem 2 we deduce the conclusion of Theorem 1.

5. An Application of Theorem 1.

Let f be a nonconstant meromorphic function and S be a set in the com-
plex plane, and let

Ef(S)Za\eJS{ZIf(Z)—a=0},

where any z which is a zero of multiplicity m is included in E,(S), m times.
In [17 F. Gross and C.F. Osgood proved the following theorem.

THEOREM G. Let S;={—1, 1}, S,={0}. If f and g are entire functions of
finite order such that E(S,)=FES,) (i=1, 2), then f=xg or f-g==x1.

In [10] the present author proved that in the preceding theorem the order
restriction of f and g can be removed. The present author [12] and inde-
pendently K. Tohge [6] proved the following result which is an extension of
the above results.

THEOREM H. Let S;={l, w, ---, @'}, S;={0} and S;={c0}, where n is an
integer (=2) and w=cos (2r/n)+isin 2z/n). If fand g are meromorphic func-
tions such that E (S,)=EFE /S,) (=1, 2, 3), then f*=g" or f"-g"=1.

Using Theorem 1, it is easy to give the proof of Theorem H. In fact, let
F=f™ and G=g", then F and G share 0, 1, oCM and N,(r, 1/F)+N,(r, F)=0.
By Theorem 1, we get F=G or F-G=1, that is f*=g" or f*.g"=1. This
proves Theorem H.

Acknowledement. I am grateful to the referee for valuable comments.
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