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We introduce a new class of meromorphic parabolic starlike functions with a 	xed point de	ned in the punctured unit diskΔ∗ := {� ∈ C : 0 < |�| < 1} involving the �-hypergeometric functions. We obtained coe
cient inequalities, growth and distortion

inequalities, and closure results for functions � ∈ M
�
� (�, 	, 
). We further established some results concerning convolution and

the partial sums.

1. Introduction

Let � be a 	xed point in the unit disc Δ := {� ∈ C : |�| < 1}.
Denote byH(Δ) the class of functions which are regular and

A (�) = {� ∈ � (Δ) : � (�) = �� (�) − 1 = 0} . (1)

Also denote by S� = {� ∈ A(�) : � is univalent inΔ}, the
subclass ofA(�) consisting of the functions of the form

� (�) = (� − �) + ∞∑
�=2
��(� − �)� (2)

which are analytic in Δ. Note that S0 = S is subclasses ofA
consisting of univalent functions in Δ. ByS∗	(	) andK	(	),
respectively, we mean the classes of analytic functions that
satisfy the analytic conditionsR{(� − �)��(�)/�(�)} > 	, and
R{1 + ((� − �)���(�)/��(�))} > 	, (� − �) ∈ Δ for 0 ≦ 	 < 1
introduced and studied by Kanas and Ronning [1]. �e class
S
∗
� (0) is de	ned by geometric property that the image of any

circular arc centered at � is starlike with respect to �(�) and
the corresponding classK∗� (0) is de	ned by the property that
the image of any circular arc centered at � is convex. We
observe that the de	nitions are somewhat similar to the ones
introduced by Goodman in [2, 3] for uniformly starlike and
convex functions, except that in this case the point � is 	xed.

In particular, K = K0(0) and S
∗
0 = S

∗(0), respectively,
are the well-known standard classes of convex and starlike
functions.

Let Σ denote the class of meromorphic functions � of the
form

� (�) = 1� +
∞∑
�=1
����, (3)

de	ned on the punctured unit disk Δ∗ := {� ∈ C : 0 < |�| <1}.
Denote by Σ� the subclass of Σ consisting of the functions

of the form

� (�) = 1� − � +
∞∑
�=1
��(� − �)�, �� ≥ 0; � ̸= �. (4)

A function� of the form (4) is in the class ofmeromorphic
starlike of order 
 (0 ≤ 
 < 1) denoted by Σ∗� (
), if
−R((� − �) �� (�)� (�) ) > 
, � − � ∈ Δ := Δ∗ ∪ {0} , (5)
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and is in the class of meromorphic convex of order 
 (0 ≤ 
 <1) denoted by Σ
� (
), if
−R(1 + (� − �) ��� (�)�� (�) ) > 
, � − � ∈ Δ := Δ∗ ∪ {0} .

(6)

For functions �(�) given by (4) and �(�) = (1/(� − �)) +∑∞�=1 ��(� − �)�, (�� ≥ 0) we de	ne the Hadamard product or
convolution of � and � by

(� ∗ �) (�) := 1� − � +
∞∑
�=1
����(� − �)�. (7)

More recently, Purohit and Raina [4] introduced a
generalized �-Taylor’s formula in fractional �-calculus and
derived certain �-generating functions for �-hypergeometric
functions. In this work we proceed to derive a generalized
di�erential operator on meromorphic functions in Δ∗ = {� ∈
C : 0 < |�| < 1} involving these functions and discuss some
of their properties.

For complex parameters �1, . . . , �� and �1, . . . , �� (�� ̸= 0,−1, . . . ; � = 1, 2, . . . ,  ) the �-hypergeometric function

�Ψ�(�) is de	ned by

�Ψ� (�1, . . . ��; �1, . . . , ��; �, �)
:= ∞∑
�=0

(�1, �)� ⋅ ⋅ ⋅ (��, �)�(�, �)�(�1, �)� ⋅ ⋅ ⋅ (��, �)�
× [(−1)��( �2 )]1+�−���,

(8)

with ( �2 ) = %(% − 1)/2 where � ̸= 0 when & >  + 1 (&,  ∈
N0 = N ∪ {0}; � ∈ U).

�e �-shi�ed factorial is de	ned for �, � ∈ C as a product
of % factors by
(�; �)� = {1 % = 0(1 − �) (1 − ��) ⋅ ⋅ ⋅ (1 − ���−1) % ∈ N, (9)

and in terms of basic analogue of the gamma function

(��; �)� = Γ
 (� + %) (1 − �)
�

Γ
 (�) , % > 0. (10)

It is of interest to note that lim
→1−((��; �)�/(1−�)�) = (�)� =�(�+1) ⋅ ⋅ ⋅ (�+%−1) is the familiar Pochhammer symbol and

�Ψ� (�1, . . . , ��; �1, . . . , ��; �) = ∞∑
�=0

(�1)� ⋅ ⋅ ⋅ (��)�(�1)� ⋅ ⋅ ⋅ (��)�
��%! . (11)

Now for � ∈ U, 0 < |�| < 1, and & =  + 1, the basic
hypergeometric function de	ned in (8) takes the form

�Ψ� (�1; . . . ��; �1, . . . , ��; �, �)
= ∞∑
�=0

(�1, �)� ⋅ ⋅ ⋅ (��, �)�(�, �)�(�1, �)� ⋅ ⋅ ⋅ (��, �)� ��,
(12)

which converges absolutely in the open unitdisk U.

Corresponding to the function �Ψ�(�1; . . . ��; �1, . . . , ��;�, �) recently for meromorphic functions � ∈ Σ0 consisting
functions of the form (3), Huda and Darus [5] introduce �-
analogue of Liu-Srivastava operator as below:

�Ψ� (�1; . . . ��; �1, . . . , ��; �, �) ∗ � (�)
= 1� �Ψ� (�1; . . . ��; �1, . . . , ��; �, �) ∗ � (�)
= 1� +

∞∑
�=1

(�1; �)�+1 ⋅ ⋅ ⋅ (��; �)�+1(�; �)�+1(�1; �)�+1 ⋅ ⋅ ⋅ (��, �)�+1 ����,
(13)

where � ∈ Δ∗ := {� ∈ C : 0 < |�| < 1}.
In this paper for functions� ∈ Σ� and for real parameters�1, . . . , �� and �1, . . . , �� (�� ̸= 0, −1, . . . ; � = 1, 2, . . . ,  ) we

de	ne the following new linear operator:

I
�
� (�1; . . . ��; �1, . . . , ��; �, � − �) : Σ� 5→ Σ�, (14)

as

I
�
� (�1; . . . ��; �1, . . . , ��; �, � − �)
= 1� − � �Ψ� (�1; . . . ��; �1, . . . , ��; �, � − �)

I
�
� [��, �] = 1� − � +

∞∑
�=1
Υ�,�� [�1, �] (� − �)�,

(15)

where

Υ�,�� [�1, �]
= (�1; �)�+1 ⋅ ⋅ ⋅ (��; �)�+1(�; �)�+1(�1; �)�+1 ⋅ ⋅ ⋅ (��, �)�+1 .

(16)

�roughout our study for � ∈ Σ�, we let
I
�
�� (�) = I

�
� [��, �] ∗ � (�)

= 1� − � +
∞∑
�=1
Υ�� (%) ��(� − �)�, (17)

Υ�� (%) = Υ�,�� [�1, �]
= (�1; �)�+1 ⋅ ⋅ ⋅ (��; �)�+1(�; �)�+1(�1; �)�+1 ⋅ ⋅ ⋅ (��, �)�+1 ,

(18)

unless otherwise stated.
Motivated by earlier works onmeromorphic functions by

function theorists (see [6–14]), we de	ne the following new
subclass of functions in Σ� by making use of the generalized

operatorI��.
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For 0 ≤ 
 < 1 and 0 ≤ � < 1/2, we letM��(�, 	, 
) denote
a subclass of Σ� consisting functions of the form (4) satisfying
the condition that

−R((� − �) (I��� (�))� + �(� − �)2(I��� (�))��(1 − �)I��� (�) + � (� − �) (I��� (�))� )

> 	 AAAAAAAAAAAA
(� − �) (I��� (�))� + �(� − �)2(I��� (�))��(1 − �)I��� (�) + � (� − �) (I��� (�))� + 1AAAAAAAAAAAA+ 
,

(19)

whereI��� is given by (17).
Further, shortly we can state this condition by

−R((� − �) B� (�)B (�) ) > 	 AAAAAAAAA (� − �) B
� (�)B (�) + 1AAAAAAAAA + 
, (20)

where

B (�) = (1 − �)I��� (�) + � (� − �) (I��� (�))�
= 1 − 2�� − � +

∞∑
�=1
(%� − � + 1) Υ�� (%) ��(� − �)�,

�� ≥ 0.
(21)

It is of interest to note that, on specializing the parameters�, 	 and &, , we can de	ne various new subclasses of Σ�. We
illustrate two important subclasses in the following examples.

Example 1. For � = 0, we letM��(0, 	, 
) =M
�
�(	, 
) denote

a subclass of Σ� consisting functions of the form (4) satisfying
the condition that

−R((� − �) (I��� (�))�
I��� (�) )

> 	 AAAAAAAAAAAA
(� − �) (I��� (�))�

I��� (�) + 1AAAAAAAAAAAA + 
,
(22)

whereI���(�) is given by (17).

Example 2. For � = 0, 	 = 0 we let M��(0, 0, 
) = M
�
�(
)

denote a subclass of Σ� consisting functions of the form (4)
satisfying the condition that

−R((� − �) (I��� (�))�
I��� (�) ) > 
, (23)

whereI���(�) is given by (17).

In this paper, we obtain the coe
cient inequalities,
growth and distortion inequalities, and closure results for

the function class M
�
�(�, 	, 
). Properties of certain inte-

gral operator and convolution properties of the new class

M
�
�(�, 	, 
) are also discussed.

2. Coefficients Inequalities

In order to obtain the necessary and su
cient condition for

a function, � ∈M��(�, 	, 
), we recall the following lemmas.

Lemma 3. If 
 is a real number and � is a complex number,
thenR(�) ≥ 
 ⇔ |� + (1 − 
)| − |� − (1 + 
)| ≥ 0.
Lemma4. If� is a complex number and 
, D are real numbers,
then

R (�) ≥ D |� − 1| + 
 ⇐⇒ R {� (1 + DG��) − DG��} ≥ 
,
− H ≤ I ≤ H.

(24)

Analogous to the lemma proved by Dziok et al. [8], we
state the following lemma without proof.

Lemma 5. Suppose that 
 ∈ [0, 1), J ∈ (0, 1], and the function� ∈ Σ�(
) is of the form�(�) = (1/(� − �)) + ∑∞�=1 ��(� − �)�,0 < |� − �| < J < 1, with �� ≥ 0, then
∞∑
�=1
(% + 
) ��J�+1 ≤ 1 − 
. (25)

�eorem6. Let� ∈ Σ� be given by (4).�en� ∈M��(�, 	, 
)
if and only if

∞∑
�=1
[% (1 + 	) + (
 + 	)] (1 + %� − �) Υ�� (%) ��
≤ (1 − 2�) (1 − 
) .

(26)

Proof. If � ∈M��(�, 	, 
), then by (20) we have

−R((� − �) B� (�)B (�) ) > 	 AAAAAAAAA (� − �) B
� (�)B (�) + 1AAAAAAAAA + 
. (27)

Making use of Lemma 4,

−R((� − �) (1 + 	G��)B� (�) + 	G��B (�)B (�) ) > 
, (28)

where B(�) is given by (21). Substituting B(�), B�(�) and
letting |� − �| < J → 1−, we have
{((1 − 2�) (1 − 
) − ∞∑

�=1
[% (1 + 	) + (
 + 	)]

× (1 + %� − �) Υ�� (%) ��)
× ((1 − 2�) − ∞∑

�=1
(1 + %� − �) Υ�� (%) ��)−1} > 0.

(29)

�is shows that (26) holds.
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Conversely, assume that (26) holds. Since −R(�) > 
, if
and only if |�+ 1| < |�− (1− 2
)|, it is su
cient to show thatAAAAAAAAA � + 1� − (1 − 2
)

AAAAAAAAA < 1, AAAA� − (1 − 2
)AAAA ̸= 0
for

AAAA� − �AAAA < J ≤ 1, (� − �) ∈ Δ.
(30)

Using (26) and taking �(�) = ((� − �)(1 + 	G��)B�(�) +	G��B(�))/B(�), we getAAAAAAAAA � + 1� − (1 − 2
)
AAAAAAAAA

≤ ((∞∑
�=1
(1 + %� − �) [(% + 1) (1 + 	)] Υ�� (%) ��)

× (2 (1 − 
) (1 − 2�) − ∞∑
�=1
(1 + %� − �)

×[% (1 + 	) + (	 + 2
 − 1)] Υ�� (%) ��)−1)
≤ 1.

(31)

�us we have � ∈M��(�, 	, 
).
For the sake of brevity throughout this paper we let

O� (�, 	, 
) = [% (1 + 	) + (
 + 	)] (1 + %� − �) ,
O1 (�, 	, 
) = (1 + 
 + 2	) , (32)

unless otherwise stated.
Our next result gives the coe
cient estimates for func-

tions inM
�
�(�, 	, 
).

�eorem 7. If � ∈M��(�, 	, 
), then
�� ≤ (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%) , % = 1, 2, 3, . . . . (33)

�e result is sharp for the functions ��(�) given by

�� (�) = 1� − � + 1 − 
O� (�, 	, 
) Υ�� (%) (� − �)�,
% = 1, 2, 3, . . . . (34)

Proof. If � ∈M��(�, 	, 
), then we have, for each %,
O� (�, 	, 
) Υ�� (%) �� ≤ ∞∑

�=1
O� (�, 	, 
) Υ�� (%) ��

≤ (1 − 
) (1 − 2�) .
(35)

�erefore we have

�� ≤ (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%) . (36)

Since

�� (�) = 1� − � + (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%) (� − �)� (37)

satis	es the conditions of �eorem 6, ��(�) ∈ M
�
�(�, 	, 
)

and the equality is attained for this function.

�eorem 8. Suppose that there exists a positive number ]:

] = inf
�∈N
{O� (�, 	, 
) Υ�� (%)} . (38)

If � ∈M��(�, 	, 
), thenAAAAAAAAA 1J −
(1 − 
) (1 − 2�)

]

JAAAAAAAAA
≤ AAAA� (�)AAAA ≤ 1J
+ (1 − 
) (1 − 2�)

]

J, (AAAA� − �AAAA = J) ,AAAAAAAAA 1J2 −
(1 − 
) (1 − 2�)

]

AAAAAAAAA
≤ AAAAA�� (�)AAAAA ≤ 1J2
+ (1 − 
) (1 − 2�)

]

(AAAA� − �AAAA = J) .

(39)

If ] = O1(�, 	, 
)Υ��(1) = (1 + 
 + 2	)Υ��(1), then the result is
sharp for

� (�) = 1� − � + (1 − 
) (1 − 2�)(1 + 
 + 2	) J2Υ�� (1) (� − �) . (40)

Proof. Let � ∈ ∑� and be given by (4)

AAAA� (�)AAAA ≤ 1J +
∞∑
�=1
��J� ≤ 1J + J

∞∑
�=1
��. (41)

Since � ∈M��(�, 	, 
), and by�eorem 6,

∞∑
�=1
�� ≤ (1 − 
) (1 − 2�)

]

. (42)

Using this, we have

AAAA� (�)AAAA ≤ 1J + (1 − 
) (1 − 2�)]

J. (43)

Similarly

AAAA� (�)AAAA ≥ AAAAAAAAA 1J −
(1 − 
) (1 − 2�)

]

JAAAAAAAAA . (44)

�e result is sharp for function (40) with

] = O1 (�, 	, 
) Υ�� (1) = (1 + 
 + 2	)Υ�� (1) . (45)

Similarly we can prove the otherinequality |��(�)|.
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3. Order of Starlikeness

In the following theorem we obtain the order of starlikeness

for the class M
�
�(�, 	, 
). We say that � given by (4) is

meromorphically starlike of order Q, (0 ≤ Q < 1), in |�−�| < J
when it satis	es condition (5) in |� − �| < J.
�eorem 9. Let the function � given by (4) be in the class

M
�
�(�, 	, 
). �en, if there exists

J = J1 (�, 
, Q) = inf
�≥1
[(1 − Q)O�(�, 	, 
)Υ��(%)(% + Q)(1 − 
)(1 − 2�) ]

1/(�+1)
(46)

and it is positive, then � is meromorphically starlike of order Q
in |� − �| < J ≤ J1(�, 
, Q).
Proof. Let the function � ∈M��(�, 	, 
) be of the form (4). If0 < J ≤ J1(�, 
, Q), then by (46)

J�+1 ≤ (1 − Q) O� (�, 	, 
) Υ�� (%)(% + Q) (1 − 
) (1 − 2�) , (47)

for all % ∈ N. From (47) we get

% + Q1 − QJ�+1 ≤ O� (�, 	, 
) Υ
�
� (%)(1 − 
) (1 − 2�) , (48)

for all % ∈ N, and thus

∞∑
�=1

% + Q1 − Q��J�+1 ≤
∞∑
�=1

O� (�, 	, 
) Υ�� (%)(1 − 
) (1 − 2�) �� ≤ 1, (49)

because of (26). Hence, from (49) and (25), � is meromor-
phically starlike of order Q in |� − �| < J ≤ J1(�, 
, Q) = J.

Suppose that there exists a number J̃, J̃ > J1(�, 
, Q), such
that each � ∈ M

�
�(�, 	, 
) is meromorphically starlike of

order Q in |� − �| < J̃ ≤ 1. �e function

� (�) = 1� − � + (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%) (� − �)� (50)

is in the classM��(�, 	, 
); thus it should satisfy (25) with J̃ :
∞∑
�=1
(% + Q) ��J̃�+1 ≤ 1 − Q, (51)

while the le�–hand side of (51) becomes

(% + Q) (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%) J̃�+1
> (% + Q) (1 − 
) (1 − 2�)O� (�, 	, 
) Υ�� (%)

(1 − Q) O� (�, 	, 
) Υ�� (%)(% + Q) (1 − 
) (1 − 2�)
= 1 − Q,

(52)

which contradicts (51). �erefore the number J1(�, 
, Q) in
�eorem 9 cannot be replaced with a greater number. �is
means that J1(�, 
, Q) is called radius of meromorphically

starlikeness of order Q for the classM��(�, 	, 
).

4. Results Involving Modified
Hadamard Products

For functions

�� (�) = 1� − � +
∞∑
�=1
��,�(� − �)�, ��,� ≥ 0, (53)

we de	ne the Hadamard product or convolution of �1 and �2
by

(�1 ∗ �2) (�) := 1� − � +
∞∑
�=1
��,1��,2(� − �)�. (54)

Let

Ψ (%, �) = (%� − � + 1)(1 − 2�) Υ�� (%) . (55)

�eorem 10. For functions �� (� = 1, 2) de	ned by (53), let�1 ∈ M
�
�(�, 	, 
) and �2 ∈ M

�
�(�, 	, U). �en �1 ∗ �2 ∈

M
�
�(�, 	, V) where

V
= 1 − (1 − 
) (1 − U) (3 + 	)(1 + 
 + 2	) (1 + U + 2	)Ψ (1, �) − 2 (1 − 
) (1 − U) ,

(56)

and Ψ(1, �) = Υ��(1)/(1 − 2�). �e results are the best possible
for

�1 (�) = 1� − � + 1 − 
(1 + 
 + 2	)Ψ (1, �) (� − �) ,
�2 (�) = 1� − � + 1 − U(1 + U + 2	)Ψ (1, �) (� − �) ,

(57)

where Ψ(1, �) = Υ��(1)/(1 − 2�).
Proof. In view of �eorem 6, it su
ces to prove that

∞∑
�=1

[% (1 + 	) + (V + 	)](1 − V) Ψ (%, �) ��,1��,2 ≤ 1, (58)

where V is de	ned by (56) under the hypothesis. It follows
from (26) and the Cauchy-Schwarz inequality that

∞∑
�=1

[% (1 + 	) + (
 + 	)]1/2 [% (1 + 	) + (U + 	)]1/2
√(1 − 
) (1 − U)

× Ψ (%, �)√��,1��,2 ≤ 1.
(59)
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�us we need to 	nd the largest V such that

∞∑
�=1

[% (1 + 	) + (V + 	)](1 − V) Ψ (%, �) ��,1��,2
≤ ∞∑
�=1

[% (1 + 	) + (
 + 	)]1/2[% (1 + 	) + (U + 	)]1/2
√(1 − 
) (1 − U)

× Ψ (%, �)√��,1��,2
≤ 1.

(60)

By virtue of (59) it is su
cient to 	nd the largest V, such
that

√(1 − 
) (1 − U)
[% (1 + 	) + (
 + 	)]1/2[% (1 + 	) + (U + 	)]1/2Ψ (%, �)
≤ [% (1 + 	) + (
 + 	)]1/2[% (1 + 	) + (U + 	)]1/2√(1 − 
) (1 − U)
× 1 − V[% (1 + 	) + (V + 	)] ,

(61)

which yields

V ≤ 1 − ( ((1 − 
) (1 − U) (2% + 1 + 	))
× ([% (1 + 	) + (
 + 	)] [% (1 + 	) + (U + 	)]
× Ψ (%, �) − (1 − 
) (1 − U) (% + 1))−1) ,

(62)

for % ≥ 1 where Ψ(%, �) is given by (55) and, since Ψ(%, �) is
a decreasing function of % (% ≥ 1), we have
V = 1

− (1 − 
) (1 − U) (3 + 	)(1 + 
 + 2	) (1 + U + 2	)Ψ (1, �) − 2 (1 − 
) (1 − U) ,
(63)

andΨ(1, �) = Υ��(1)/(1−2�), which completes the proof.

�eorem 11. Let the functions ��, (� = 1, 2), de	ned by (53)

be in the class M��(�, 	, 
). �en (�1 ∗ �2)(�) ∈ M
�
�(�, 	, V)

where

V = 1 − (1 − 
)2 (3 + 	)(1 + 
 + 2	)2Ψ (1, �) − 2(1 − 
)2 (64)

with Ψ(1, �) = Υ��(1)/(1 − 2�).
Proof. By taking U = 
 in the above theorem, the results
follow.

For functions in the class M��(�, 	, 
), we can prove the
following inclusion property.

�eorem 12. Let the functions �� (� = 1, 2) de	ned by (53) be
in the classM��(�, 	, 
). �en the function ℎ, de	ned by

ℎ (�) = 1� − � +
∞∑
�=1
(�2�,1 + �2�,2) (� − �)�, (65)

is in the classM��(�, 	, U) where
U ≤ 1 − 4(1 − 
)2 (1 + 	)[1 + 
 + 2	]2Ψ (1, �) + 2(1 − 
)2 , (66)

and Ψ(1, �) = Υ��(1)/(1 − 2�).
Proof. In view of �eorem 6, it is su
cient to prove that

∞∑
�=2
Ψ (%, �) [% (1 + 	) + (U + 	)](1 − U) (�2�,1 + �2�,2) ≤ 1, (67)

where �� ∈ M
�
�(�, 	, 
) (� = 1, 2); we 	nd from (53) and

�eorem 6 that

∞∑
�=1
[Ψ (%, �) [% (1 + 	) + (
 + 	)]1 − 
 ]2�2�,�
≤ ∞∑
�=1
[Ψ(%, �) [%(1 + 	) + (
 + 	)]1 − 
 ��,�]2 ≤ 1,

(68)

which would yield

∞∑
�=2

12[Ψ(%, �) [%(1 + 	) + (
 + 	)]1 − 
 ]2 (�2�,1 + �2�,2) ≤ 1. (69)

On comparing (67) and (69) it can be seen that inequality (66)
will be satis	ed if

Ψ (%, �) [% (1 + 	) + (U + 	)]1 − U (�2�,1 + �2�,2)
≤ 12[Ψ (%, �) [% (1 + 	) + (
 + 	)]1 − 
 ]2
× (�2�,1 + �2�,2) .

(70)

�at is, if

U ≤ 1 − 2(1 − 
)2 [(% + 1) (1 + 	)][% (1 + 	) + (
 + 	)]2Ψ (%, �) + 2(1 − 
)2 , (71)

where Ψ(%, �) is given by (55) and Ψ(%, �) is a decreasing
function of % (% ≥ 1), we get (66), which completes the
proof.
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5. Closure Theorems

We state the following closure theorems for � ∈M
�
�(�, 	, 
)

without proof (see [8–10]).

�eorem 13. Let the function ��(�) = (1/(� − �)) + ∑∞�=1 ��,�(� − �)� be in the class M��(�, 	, 
) for every D = 1, 2, . . . ,  .
�en the function � de	ned by

� (�) = 1� − � +
∞∑
�=1
��,�(� − �)�, (��,� ≥ 0) (72)

belongs to the classM��(�, 	, 
), where ��,� = (1/ )∑��=1 ��,�,(% = 1, 2, . . .).
�eorem 14. Let �0(�) = 1/(� − �) and ��(�) = (1/(� − �)) +((1−
)(1−2�)/O�(�, 	, 
)Υ��(%))(�−�)� for % = 1, 2, . . ..�en� ∈ M

�
�(�, 	, 
) if and only if � can be expressed in the form�(�) = ∑∞�=0 V���(�) where V� ≥ 0 and ∑∞�=0 V� = 1.

�eorem 15. �e class M
�
�(�, 	, 
) is closed under convex

linear combination.

Now, we prove that the class isM��(�, 	, 
) closed under
integral transforms.

�eorem 16. Let the function �(�) given by (4) be in

M
�
�(�, 	, 
). �en the integral operator

_ (�) = `∫1
0
b�� (b�) Ob (0 < b ≤ 1, 0 < ` < ∞) (73)

is inM
�
�(�, 	, U), where

U ≤ (%2 (1 + 	) + % [(
 + 	) + (1 + 	) (1 + `
)]
+ (` + 1) (
 + 	) + `	 (1 − 
) )

× (%2 (1 + 	) + % [(
 + 	) + (1 + `) (1 + 	)]
+ (1 + `) (
 + 	) + ` (1 − 
) )−1.

(74)

�e result is sharp for the function �(�) = (1/(� − �)) +((1 − 
)(1 − 2�)/(1 + 
 + 2	)Υ��(1))(� − �).
Proof. Let �(�) ∈M��(�, 	, 
). �en

_ (�) = `∫1
0
b�� (b�) Ob = 1� − � +

∞∑
�=1

`` + % + 1��(� − �)�.
(75)

It is su
cient to show that

∞∑
�=1

`O� (�, 	, U) Υ�� (%)(` + % + 1) (1 − U) �� ≤ 1. (76)

Since � ∈M��(�, 	, 
), we have
∞∑
�=1

O� (�, 	, 
) Υ�� (%)(1 − 
) (1 − 2�) �� ≤ 1. (77)

Note that (76) is satis	ed if

`O� (�, 	, U) Υ�� (%)(` + % + 1) (1 − U) ≤ O� (�, 	, 
) Υ
�
� (%)(1 − 
) (1 − 2�) . (78)

From (78), we have

U ≤ ( (%2 (1 + 	) + % [(
 + 	) + (1 + 	) (1 + `
)]
+ (` + 1) (
 + 	) + `	 (1 − 
) )
× (%2 (1 + 	) + % [(
 + 	) + (1 + `) (1 + 	)]
+ (1 + `) (
 + 	) + ` (1 − 
) )−1) = Φ (%) .

(79)

A simple computation will show that Φ(%) is increasing andΦ(%) ≥ Φ(1). Using this, the results follow.
6. Partial Sums

Silverman [15] determined sharp lower bounds on the real
part of the quotients between the normalized starlike or
convex functions and their sequences of partial sums. As
a natural extension, one is interested in searching results
analogous to those of Silverman for meromorphic univalent
functions. In this section, motivated essentially by the work
of Silverman [15] and Cho and Owa [16], we will investigate
the ratio of a function of the form (4) to its sequence of partial
sums. Consider

�� (�) = 1� − � +
�∑
�=1
��(� − �)�, (80)

when the coe
cients are su
ciently small to satisfy the
condition analogous to

∞∑
�=1
O� (�, 	, 
) Υ�� (%) �� ≤ (1 − 
) (1 − 2�) . (81)

More precisely we will determine sharp lower bounds for
R(�(�)/��(�)) and R(��(�)/�(�)). In this connection we
make use of the well-known results that R((1 + �(�))/(1 −�(�))) > 0, (� − � ∈ Δ), if and only if �(�) = ∑∞�=1 �̀(� − �)�
satis	es the inequality |�(�)| ≤ |� − �|.

Unless otherwise stated, we will assume that � is of the
form (4) and its sequence of partial sums is denoted by (80).

�eorem 17. Let �(�) ∈ M
�
�(�, 	, 
) be given by (4) which

satis	es condition (26) and suppose that all of its partial sums
(80) do not vanish in Δ. Moreover, suppose that

2 − 2 �∑
�=1

AAAA��AAAA − O�+1 (�, 	, 
) Υ�� (D + 1)(1 − 
) (1 − 2�)
∞∑
�=�+1

AAAA��AAAA > 0,
∀D ∈ N.

(82)

�en,

R( � (�)�� (�)) ≥ 1 − (1 − 
) (1 − 2�)O�+1 (�, 	, 
) Υ�� (D + 1) (� − � ∈ Δ) ,
(83)
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where

O� (�, 	, 
)
≥ {(1 − 
) (1 − 2�) , if % = 1, 2, 3, . . . , DO�+1 (�, 	, 
) Υ�� (D + 1) , if % = D + 1, D + 2, . . . .

(84)

�e result (83) is sharp with the function given by

� (�) = 1� − � + (1 − 
) (1 − 2�)O�+1 (�, 	, 
) Υ�� (D + 1) (� − �)�+1. (85)

Proof. De	ne the function �(�) by
� (�)
= O�+1 (�, 	, 
) Υ�� (D + 1)(1 − 
) (1 − 2�)
× [ � (�)�� (�) − (1 − (1 − 
) (1 − 2�)O�+1 (�, 	, 
) Υ�� (D + 1))]

= 1
+ (((O�+1 (�, 	, 
) Υ�� (D + 1))

× ((1 − 
) (1 − 2�))−1
× ∞∑
�=�+1

��(� − �)�+1)
× (1 + �∑

�=1
��(� − �)�+1)

−1) .

(86)

It su
ces to show thatR(�(�)) > 0; hence we 	nd thatAAAAAAAA 1 + � (�)1 − � (�)
AAAAAAAA

≤ (((O�+1 (�, 	, 
) Υ�� (D + 1)) × ((1 − 
) (1 − 2�))−1

× ∞∑
�=�+1

AAAA��AAAA)
× (2 − 2 �∑

�=1

AAAA��AAAA
− (O�+1 (�, 	, 
) Υ�� (D + 1))
× ((1 − 
) (1 − 2�))−1
× ∞∑
�=�+1

AAAA��AAAA)
−1) ≤ 1.

(87)

From condition (26), it readily yields the assertion (83) of
�eorem 17.

To see that the function given by (85) gives the sharp

result, we observe that for � = JG��/(�+2)
� (�)�� (�) = 1 + (1 − 
) (1 − 2�)O�+1 (�, 	, 
) Υ�� (D + 1) (� − �)�

5→ 1 − (1 − 
) (1 − 2�)O�+1 (�, 	, 
) Υ�� (D + 1) ,
(88)

when J → 1− which shows that the bound (83) is the best
possible for each D ∈ N.

We next determine bounds for ��(�)/�(�).
�eorem 18. Under the assumptions of �eorem 17, we have

R(�� (�)� (�) ) ≥ O�+1 (�, 	, 
) Υ�� (D + 1)O�+1 (�, 	, 
) Υ�� (D + 1) + (1 − 
) (1 − 2�)
(� − � ∈ Δ) ,

(89)

�e result (89) is sharp with the function given by (85).

Proof. By setting

� (�)
= (1 + O�+1 (�, 	, 
) Υ�� (D + 1)(1 − 
) (1 − 2�) )
× [�� (�)� (�)

− (O�+1 (�, 	, 
) Υ�� (D + 1) / (1 − 
) (1 − 2�))1 + (O�+1 (�, 	, 
) Υ�� (D + 1) / (1 − 
) (1 − 2�))]
(90)

and proceeding as in �eorem 17, we get the desired result
and so we omit the details.

Concluding Remark. We observe that, if we specialize the
parameters � and 	 as mentioned in Examples 1 and 2, we

obtain the analogous results for the classes M
�
�(	, 
) and

M
�
�(
). Further specializing the parameters &,  various

other interesting results (as in�eorems 6–18) can be derived
easily for the function class based on interesting di�erential
operators as illustrated below.

(1) For �� = ��� , �� = ��� , �� > 0, �� > 0, (n = 1, . . . , &; � =1, . . . ,  , & =  + 1), � → 1, the operator I
�
��(�) =

H
�
�[�1]�(�) de	ned by Liu and Srivastava [10].
(2) For & = 2,  = 1, �2 = �, � → 1, the operator

L
2
1[�1, �, �1, �]�(�) = L[�1; �1]�(�) was introduced and

studied by Liu and Srivastava [9].
(3) For & = 1,  = 0, �1 = U + 1, � → 1, the operator

L[�1; �1]�(�) = o��(�) = (1/�(1 − �)�+1) ∗ �(�), (U > −1)
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where o� is the di�erential operator which was introduced
by Ganigi and Uralegaddi [17].
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