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Introduction. Let/(z) be a meromorphic function of the complex variable

z = reie.

Consider the q radii defined by

(1) reiui, re1"*, • • • , reia« (r ^ 0),

where

0 ^ wi < o!2 < • • • < wg < 2w (q ^ 1).

We say that the roots of the equation

(2) /(f) = a

are distributed on the radii (1) if there exist at most a finite number of roots

of the equation (2) which do not lie on the radii (1).

With this definition, the main result of this paper takes the following form.

Theorem 1. Letf(z) be meromorphic and such that the roots of the three equa-

tions

(3) f(z) = 0,

(4) f(z) = oo,

(5) /«>« = 1 (1^0,/WmJ),

be distributed on the radii (1). Denote by 5(a, f(l)) the deficiency of the value a,

of the function fw, and assume

(6) 8(0,/) +8(l,/»>) +«(«,/) >0.

Then the order p, of f(z), is necessarily finite and

(7) p ^ 8 = sup  <-> -)  • • • , -> [o}q+x = 2ir + coij.
{lilt   —   0)i       0>3   —   W2 Ulg+X — 0)q)

In this theorem, it is possible to modify the condition (6) without altering

essentially the conclusion. For instance, minor modifications in the proof of

Theorem 1 yield the following Theorem 2 (the proof of which will be omitted).

Theorem 2. Let the assumptions of Theorem 1 be satisfied, with the exception
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of condition (6). Assume, instead, that the roots of one of the three equations (3),

(4),   (5) have a finite exponent of convergence pi.

Then the order p, of f(z), is necessarily finite and either

P = Pi,

or else

Pi<P^8-

As an immediate consequence of Theorem 1, we obtain a

Corollary. Letf(z) be an entire function the zeros of which are real. Further-

more, assume that for some integer I (^0), the roots of

/<«>(,) = 1 [/«) m f]

are all real. Then the order of f(z) is finite and does not exceed one.

If, in the above statement, the word "real" is replaced by the word "positive,"

the order of f(z) does not exceed 1/2.

The bound (7) for the order cannot be improved, in general. This is clearly

seen on examples such as

f(z) = cos(z*'2) (k = 1, 2, 3, • • • ).

We also note that functions of the form

(8) A(z) =   Y - U" > °. <f« real, Y M» < <», <r„ —> oo ]
v=l    z — cv

are always meromorphic, so that, by suitably choosing the sequence {<rv},

their order can be made equal to any given non-negative number (finite or

infinite). On the other hand, if Im z?^0,

ImA(z)Ims < 0,

so that all real values are distributed on the real axis.

Functions of the form (8) clearly show that, if we assume a radial dis-

tribution of the roots of the equations (3), (4), and

(°) f(z) = 1,

a condition such as (6) [or the corresponding condition of Theorem 2] is

essential to the truth of Theorem 1 [or Theorem 2]. A restriction such as (6)

is still necessary if we replace, in (9),f(z) by its first derivative. In order to see

this, we take

f(z) = G(z)/G'(z),

where G(z) is a canonical product, of finite order p, the zeros of which are real
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and simple. It is known [2, p. 37] that each derivative of G(z) has, in addition

to its real zeros, at most a finite number of complex zeros. Hence the equations

(3), (4), and

f'(z) - 1

have at most a finite number of nonreal roots. On the other hand, p, which is

an arbitrary finite number, is also the order of f(z). Hence Theorem 1 cannot

apply to/(z).

The arguments which we use in the proof of Theorem 1 easily yield

Theorem 3. Let g(z) be an entire function of the form

g(z) = P(z)eQ^

where Q(z) is any entire function and P(z) is an entire function of finite order.

Assume that all but a finite number of the roots of the three equations

(10) g(z) = 0,        g'(z) = 0,        g"(z) = 0

are real. Then the order, p, of Q(z) is necessarily finite and does not exceed one.

This theorem obviously contains the following extension of a result of

Polya [6, p. 38, footnote la] and Saxer [8, p. 206].

Let g(z) be entire and assume that

(i) g(z) and g'(z) have no zeros;

(ii) g"(z) has at most a finite number of nonreal zeros (and any number finite

or infinite of real zeros).

Then g(z) is of one of the two following forms

L g(z) =exp (az+b), where a and b are constants,

or

II. g(z)=exp [c+e''(f*+,)], where £ and v are real constants, and c is any

constant.

It might be of interest to mention (without proof) a stronger form of this

proposition. If the condition that g'(z) has no zeros is replaced by the condi-

tion that all the zeros of g'(z) g"(z) are real, the possible forms of g(z) become

more numerous; however, it is still easy to give them explicitly.

In the last section of this paper we briefly sketch an application of our

results.

We consider the class zA of all entire functions which have only real zeros

and real ones. In view of our corollary, we obtain, by very elementary con-

siderations, the following propositions.

A. Iff(z) E*A, and if f(z) is not real for some real value of z, then it is nec-

essarily of one of the two following forms:

sin (%z + j])ei(('+il)
(i) f(z) =        .        '      , (sin („ - vx) * 0),

sin (17 — ijj)
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where £, n, and rji are real constants;

sin (p[& + ,])««*-«»•*]
(n) f(z) =->

sin (£z + j?)

where p [t^O, 1 ] is an integer and £, rf are real constants.

B. Letf(z) be a real entire function belonging to zA. Then all the roots of the

equation

f(z) = h (h real, 0 g h g, 1)

are real.

Using a theorem of Polya, B easily yields

C. Let f(z) be an entire function. Assume that there exists an unbounded

sequence {hv}," , such that all the roots of the equations

M = K (v = 1, 2, 3, • • • ),

be real. Then f(z) is a polynomial of degree not greater than two.

We conclude this introduction by observing that Theorems 1 and 2 ex-

press a property of the essential singularity of f(z). They remain true if f(z)

is only assumed to be meromorphic in the region

D*(X):    X ^ r < + oo.

In this case, the only roots of (3), (4), and (5) to be taken into account are

those which lie in the region V*. Our proofs require only minor modifications

in order to yield this extended form of the theorems [cf. footnotes 3,5, and 6].

1. A theorem of Milloux. Our starting point will be the following lemma

contained in some more general results of Milloux [4, p. 25].

Lemma. Let the functions

F(w), a0(w), ai(w), • • • , ai(w)

be regular for \w\ <l, and such that

(1.1) F(w) ^ 0;   +(w) = a0(w) F(w) + ai(w)F'(w) + ■ ■ ■ + at(w)F^(w) ^ 1,

(1.2) -r-(0)^0,        ^'(0)^0.

Furthermore assume that, as <—>1 (0<t <1),

(1.3) m(t, «,(»)) = 0 (log j—) (j = 1, 2,  ■ • • , I).

Then

(1.4) m(t,F(w)) =0 (log-^-A.
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The proof0) may be obtained by a straightforward application of

Nevanlinna's methods. Using properties of Nevanlinna's means and Jensen's

theorem, we find

m(t,F) ^m(t,+)+m(t, — j

(1.5) *
/     f\ /    F\ F(0)

-«ft«+.^_)-tf(l.7) + Iog— .

We next apply Nevanlinna's theorem [5, pp. 141-143] to the function \f/ and

use (1.5)

m(t, F) * m(t,t) - N(t, £-) + N(t, i-) 4- log|£|| + S(t)

(1.6)
/   *\ 1^(0)1

-m(«,-)+5W + log| —|

where

1 1
S(l) < K + 4 log-h 6 log-h 8 log+ w(r, ^) (0 < / < t < 1);

t T  —   t

the finite constant(2) A depends on the finite parameters

1 1 1

I *(0) |'       | #(0) - 11 '       | *'(<>) I '
Known estimates [10, p. 12] yield

mil, —) < log(/+ 1) + 14, «,) + X>U — ) ^  T,m(t,aj)
\     r / i=0 j-i       \       ^ / i-0

+ A log+ »(t*. F) + K log —-
T       —   /

+ A log+ | log | F(0) |  | + K,

where 0</<t*<1, and the constants A depend on / only.

In view of (1.3), (1.6), and (1.7), the lemma follows from well known

arguments of Nevanlinna (or alternatively from the lemma used by Milloux

[4, p. 24]).
2. A conformal transformation. Let Ak be the sector defined by

(') Milloux assumes that the functions a,- do not vanish in the unit circle. Our brief sketch

of his proof shows that he does not require this assumption.

(2) We use K to denote a constant, depending on one or more parameters, not necessarily

the same one each time it occurs.
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r > 1, wk < 6 < Wi+i,

and write

ir
(2.1) ■— = (ok+i — co*.

7

Consider the conformal transformation

uy — u-y _ K _j
(2.2) W = - = <bk (u),

uy — u—< + k

where k is a positive parameter and

(2.3) m = e-'f*z,        f* =-

The function

z = e^k4>k(w)

maps the circle | w\ <1 onto the sector A*.

Now (2.2) implies

\w\2 =-,11        1 + 2

where

(2 4) 0 = 2K(r? - r~y) cos (y[g - f*]) _

r2y + r~2y + 2 + k2 - 4 cos2 (y[d - $k])

Hence

— (1 -   |w|) < Q < 2(1 -  | w\),

so that, for sufficiently large values of r, (2.4) yields

(2.5) — r-y cos (y[$ - f*,]) < 1 - I w I < 8Kr->.
4

3. Consequences of Milloux's result. Using the mappings and notations

introduced in the previous section, we now prove

Lemma 1. Let f(z) be meromorphic in the region

D(l):    1 < \z\ < + oo,/

and assume that those roots of (3), (4), and (5) which are in £>(1) lie on the

radii (1).
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Consider the q functions defined by

Fk(w) = f(e«*4>k(w)) (k = 1, 2, • • • , q).

Then, as t-+l(0<t<l),

(3.1) m(t,Fk(w))  = o(log-^—\

(3.3) mil,-) = 0(log-V
\   fm(e«*<pk(w)) - 1/ \  *l-tj

Proof. We write

Fk(w) = F(w),

and omit systematically the subscript k. Put

(3.4) F(W)=_LL,

then

f'(eH(w)) = F(w)T?'(w),

and an obvious induction shows that

i

(3.5) fmW(w)) = Y ocjF^(w)
j-i

where the coefficients a, are polynomials (with numerical coefficients) in the

variables

V, V, V",

We take

f(w) = f«i(eircb(w)),

and choose the parameter k, in (2.2), so that

*(0) ^ 0,        ^'(0) ^ 0.

This is obviously possible except if/(,+1)(z) =0 and, in this case, the lemma

is trivial. By assumption,

F(w) ^ 0,       F(w) ^ oo,       ^(w) ^ 1 for | w\ < 1,

so that (3.1) follows from Milloux's lemma provided we show that the func-

tions aj(w) satisfy the conditions (1.3).
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Now (2.2) implies

| v(w) | =   —   - —1(1 - w)2[ut-1 + M-r-i] | .
dz        2k

Hence, in view of (2.2) and (2.5), we obtain, if 7>1 (and r is sufficiently

large),

.      4y/      8k      \<r-i>/7

(3.6) \V(w)\<-(--j—r)
K   \1   —    \   W\/

If 7^1, the function V(w) remains bounded in the circle \w\ <1.

Taking

i l ii
T =  I w\ + — C1 -  I w\ )>

we obtain (by Cauchy's theorem and (3.6)),

. . /i! m! 4y/    8k \ <*-»/»
7W(w)    g-rn—- Jf(T, 7(w)) ^-r—p— -(--)

(r —  \w\ )"+1 (t -  \w \ )"+1   K \1 - r)

(| w|   <T<1),

al        \  [(-y-i)/T|+M+l\
t_   i      ■ } j (7 > 1).

A similar inequality holds for 7^1. Taking into account the special form of

the functions ay, we immediately verify the conditions (1.3). We have thus

proved (3.1) and, in view of Jensen's theorem, also (3.2).

Now (3.5) yields

m(t, f^(eH(w))) ^ m(t,F(w)) + log / + £ m(t, «,) + £»(*,—),
j=i j-i      \      F /

so that

T(t,f«\eH(w))) =o(\og^->j,

by the estimates used in (1.7). This implies (3.3) (by Nevanlinna's first theo-

rem [5, p. 129]).

4. Arcs on which the modulus of certain meromorphic functions is large.

Lemma 2. Let h(z) (^ constant) be a meromorphic function^) the poles of

(3) If h(z) is only assumed to be meromorphic in the region defined by 1 £ \z\ < + »,we

may write h(z) = hi(z)+ht(z) where hi(z) is a meromorphic function and h2(z) is regular for

| z| £ 1 and vanishes at infinity. Lemma 2 may be applied to h\(z) and hence remains true for

A(z), provided T(r, h) is suitably defined [cf. footnote 5].
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which have a positive deficiency 5. Denote by Tl(r) the set of values of 6 [0 ^ 6 < 2x ]

for which

(4.1) log | h(re«) | > — T(r, h).
4

Given e (>0), there exists (r0(e) (>0) such that, if a > <r0(e),

1
(4.2) measure Wl(r) > -F-,

T'(r,H)[logr]1+'

for some r belonging to the interval (cr, 2a).

Proof(4). Let {&»}B°li be the sequence of poles of h(z) (we assume that

{| bv | } ,11 is nondecreasing and that the multiplicities of the poles have been

taken into account by a suitable repetition of the elements).

Let 7, denote the interval

(l*.|-£'l».|+7)

of the real axis. If r>0 and r (J^/„ the Poisson-Jensen formula yields [5,

p. 25]

/? -A- r

(4.3) log+ | h(reie) | g-m(R, h) + n(R) [log 27? + 2 log n(R)]   (R>r),
R — r

where w(7?) denotes the number of poles in the region \z\ g7?.

Putting R'-R=R-r, we obtain

r R'   n(t) n(R) R' - r
N(R', h) - N(R, h) =  I       -±±dt>—-—,

J r        t R 2

so that (4.3) implies

47?'
log+ | h(re<°) | :g —-T(R', h)

R   — r

2R'N(R',h)  I (   2R! \\
+      Ri_f     jlog 27?' + 2 log (<F— N(R', *) U

(4.4)v 47?' r/        3 \
^_-WA)[(l+Tlog2)

+ - log 7x' +-+ log T(R', h)~\.
2 R  — r J

(4) A lemma which has essentially the same structure is to be found in Milloux [3, p. 318].
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As soon as r exceeds some bound <ri, each of the four terms in the parenthesis

[ • ■ • ] of (4.4) exceeds one, so that

[ . . . ] <s 4 (l + - log 2) (- log r) (y^) 1oS T(R'> *>■

Hence

(4.5) log+ I hire") I ̂  A (^737) ^ R')T(R',h) log T(R',h),

where A = constant, r>ax, rfj ^7„. For r>o"i, the function

V(r) = [T(r, h) log r(r, *)] log r

is positive, continuous, and increases to infinity. Hence given t;(> 0), a well

known lemma of Borel [l, p. 18] asserts that

7(r(l +-H < V**(r),
\\        log 7(f)//

except possibly for values of r(><xi) which belong to an exceptional set 6(77),

of finite logarithmic measure. Taking, in (4.5),

R> = r(i+-V
\       log 7(f)/'

we obtain

(4.6) log+ I k(reu)\ g V1+2"(r)

provided r is sufficiently large and

r e £(,) + Y Iv.

As the interval [a, 2a] is of logarithmic measure log 2, and £(17)+ Y^* ls °f

finite logarithmic measure, there will exist, as soon as a exceeds a suitable

bound, at least one point r(a) of (a, 2a) such that (4.6) is true. Consider the

measurable set (of values of 6 [Og0<2x])

E = E |log+ I h(re") \ > — m(r, ft)~|;

obviously

C 1 1 *»(fi h)
2irm(r, h) g   |   log+ | h(reie) | dd + 2w

J e 2
(4.7)

irm(r(a), h) <   71+2'(f(<r))w£.

If f is sufficiently large,
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6
m(r, h)> — T(r, k),

21? (r) D E.

Hence (4.7) implies

(x/2)sr(r(«0, h)
-r-,-< mW(r);
T1+2"(r(o-), A)[log T(r(a), h)Y+2" log1+2V

taking r) = t/3, we obtain (4.2).

5. Consequences of Lemma 2.

Lemma 3. Let h(z) be a meromorphic function of order p (not necessarily

finite). Assume
(i) that the poles of h(z) either lie on the q radii defined by (1) or else belong

to the disk \z\ ^1;
(ii) that the poles of h(z) have a positive deficiency.

Consider the number 8 defined by

(5.1) B = sup <-> -> ■ ■ • , -> |w5+i = 2ir + «ij,
Ud2   —   0)1      0)3   —   0)2 0),+ l — uq)

the numbers f* and the functions 4>k defined in §2.

Then

(5.2) 8<P

implies

m(t, h(e^"(pk(w)))
(5.3) limsup—--—^- = + oo (0</<l)

<->i 1

l°g\—~t

for some integer k [l^k^q].

Proof. By assumption (5.2), it is possible to choose three positive numbers

Bx, B2, rjx such that

(5.4) p> Bi> B2> B + Vi-

We next choose an unbounded positive sequence {A„}"_,, such that

(5.5) T(RV) = T(RV, h) ^ tf1 (v= 1,2, 3, ••• ).

Applying Lemma 2, with

(5.6) --K'-iD-
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we see that, as soon as A„><r0(e), there exists at least one point rn, belonging

to the interval (Rn, 2R„) and such that (4.2) is true for r = rn. We may there-

fore associate with each rn(>o-0(e)) at least one argument Bn, belonging to

one of the q arcs defined by

1 1
0>fc H-< d < Ci)k+X-,

2?r«(r„) log i+«rn " 2qT'(rn) log"" r„

and such that

(5.7) log | A(r„««-)| > — T(rn).

We choose among the q sectors Ai, A2, • • • , Aq, a sector A* which contains an

infinity of terms of

(5.8) ne*\ r2eie\

Renumbering if necessary the elements of this sequence, we may assume that

all its terms belong to A*.

Hence, using the notations of §2, we obtain

I       * 1
.... I *»-*■* I <^~ 2qT-(rn)log>+>rn'

cos(7K - f*]) > 7 ,
4qT'(rn) log1+« rn

provided « is sufficiently large. The function

Hk(w) = He^Mw))

is regular in the unit circle; putting

wn = 0r1(r„ei(9»-f*)),

(5.7) becomes

(5.10) log \Hk(wn)\ > — T(rn).

In view of (5.9) and the first of the inequalities (2.5), we obtain

(5.11) -—-<l-|w„|.
16^r«(rn)(log rny+'

n

Taking

(5.12) tn=  \wn\+ — (l-  \wn\)
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we have [5, p. 140]

(5.13) m(tn, Hk(w)) ^ _flZ_ji^ log \Hk(wn) | ,
In +    \   Wn\

so that (5.10), (5.11), (5.12), and (5.13) imply

ydn       Tl~'(rn)
(5.14) m(tn, Hk(w)) > —— - (» > no).

256q  rl log1+e r„

If the lemma were not true, we would have

(5.15) m(t, Hk(w)) = 0 (log ——\.

Combining (5.14) and (5.15), and using (5.11) and (5.12), we obtain

Tf   T1 '(rn)    < Tf + Tf log (T'(U)rl log1+V„)
rl log»+« f„

and hence

(5.16) T1_2,(f„) < rT"' k>0],

provided n is large enough.

Now (2.1) and (5.1) imply

(5.17) 7^/3-

In view of (5.4), (5.5), (5.6), and (5.17), it is obvious that (5.16) cannot
hold for large values of n. This contradiction proves the lemma.

6. Proof of Theorem 1. We assume that those roots of (3), (4), and (5)

which do not lie on the radii (1) are of modulus less than one. This is obvi-

ously no restriction because we may, if necessary, consider the function

/•GO = rr/(X») (X > 0),
X'

instead oi f(z)(b). It is also no restriction to assume, as we shall indeed, that

f(z) is not a rational function.

The three functions

1 1
(6.1) /,       —,        -

/ fm - 1

(6) If we assume that f{z) has an essential singularity at infinity, but is not necessarily

meromorphic, the same transformation enables us to enclose, in the open unit disk, all the non-

polar singularities other than °o. The order of the essential singularity and the deficiency of

its poles have the same formal definitions in terms otm(r,f) and N(r,f) [now defined for r>l].
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have the same order(6) p. Let h(z) denote the first of these three functions

which has poles of positive deficiency. This function exists, by assumption (6).

If Theorem 1 were not true, the function h(z) would satisfy all the assump-

tions of Lemma 3 and therefore (5.3) would hold for some k.

On the other hand, we may apply Lemma 1 to the function/(z), so that

one of the relations (3.1), (3.2), (3.3) would contradict (5.3). Theorem 1 is

thus proved.

7. Proof of Theorem 3. We first prove

Lemma 4. Let P(z) be an entire function of finite order. Assume that its zeros

are either real or else lie in the circle \z\ ^1/2.

Consider

P'(i<p(w)) P'(-i<p(w))
Hx(w) =-; H2 = ->

P(i<b(w)) P(-i<t>(w))

where the function z = <p(w), defined in §2, maps the circle \ w\ <1 onto the region

Re z > 0, | z | > 1.

Then, as t^l (0<t<l),

m(t, Hx(w))    and   m(t, H2(w))

remain bounded.

Proof. In the region \z\ >l/2, the zeros of P(z) are real and form a se-

quence {a,,},0!,! (as usual, multiple zeros are repeated a suitable number of

times).

By assumption, P(z) is of the form

(7.1)       P(z) = V(z) exp (V(z)) fl(l--) exp (-+ ■ • • + il\
v=x \        av/        \av pap/

where U(z) and V(z) are polynomials, and the a's such that y,| a„| ~p~l

< + oo. It is no restriction to assume that p is even. If p were odd, we would

write

P(z) = U(z) exp (v(z) - z^ ± \        )
\ v~x (P + l)ap+i/

■ TJ (l - -) exp (-+ • •• +,    *       A
„=i \        a J \av (p + lJo^V

(6) In the case of a meromorphic function, the invariance of the order under differentiation

has been proved by Valiron [9, p. 129]. His proof and also Nevanlinna's first fundamental

theorem are easy to extend to the more general class of functions considered in footnote 5. Hence,

if f(z) belongs to this class, the essential singularities at infinity of the three functions (6.1) have

the same order.
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so that a change of notation would yield (7.1) with an even value of p.

Now

P'(z)       V w

where

7'(z) = Y op*,       h(z) = Y -zr^-r •
n-o v~i av(z — av)

Hence

/    U'(i<t>(w))\ '
(7.2) m(t, Hi(w)) ^ mil,        . ) + Y m(t, c>{i4>(w))>)

\     U(t<b(w))/       ,,=0

+ m(t, {ub(w)} ") + m(t, h(up(w))) + log (/ + 3).

For \w\ <1,
(i) the function

U'(i<b(w))

U(i<f>(w))

is bounded,

(ii) Re0(w)>O,

(iii) Im h(uf>(w))<0,
so that a result of Nevanlinna [5, p. 155] implies the boundedness of each

term  of  the  right-hand   side  of   (7.2). The  same arguments  show   that

m(t, H2(w)) remains bounded, and our lemma is proved. Theorem 3 now fol-

lows from a conflict between Lemma 1 and Lemma 3.

Consider the function

m -_  g(z)  = P(*>
g'(z)      P'(z) + P(z)Q'(z)

By assumption all but a finite number of its zeros and poles are real.

Furthermore,

f'(z) - 1

only if

g(z)g"(z) = 0.

Hence the roots of the three equations

(7.3) f(z) = 0,       f(z) = oo,       f'(z) = 1

are distributed on the real axis.
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It is obviously no restriction to assume that those roots of the equations

(7.3) which are not real belong to the circle \z\ ^1/2. Applying Lemma 1 to

the function /, we obtain

/    P'(up(w)) \ ( 1    \     _
<7"4)       mV'    r,,-,r   xx  +Q'(i<t>M)) = 0   log--)      *->l,0<<<l],

\      P(l<b(w)) / \        1 - //

and a similar relation where i is replaced by —i.

In view of Lemma 4, (7.4) yields

(7.5) m(t, Q'( ± it(w))) = 0 (log —-\ ■

On the other hand, the function Q' has no poles so that, if its order exceeds 1,

Lemma 3 implies either

m(t,Q'(id>(w)))
hm sup-= + co

M ^ lOg (1/(1   -  t))

or else a similar relation where i is replaced by — i. As this contradicts (7.5),

the order of Q' cannot exceed 1 and Theorem 3 is proved.

8. An elementary application. We first determine all nonreal entire func-

tions of the class zA.

Let/(z) be such a function. In view of our corollary,

/(«) = e'^+^g(z),

f(z) - I = e'^+^gi(z),

where the constants X, Xi, p, pi are real and the entire functions g(z) and gi(z)

are real for real values of z. Hence the functions g and gi must satisfy the

identities

g(z) cos (Xz + ju) - 1 = gi(z) cos (XiZ + Pl),

g(z) sin (Xz + ft) = gi(z) sin (XjZ + m).

Proposition A now follows from a very elementary discussion of this system.

This discussion will be omitted.

The proof of proposition B is an easy consequence of the following

Lemma 5. Letf(z) be a real entire function of the class zA. Consider an inter-

val I defined by

I:xi<x< x2,

such that

(i) f(xi)=f(x2) = l,
(ii) /(x)^l ifxGT.

Then the equation
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(8.1) f(z) = h (0<h<l)

has no complex zeros in the strip

(8.2) xx g Rez g x2.

Proof. Consider the rectangular contour R(X) with vertices at

Xx + i\,        x2 + i\ (X > 0).

It is easily verified that, if X is large enough,

(8.3) l/Wl^l,

at all points of R(K). Hence, by Rouche's Theorem,/(z) and/(z) —h have the

same number of zeros in the strip (8.2).

We next deduce from a theorem of Laguerre [2, p. 32] that, in the inter-

val /, f(z) has either
(i) two simple zeros, or

(ii) one double zero, or

(iii) no zeros.

Hence, in the cases (i) and (ii), a simple continuity argument shows that

the equation (8.1) has at least two real simple zeros in the interval I. The

lemma is now obvious.

If the equation

/(*) = 1

has an infinity of positive roots and an infinity of negative roots, B follows

immediately from Lemma 5. In all other cases(7) our arguments require minor

modifications which will be left to the reader.

In order to prove C, we consider the function

h2 — hx

which belongs to the class <lA. This function is certainly not bounded on the

real axis and hence does not reduce to one of the exceptional forms mentioned

in proposition A.

Hence F(z) is real for all real values of z and the sequence {h*} ™_ x defined

by

*      hv — hx
hv =-

h2 — hi

(') If f(z) — 1 has only a finite number of positive [or negative] zeros, there are also only a

finite number of positive [or negative] zeros of/(z). In view of our corollary,/(z) is of order not

greater than 1/2.
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is real and unbounded. Considering, if necessary, a subsequence of {h*} in-

stead of the complete sequence, and —F(z) instead of F(z), we may assume

hv > 0    (v — 2, 3, • • • ); A„ —> + °°.

Then, by B, all the roots of

F(z) = h

are real, for all real non-negative values of h.

Hence all the zeros and ones of the entire function

A(z) = cos (F(z)yi2

are real. By our corollary, the order of A(z) does not exceed one so that, in

view of a theorem of Polya [7, p. 12], F(z) is a polynomial. It is now trivial

to verify that the degree of F(z) does not exceed 2.
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