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Abstract

Recent long-read assemblies often exceed the quality and completeness of available

reference genomes, making validation challenging. Here we present Merqury, a

novel tool for reference-free assembly evaluation based on efficient k-mer set

operations. By comparing k-mers in a de novo assembly to those found in

unassembled high-accuracy reads, Merqury estimates base-level accuracy and

completeness. For trios, Merqury can also evaluate haplotype-specific accuracy,

completeness, phase block continuity, and switch errors. Multiple visualizations, such

as k-mer spectrum plots, can be generated for evaluation. We demonstrate on both

human and plant genomes that Merqury is a fast and robust method for assembly

validation.

Keywords: Genome assembly, Assembly validation, Benchmarking, K-mers,

Haplotype phasing, Trio binning

Background

With recent advances in long-read [1–3] and long-range sequencing technologies [4–6],

new assembly pipelines are generating more continuous, complete, and accurate diploid

genome assemblies than ever before [4, 7–14].

However, de novo assembled genomes are difficult to validate due to the lack of a

known truth. Existing methods use Illumina reads to infer base-level accuracy by align-

ing the reads to the assembly for evaluation [15]. Base errors in the consensus are de-

tected as variants (SNPs or small indels) when aligning the short reads. However, this

method is heavily reliant on the short-read mapping, which could be biased in repeti-

tive regions, under-collapsed regions, or regions of low consensus accuracy. For meas-

uring completeness and false duplications, near-universal single-copy orthologs

(BUSCOs) [16] have been widely used to evaluate the gene content of assemblies.

BUSCO is robust for species that have been widely studied, such as human and mouse.

However, this analysis can be inaccurate when the newly assembled genome contains

true copy number or sequence variants that were not considered when building the
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initial BUSCO gene set. In addition, BUSCO only examines conserved single-copy

genes and fails to evaluate the most difficult-to-assemble regions of the genome.

In contrast, k-mers (genomic substrings of length k) can be used in a reference-free

manner for assessing genome assembly quality metrics. Genome assembly validation

via k-mer copy number analysis was introduced by Mapleson et al. in their KAT tool

[17], which enables visual inspection of k-mer spectra plots to identify artificial duplica-

tions and missing sequences. Merqury takes much of its inspiration from the ideas in-

troduced by KAT. QUAST-LG [18] is another assembly validation tool that provides

both BUSCO and reference-based k-mer measurements, as well as alignment metrics

against a closely related reference genome. However, many of QUAST’s metrics are

based on the reference alignment, which incorrectly reports true variants in the assem-

bled genome as potential mis-assemblies. A recent extension to the QUAST toolkit

combines evidence from both k-mers and long reads to better identify certain classes of

structural mis-assembly [19].

Assessing haplotype phasing without a truth set is also challenging. Diploid genome

assemblers generate both primary and alternate assemblies representing the two haplo-

types. The primary assembly is typically a pseudo-haplotype that captures both the

homozygous regions along with a single copy of the heterozygous alleles. Such a

pseudo-haplotype does not guarantee long-range phasing, so to estimate phase block

statistics, the alternate alleles must be mapped back to the primary assembly to deter-

mine regions corresponding to the primary-alternate haplotype phase blocks [9]. How-

ever, this can be challenging when the alternate alleles do not map well to the primary

sequence due to high sequence divergence or mis-assemblies. Moreover, long-read as-

semblies often collapse regions of low heterozygosity, which are excluded when calcu-

lating phase block statistics, thus over-representing the correctness.

Alternative methods report phasing statistics from small variants (mostly SNPs)

called with short-read mapping [8, 20–23], or use benchmark genomes that have cu-

rated, phased variation call sets [24–27]. Both methods rely on a reference sequence as

the primary source to detect heterozygous variations. However, these reference se-

quences are incomplete, and recent studies have demonstrated the shortcomings of the

current human reference genome and variant call sets [8, 21, 28]. For example, the

highly variable major histocompatibility complex (MHC) is excluded from the Genome

in a Bottle (GIAB) and Global Alliance for Genomic Health (GA4GH) reference panels

[26] due to its repetitive nature and need of a specialized mapping strategy to account

for the high allelic diversity [29]. Moreover, reference-guided strategies require signifi-

cant manual curation and effort and will not scale as large cohort sequencing projects

become common [30, 31]. This validation strategy is also not applicable to any species

without a curated and complete reference [32].

To overcome these limitations, we developed Merqury, which generates assembly as-

sessment metrics using k-mers alone. Merqury compares a set of k-mers derived from

unassembled, high-accuracy sequencing reads to a genome assembly for evaluation.

Merqury builds upon the k-mer-based analyses introduced by KAT but adds new func-

tionality for evaluating the accuracy of phased diploid genome assemblies (Table 1).

Unique to Merqury, the generated metrics include consensus quality (QV) and k-mer

completeness, and when parental genomic sequences are available (either assembled or

unassembled), Merqury can output haplotype completeness, phase block statistics,
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switch error rates, and visual representations of phase consistency for the child’s gen-

ome. This includes TDF (or BED) features that can be displayed in a genome browser

for visualizing the presence of k-mer classes across a genome (e.g., the k-mers inherited

from a parental genome). We show that Merqury’s k-mer-based assembly validation

produces comparable or better results than existing methods, such as BUSCO gene

completeness and mapping-based measurements.

Results

To demonstrate the ability of Merqury to evaluate the accuracy, completeness, and

phasing of an assembly, we first applied it to an Arabidopsis thaliana F1 hybrid [9], for

which the parental strains (Col-0 and Cvi-0, simplified as Col and Cvi) have also been

sequenced. For a comparison of multiple assemblies, we demonstrate Merqury on

haplotype-resolved (TrioCanu [10]), pseudo-haplotype (FALCON-Unzip [9]), and

mixed-haplotype (Canu [33]) assemblies of this hybrid genome. Total assembly size is

typically used as a rough measure of haplotype completeness. For example, the

TrioCanu haplotype assemblies have similar total bases, 122~124Mbp (Table 2), close

to the expected haploid genome size of 130Mbp, indicating the haplotype assemblies

are well balanced (assuming haplotype-specific bases are evenly inherited). In compari-

son, the primary assembly of FALCON-Unzip has ~ 35Mbp bases more than the alter-

nate assembly. However, it is difficult to understand where this difference originates

Table 1 Feature comparison of KAT and Merqury

KAT Merqury

K-mer analysis

Count Y Y

Filter Y Y

Compare Y Y

%GC Y –

Fitting distributions Y –

Other set operations, querying – Y

Assembly statistics

Finding repetitive regions Y –

Contamination detection Y –

K-mer copy-number spectrum Y Y

K-mer assembly, haplotype spectrum – Y

Consensus quality (QV) – Y

K-mer completeness – Y

Phase blocks and switch error rate – Y

Plotting

Stacked histograms Y Y

Unstacked histograms – Y

K-mer coverage Y Y

%GC Heatmaps Y –

Hap-mer fractions (blob plots) – Y

Browser tracks (BED, TDF) – Y

Nx or NGx contig/block sizes – Y
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from the assembly size alone. The mixed-haplotype Canu assembly, in comparison, is

~ 100Mbp larger than the expected genome size of 130Mb. Again, we can assume this

assembly resolved both haplotypes, but since the haplotypes have been combined in a

single assembly, we cannot know the composition from the size and continuity mea-

sures alone. In the following sections, we describe how Merqury’s statistics and plots

can be used to dissect and understand these assemblies.

Copy number spectrum

We counted k-mers from Illumina whole-genome sequencing of the A. thaliana F1 hy-

brid, as well as from each assembly, using Meryl, a k-mer counting tool we extended to

support k-mer set operations for Merqury (Methods). The copy number spectrum plot,

known as “spectra-cn” plot [17] tracks the multiplicity of each k-mer found in the

Illumina read set (Fig. 1a) and colors it by the number of times it is found in a given as-

sembly (Fig. 1b). The result is a set of histograms relating k-mer counts in the read set

to their associated counts in the assembly. Here the Illumina dataset (which we will

refer to as the “read set”) was sequenced to an average coverage of 45×, so we expect a

histogram peak near x = 45 corresponding to k-mers present in both haplotypes, and a

peak at half coverage (x = 22) representing k-mers found on only one haplotype (Fig. 1a,

in practice, these peaks are shifted slightly lower due to the effects of sequencing error

and sampling only l - k + 1 k-mers for each l-sized read). We refer to these as 2-copy

and 1-copy k-mers, respectively, to indicate the number of times they appear in the

true genome. Additional peaks may appear for polyploid genomes, but for the remain-

der of this paper, we will assume a diploid genome.

Thus, when a k-mer is found approximately 22 times in the A. thaliana read set, we

expect it to be found only once in the assembly, as it is likely a 1-copy, haplotype-

specific (heterozygous) sequence (Fig. 1b). In the spectra-cn plot, k-mers are colored

based on their count in the assembly. For a complete haplotype-resolved assembly,

where even the homozygous part of the genome is included in both haplotypes, we ex-

pect most k-mers in the 2-copy peak to be found twice in the assembly (Fig. 1b). For

partially phased assemblies, 2-copy k-mers may be found either once or twice in the as-

sembly (e.g., Fig. 2), depending on which homozygous sequences of the genome were

separated and which were collapsed. In contrast, a pseudo-haplotype collapses homozy-

gous alleles, so 2-copy k-mers are expected to appear only once in the assembly. One

notable exception is haplotype-specific duplications, which can occur in two copies on

the same haplotype, and thus may also appear in two copies in a pseudo-haplotype

assembly.

Assuming no serious biases in the read set, a clean spectra-cn plot is a necessary, but

not sufficient, condition of assembly quality. Quoting KAT author Bernardo Clavijo “if

your spectra look right, your assemblies could still be wrong, but if your spectra look

wrong your assemblies can’t be right.” That is to say, certain structural errors may not

be reflected by the spectra, but any conflict with the copy numbers of the read set indi-

cate assembly problems. The k-mers found only in the read set (black) at low frequency

are almost always indicative of sequencing error in the read set; however, higher-

frequency k-mers found only in the read set indicate missing sequences in the assembly

(e.g., black k-mers within the 1- or 2-copy peaks). Likewise, any k-mers with a higher
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copy number in the assembly than would be predicted by the read set are indicative of

artificial duplications in the assembly, e.g., see the 2-copy k-mers appearing three times

in the Canu assembly shown in Fig. 1e.

The bar at the origin of the plots represents k-mers found only in the assembly. From

these k-mers, we can estimate an assembly consensus quality value (QV), which repre-

sents a log-scaled probability of error for the consensus base calls (Methods). Higher

Fig. 1 Merqury copy number spectrum plots for haploid and diploid assemblies of an Arabidopsis thaliana

F1 hybrid genome. a Histogram of k-mer multiplicity collected from Illumina reads. By default, Merqury

connects the midpoint of each histogram bin with a line, giving the illusion of a smooth curve. The first

peak represents 1-copy (heterozygous) k-mers in the genome, and the second peak represents 2-copy k-

mers originating from homozygous sequence or haplotype-specific duplications. Depth of sequencing

coverage determines where these peaks appear. In this example, sequencing coverage is approximately

45×, corresponding to the 2-copy peak. b Copy number spectrum (spectra-cn) of the same k-mers in a

plotted as stacked histograms colored by the copy numbers found in the combined TrioCanu assembly.

The assembly k-mers absent from the read set (likely to be base errors in the assembly) are plotted as a bar

at zero multiplicity, colored by the copy numbers found in the assembly. c Unstacked histograms of b for

visualizing the distribution of k-mer counts per copy numbers found in the assembly. This plot shows an

ideal pseudo haplotype assembly. d Spectra-cn plot of the combined FALCON-Unzip assembly. e Spectra-

cn plot of the mixed-haplotype Canu assembly. Missing single copy k-mers (black) and k-mers from artificial

duplications (green, purple, yellow in 30–60×) are noticeable. Note this assembly was not polished and so

has a larger error k-mer bar. f Spectra-cn plot of the TrioCanu Col haplotype assembly. Half the single copy

k-mers are missing and found in the other haplotype (black). Two-copy k-mers are found once (red) in each

haplotype assembly. g Spectra-cn plot of the FALCON-Unzip primary assembly. h Spectra-cn plot of the

FALCON-Unzip alternate assembly
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QVs indicate a more accurate consensus, where Q30 corresponds to 99.9% accuracy,

Q40 to 99.99%, etc. The trio-binned assembly has QV scores of 35~36 for each haploid

assembly and 35.7 for the combined version. The FALCON-Unzip assembly has a simi-

lar QV score of 35~38 for each haplotype and 36 for the combined version. The error

k-mer bar for Canu is much higher than the other two diploid assemblies, as we omit-

ted signal-level polishing [34] from this assembly to show an intermediate assembly

product. The estimated QV for this assembly is 29.3 (Table 2).

To better visualize the k-mer distribution by each copy number found in an assembly,

we also provide unstacked versions of the spectra-cn histograms (Fig. 1c–e). The 1-

copy (heterozygous) k-mers appear once in the combined TrioCanu assemblies (red),

and 2-copy k-mers twice (blue) as expected (Fig. 1c). The partially phased FALCON-

Unzip assembly shows a similar distribution to TrioCanu (Fig. 1d), indicative of good

k-mer completeness. The lower fraction of 2-copy k-mers found three times in the as-

sembly (green hump under the 2-copy peak) indicates fewer false duplications in the

TrioCanu compared to FALCON-Unzip and Canu.

When generating the same spectrum on the mixed-haplotype Canu assembly (Fig. 1e),

we can see the assembly has only partially assembled both haplotypes and there is a

higher fraction of k-mers missing from the assembly (black). In addition, the assembly

has artificial duplications inflating the assembly size. The plot also shows fewer 2-copy

k-mers (blue peak) compared to the other assemblies, and a significant fraction of 2-

copy k-mers appearing only once in the assembly (second red peak), suggesting the

mixed-haplotype assembly has partially collapsed the haplotypes. Based on the number

of 2-copy k-mers found twice in the assembly, we estimate 42.7 Mbp of homozygous

sequence remains un-collapsed, typically at the boundary of heterozygous and homozy-

gous alleles. This partial separation is also evident in the higher number of k-mers

appearing three (green), four (purple), and more (yellow) times in the assembly, repre-

senting 10.8 million artificially duplicated k-mers that would need to be identified and

removed to form a fully collapsed, haploid assembly. This example highlights the bene-

fits of the TrioCanu and FALCON-Unzip approaches for this heterozygous genome.

Additional processing with a tool such as purge_dups [35] would be required to con-

vert Canu’s mixed haplotypes into a pseudo-haplotype.
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Fig. 2 Merqury assembly spectrum plots for evaluating k-mer completeness. K-mers are colored by their

presence in the reads and primary/alternate assemblies. a Distinct k-mer assembly spectrum (spectra-asm)

plot of both TrioCanu Col and Cvi haplotype assemblies. This plot shows the assembly-specific (red and

blue) and shared portion of k-mers (green). b Spectra-asm plot of the FALCON-Unzip assembly. The primary

assembly has more k-mers (red) compared to the alternate assembly (blue). c Spectra-asm plot of the Canu

assembly which is a mixture of both haplotypes. A small fraction of 1-copy k-mers is found only in the

reads (black peak around 12~30×), which represents heterozygous variants missing from the assembly
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The spectra-cn plots can also be useful for evaluating haploid assemblies, e.g., of a

single haplotype from a diploid genome. When plotting the same k-mer spectrum on

one haplotype (“Col” in this case), we can see both 1-copy and 2-copy k-mers are now

observed just once in the assembly (Fig. 1f, red histogram). This is because the read set

represents the full diploid genome, while the assembly isolates a single haplotype. The

usual 1-copy peak is now exactly half the size and perfectly overlaps with a peak of

missing k-mers (black) that belong to the other haplotype (“Cvi”). In comparison, the

pseudo-haplotype FALCON-Unzip primary and alternate assemblies (Fig. 1g. h) show

imbalanced peaks, with more assembly k-mers appearing in both the 1- and 2-copy

peaks than expected. This suggests that the FALCON-Unzip is erroneously including

sequences from both haplotypes into the primary pseudo-haplotype. A similar portion

of 1-copy k-mers are missing from the alternate assembly (imbalanced red and black

peaks), suggesting that the alternate haplotype is missing some heterozygous variants.

Assembly spectrum

In the above FALCON-Unzip pseudo-haplotype example (Fig. 1g, h), it is possible to

infer that the missing sequences in the alternate assembly are likely found in the pri-

mary assembly. However, if there are shared sequences between the two assemblies, it

is difficult to know the exact sequence composition. To better address this question,

we introduce a new method to show the shared and specific k-mers in each assembly

(spectra-asm), instead of showing the overall copy-numbers (Fig. 2). This plot is helpful

for measuring diploid assembly completeness as it shows the fraction of k-mers specific

to both the primary and alternate assemblies. For example, a perfectly assembled dip-

loid genome is expected to have a balance of k-mers specific to each haplotype repre-

senting the heterozygous alleles (exceptions to this include sex chromosomes of

different sizes). The spectra-asm of the TrioCanu combined assembly (Fig. 2a) shows

such an example, where 1-copy k-mers are specific to each haplotype assembly (red

and blue), and the 2-copy k-mers are shared by both assemblies (green). In comparison,

the FALCON-Unzip assembly is imbalanced, with more 1-copy and 2-copy k-mers in

the primary assembly than expected (Fig. 2b). This imbalance is also evident from

Merqury’s k-mer completeness metrics for the primary and alternate assemblies (Table

2, completeness “all”). By stacking the histograms, we can confirm the primary assem-

bly contains all the missing k-mers from Fig. 1h in the 2-copy peak. Compared to

TrioCanu and FALCON-Unzip, Canu does not partition its output into primary and al-

ternates, and so k-mers from both haplotypes are present in the combined assembly.

However, the spectra-asm plot shows a few 1-copy k-mers are missing from the assem-

bly (Fig. 2c). This is in concordance with the lower k-mer completeness score in the

Canu assembly (95.7%) compared to the other diploid assemblies (98.3 and 97.8%,

Table 2) and indicates that some heterozygous variants are missing, perhaps as a result

of the low-quality, unpolished consensus.

Haplotype-specific k-mers (hap-mers) from trios

We define a “hap-mer” as a haplotype-specific k-mer that appears exclusively, one or

more times, on a single haplotype of the genome. When parental genomes are available,

we can use inheritance to estimate a set of hap-mers for the child and evaluate
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haplotype completeness of the assembly. Merqury identifies hap-mers as the set of

inherited, parental-specific k-mers (Fig. 3a). Using the parental-specific markers alone

may be sufficient for many cases; however, we have found it useful to specifically con-

sider the inherited markers, as only half of the parental specific k-mers are inherited

and the non-inherited markers may match an erroneous k-mer in the assembly by chance.

Note, this is still only an estimate of the true set of hap-mers in the child’s genome, which

can also be affected by de novo variants or heterozygous variants that were differentially

inherited from the parents. We have implemented efficient k-mer set operations (union,

intersection, subtraction, etc.) within Meryl for computing hap-mers and other useful k-

mer sets (Fig. 3b, Methods). For the A. thaliana F1 hybrid genome, we identified hap-

mers directly from the genomes of the parental strains. K-mers were grouped based on

their presence in the F1 reads alone, the maternal haplotype, the paternal haplotype, or

both (Fig. 3c). Because of the high heterozygosity of the F1 (estimated at 0.99% by Geno-

meScope [36]), many of the F1’s k-mers are hap-mers. A human genome, in comparison,

has relatively fewer hap-mers compared to all k-mers in the 1- and 2-copy peaks, with

most of the k-mers shared between both haplotypes (Fig. 3d).

Evaluating phasing completeness with hap-mers

Hap-mers are used to determine phase blocks in Merqury, where a block is defined to

be a consistent set of markers originating from the same haplotype. To account for

minor base-level errors in the assembly, we do allow some short-range switches to

occur within a block, so long as the phase switches back shortly thereafter (Fig. 4a). A

benefit of this k-mer approach is that Merqury does not need to rely on the phase

blocks as identified by the assembler or a reference variant callset and can quickly com-

pute the blocks on each assembly directly using only the observed haplotype markers.

Applying this method to the TrioCanu assembly reported NG50 phase block sizes of

3.6 Mbp and 5.5 Mbp with 0.3% per-block switch rate when allowing at most 100 con-

secutive switches within 20 kbp (Fig. 4b). The FALCON-Unzip assembly has slightly

shorter phase block sizes of 3.1 Mbp and 2.5Mbp with a similar switch error rate of

0.3%. The Canu assembly had more frequent long-range switches among haplotypes,

resulting in NG50 phase blocks of 100 kbp.

Visualizing hap-mer presence in each haplotype assembly is also useful to detect

overall phase consistency. When counting Col- and Cvi-specific k-mers in contigs of

the TrioCanu assembly (Fig. 4c), each contig was successfully separated by haplotype as

expected. That is, the Col markers were observed in the Col haplotype assembly, with

almost no contaminating Cvi markers, and vice versa. The count of the found k-mers

can be used as the x- and y-axis when plotting each contig as a blob. The blob is col-

ored by the origin of the assembly, with the size being relative to the contig size. A

haplotype resolved assembly with almost no haplotype switches is expected to have all

blobs close to either one of the axes, with the colors matching the corresponding

haplotype of the assembly. The FALCON-Unzip alternate contigs maintain haplotype

consistency (Fig. 4d), whereas the primary pseudo-haplotype contigs contain a mixture

of k-mers from both haplotypes. The Canu assembly mixes haplotypes in all but the

smallest contigs (Fig. 4e) and would require partitioning into primary and alternate

contig sets using a post-processing tool such as purge_dups [35].
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When plotting phase blocks sorted by size, the blocks originating from the wrong

haplotype were very small and almost negligible in the TrioCanu assembly (Fig. 4f). In

contrast, the phase blocks were highly mixed in the pseudo-haplotype assemblies, with

the larger contigs being more likely to contain markers from both haplotypes (Fig. 4g,

h). Plotting the contig and block sizes together shows that the trio-binned phase blocks

are very similar in size to the trio-binned contigs (Fig. 4i). In comparison, the phase

blocks were shorter than the contigs in the FALCON-Unzip assemblies (Fig. 4j), show-

ing relatively good phasing performance. The phase blocks were much shorter in the

Canu contigs, indicating frequent block switches between haplotypes (Fig. 4k) since

Canu does not attempt to preserve long-range phasing.

Another useful feature in Merqury is that all hap-mers, erroneous k-mers, and phase

blocks can be visualized as genome tracks along the assembly. Figure 5 shows an ex-

ample of a 60-kbp region in the mixed-haplotype Canu assembly, where haplotypes are

observed switching from Cvi (blue) to Col (red), resulting in numerous base errors

(gray). This illustrates how failure to separate haplotypes can result in an increased base

Fig. 3 Merqury set operations for generating haplotype-specific hap-mers and reliable k-mers. a Venn

diagram of maternal, paternal, and child k-mer sets. Inherited haplotype-specific k-mers (hap-mers) are

estimated from the parental and child k-mer sets. Roughly half of the parental-specific k-mers are inherited

by a child. b Set operation examples used in Meryl to compute hap-mers and other k-mer sets. c, d Stacked

k-mer multiplicity of the child’s read set, colored by inheritance. K-mers are colored by maternal (red)

paternal (blue) and shared between parents (green). K-mers only seen in the child’s reads (black) are mostly

from low-copy sequencing errors or k-mers arising from de novo variants in the child. Reliable k-mer

thresholds used for generating completeness scores for all k-mers (black) and hap-mers (red and blue) are

marked by dashed lines
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Fig. 4 Merqury hap-mer plots for evaluating haplotype phasing. a Example of phase blocks and switches.

Blue and red bars are paternal or maternal hap-mers found in the assembly. A phase block is defined by at

least two hap-mers (markers) from the same haplotype. Short-range switches are allowed in between

markers, in defined ranges. Two consecutive red markers within a certain range are marked as short-range

switches and counted for switch errors in block 1. As the red markers are consecutively found over a

certain range, or in numbers above a certain threshold, a separate block is formed. Each switch between

blocks is counted as a long-range switch. b Phase block statistics of the haploid assemblies with switch

errors, allowing at most 100 switches within 20 kbp. c Hap-mer blob plot of the TrioCanu assembly. Red

blobs represent Col haplotype contigs, while blue blobs are the Cvi haplotype. Blob size is proportional to

contig size, and each blob/contig is plotted according to the number of contained Col (x values) and Cvi (y

value) hap-mers. Col-specific k-mers are found in the Col assembly with almost no Cvi-specific k-mers, while

Cvi k-mers are found in the Cvi assembly with almost no Col k-mers. d, e Blob plots for FALCON-Unzip and

Canu assemblies show that most contigs are a mix of sequences from both haplotypes, but FALCON-Unzip

preserves phase within its alternate contigs, as designed. f Phase block NG* plots of the haplotype resolved

Col (left) and Cvi (right) assembly, sorted by size. X-axis is the percentage of the genome size (*) covered by

phase blocks of this size or larger (Y-axis). Blocks from the wrong haplotype are very small and almost

entirely absent. g, h Phase block NG* plot of the g FALCON-Unzip and h Canu assemblies. Col and Cvi

phase blocks are distributed evenly, as is typical for pseudo-haplotype assemblies. i–k Phase block and

contig NG* plots show the relative continuity of i TrioCanu, j FALCON-Unzip, and k Canu assemblies. Phase

block sizes are similar to the contig sizes in i. Phase blocks are much shorter than the contigs in k, because

of the frequent haplotype switches in the contigs
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error, as the two haplotypes are improperly combined into a single consensus sequence

resulting in artifactual variants. Two phase blocks (Cvi and Col) were found in this re-

gion using the default threshold of 100 consecutive k-mer switches allowed per every

20 kbp. However, phase blocks can be more stringently measured by defining the short-

range switch allowance (e.g., 10 per 20 kbp, Fig. 5, bottom track), resulting in lower

NG50 phase block size (100 kbp decreases to 33 kbp). In contrast, the per-block switch

error rate decreased from 3.4% to 0.47%, making each block a more reliable haplotype.

Note the per-block switch error rate is defined as the fraction of k-mer markers within

a block that are assigned to the wrong haplotype, thus accounting for all short-range

marker switches in a block.

Benchmarking on a human genome (NA12878)

To benchmark Merqury on a large genome, we applied it to the TrioCanu human

(NA12878) assembly from Koren et al. [10] and estimated the consensus quality as Q31

for each haplotype (Table 2). The alternative variant calling approach reported 2.1

million bases of errors, resulting in a QV estimate of 34.1. However, the mapping-

based approach excluded 212.2Mbp of assembled sequence because of too few (< 3×)

or too many (> 600×) aligned reads. We argue that Merqury’s k-mer-based approach is

both more efficient and more accurate for evaluating consensus accuracy.

Merqury required only 14.9 CPU h (9.1 h for k-mer counting, 4.7 h for merging, 1.1 h

for statistics) to evaluate QVs for both haplotypes. In contrast, the mapping-based QV

estimate took 338.3 CPU h (2.2 h for indexing, 308 h for mapping, 12.6 h for merging,

12.8 h for variant calling, and 2.5 h for coverage calculation and QV estimates). By ex-

cluding low- and high-coverage regions of the assembly, the mapping-based approach

Fig. 5 Example k-mer and phasing tracks provided by Merqury. Hap-mer density is provided in tiled data

format (.tdf) browsable with the Integrated Genomics Viewer (IGV) [37, 38]. This figure shows a region

where haplotype blocks are switching within one of the Canu contigs. Hap-mer tracks show haplotype

switches from Cvi (blue) to Col (red), along with k-mers found only in the assembly (gray), which are likely

caused by erroneous consensus bases. Phase blocks (black) are shown for both relaxed (100 consecutive

switches allowed per 20 kbp) and strict (10 per 20 kbp) switching thresholds
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ignores regions of the assembly likely to be enriched for error. For example, low cover-

age regions can be caused by regions of high error rates that make it difficult to map

short reads. High coverage regions are typically caused by repeats that can be collapsed,

and therefore incorrect, in the assembly. Thus, a substantial number of errors may be

excluded from the accuracy statistics if one considers only the mappable portion of the

assembly. This matches with our observation that the mapping-based estimates always

overestimate QV compared to the k-mer-based approach (Table 2).

Exact k-mer counting is currently the most resource-intensive step of Merqury, re-

quiring a maximum 21 GB of memory using 25.5 GB of disk space on NA12878

(Table 3). While this step can be parallelized across multiple nodes and cores, QV

statistics can be also estimated from subsampled k-mers with lower memory and disk

requirements using Mash Screen [39]. Because Merqury’s QV estimation is based on

Mash’s k-mer containment score (Methods), the Meryl and Mash counting methods

are interchangeable. In comparison to Meryl, Mash streams sequencing reads from disk

and compares them against only a small subset of k-mers in the assembly. This avoids

the need for a large table of k-mers but at the same time ignores copy number informa-

tion. As a result, we observed that Mash QV estimates were slightly lower than exact

counting (Meryl) for each haplotype, and even lower when both haplotypes were com-

bined (Table 2). This is because the shared k-mers between the two haplotype assem-

blies are considered only once by Mash, resulting in an underestimate of the QV score

(e.g., if a 2-copy k-mer appears in just one haplotype, it is considered “correct” by

Mash). The Mash approach also cannot investigate positional base errors (Fig. 5) and

many of the other analyses presented here but is provided as an alternative to Meryl

for QV estimation in cases where disk and memory resources are limited.

We also compared CPU time and maximum memory used by Merqury and KAT

comp to generate the same spectra-cn plots for the TrioCanu assembly of NA12878.

Here, we compared Merqury and KAT comp for a single haploid assembly (maternal)

and for the diploid assembly, which includes the maternal, paternal, and combined

haplotype assemblies (Table 4). When run on the haploid assembly, Merqury was able

to generate a spectra-cn plot and all other evaluation metrics using half the memory

(21.2 GB vs 44.1 GB) and comparable runtime to KAT, which generates only a spectra-

Table 3 Merqury runtime, memory, and disk requirements for QV estimation in a human genome

Merqury Mash

Count Union-sum QV QV

CPUs × nodes 32 × 24 48 × 1 24 × 1 24 × 1

Wall clock time 6 m 52 s/node 7 m 43 s 14 m 13 s 3 h 36m 17 s

CPU time 9.1 h 4.7 h 1.1 h 19.0 h

Memory 21.2 G 7.0 G 10.56 G 2.6 G

Storage 90 G (fastq.gz) N/A 48 G 90 G (fastq.gz)

Intermediates 1.8 G × 24 48 G 25.5 G 23.1 M

All statistics are for the diploid (maternal, paternal, and combined) assembly of the human genome NA12878. Merqury

QV estimates are generated from the full k-mer databases and use exact k-mer counting, whereas Mash QV estimates are

generated by streaming all reads against a MinHash sketch of the assembly using Mash Screen. Merqury’s Count and

Union-sum steps count all k-mers in the reads, while the QV estimation counts k-mers in the assembly and compares

these to the read counts. Mash’s QV estimation creates a k-mer sketch for the assembly and streams all reads against the

sketch. Results are totaled over three QV operations (maternal, paternal, and combined). Runtimes were measured on

Intel(R) Xeon(R) Gold 6140 CPU, with 2.30GHz. Storage requirements represent gzipped FASTQ files for counting and QV

(Mash), and a binary database for QV (Meryl)

h hours, m minutes, s seconds, G gigabytes
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cn plot (22.5 CPU h vs 22.4 CPU h). Merqury runtime includes the construction of a

k-mer count database of the reads, which must only be generated once. Thus, when

using a pre-built database, the run time requirement drops by more than half (8.7 CPU h

per assembly). In comparison, KAT must recount k-mers in the reads for each spectra-

cn plot, and as a result, the runtime of KAT triples to 63.0 CPU h when evaluating the

diploid assembly. Merqury utilizes efficient set operations on k-mer databases, allowing

it to count k-mers in each haploid assembly only once and merges them internally to

produce the k-mers of the combined assembly. The diploid assembly can be analyzed

in 32.5 CPU h, or 19.7 CPU h with a pre-built database, including the generation of

Merqury’s additional quality and phasing metrics.

Next, we evaluated k-mers for NA12878. The hap-mer spectrum of NA12878 re-

vealed a higher fraction of shared k-mers in the 1-copy peak (Fig. 3d), indicating that

some heterozygous variants in the child are shared by both parents. We do not see

such a strong effect in A. thaliana, because the parents were heavily inbred and con-

tained few heterozygous variants of their own. In contrast, the A. thaliana F1 hybrid

was deliberately outbred, which is evident by the dramatically taller 1-copy peak versus

NA12878 (0.99 vs. 0.12% heterozygosity).

Haplotype-specific k-mers are convenient to obtain haplotype precision (PPV) and re-

call (completeness) statistics based on how many of the expected parental k-mers are

observed in the child’s haplotype-resolved diploid assembly (Fig. 6). To demonstrate,

we built genomic k-mer databases for NA12878 and her parents, totaling 18.4 and 19.9

million inherited hap-mers for the paternal and maternal haplotypes, respectively.

When comparing to the haplotype-resolved assemblies, the maternal haplotype assem-

bly recovered 90.7% of the maternal hap-mers (Table 2 and Fig. 6a), and the paternal

assembly recovered 91.0% of the paternal hap-mers (Table 2 and Fig. 6b). Likewise, by

considering the other haplotype’s markers as false positives (i.e., paternal hap-mers

found in the maternal assembly), the precision of the maternal and paternal assemblies

was 99.1 and 98.8%, respectively, with only 160~200 markers appearing in the incorrect

haplotype (Table 2, PPV values). This evaluation excludes all k-mers found only in the

assembly (errors), which if considered false positives, would further lower the precision.

To compare Merqury’s results with an alternative approach, we considered an

Illumina-based platinum callset for NA12878 [27] that includes 3.4 million

Table 4 Runtime and memory comparison between Merqury and KAT comp

Assembly Haploid (maternal) Diploid (maternal, paternal, and combined)

Compute CPU (h) Max mem (GB) CPU (h) Max mem (GB)

Function Merqury KAT Merqury KAT Merqury KAT Merqury KAT

Count k-mers in reads 13.8 22.4 21.2 44.1 13.8 63.0 21.2 44.1

Spectra-cn 3.9 10.1 9.7 10.6

Spectra-asm, QV, Completeness – – – –

Spectra-hap 2.0 – 1.5 – 3.4 – 3.2 –

Blobs, phase block, switch error 2.8 – 10.3 – 5.6 – 8.1 –

Total 22.5 22.4 21.2 44.1 32.5 63.0 21.2 44.1

All statistics are from the haploid and diploid human genome NA12878 assembly. KAT comp was run once and three

times to generate the equivalent spectra-cn plots generated with Merqury. In addition to the spectra-cn plots, Merqury

simultaneously generates spectra-asm, QV and k-mer completeness statistics, which are not available in KAT. Runtimes

were measured on Intel(R) Xeon(R) Gold 6140 CPU, with 2.30 GHz, using a maximum of 24 cores. CPU time is measuring

runtime assuming a single core for comparison. Maximum memory footprint is reported in Max mem
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heterozygous SNPs in regions where both haplotype assemblies align to the reference

(hg38). Calling SNPs directly from the haplotype assemblies against hg38 recovered 3.2

million variants, or 93.5% sensitivity, which is slightly higher than the Merqury based

estimate of ~ 91%. This discrepancy is likely due to Merqury’s ability to measure com-

plex regions of the assembly not easily measurable by a mapping-based analysis. In con-

trast, the SNP-based measurement of precision was only 86.1%, likely due to the low

base accuracy (Q31) of the assemblies, where consensus errors are called as false-

positive heterozygous SNPs. Thus, it is important to consider both the k-mer QV and

precision estimates when evaluating the accuracy of a diploid assembly.

Discussion

We have developed Merqury, a reference-free assembly evaluation toolkit based on effi-

cient k-mer-based methods. Merqury builds upon the k-mer spectra ideas of Mapleson

et al. [17] and introduces novel methods and plots for measuring assembly quality

(QV), completeness, and phasing. Using k-mer count spectra, Merqury can reveal

copy-number errors in an assembly and accurately measure both assembly complete-

ness and consensus quality. When parental k-mers are available, Merqury can also

Fig. 6 Evaluating haplotype completeness for diploid assemblies using Merqury. Spectra-cn plots of the

maternal and paternal assemblies of the TrioCanu NA12878 assembly are displayed as a confusion matrix. a

Hap-mer spectra-cn plot of the maternal assembly. All maternal hap-mers are expected to be found in the

maternal (top left), with no paternal hap-mers (top right). Any maternal hap-mers not found in this

assembly are missing hap-mers (top left, black). Paternal hap-mers (top right, red) are false positive phasing

errors. b Hap-mer spectra-cn plot of the paternal assembly. This time, no maternal hap-mers should be seen

(bottom left), and only paternal markers are expected to be present (bottom right). TP, true positives; FN,

false negatives; TN, true negatives; FP, false positives
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measure phasing accuracy and haplotype completeness. In addition to validation statis-

tics, Merqury provides a number of graphs for interpreting assembly quality. In the

process of developing Merqury, we have also extended Meryl with generalized k-mer

counting, querying, and set operations that will be useful for other k-mer-based ana-

lyses (Fig. 3b).

Merqury is able to evaluate assemblies from any sequencing technology and works

best when high-accuracy sequencing reads are available from the assembled individual

and its parents. This read set serves as an independent validation of the assembly,

which is typically based on less-accurate, long-read sequencing. If high-accuracy reads

are not available from the assembled individual, read sets from the parents can be used

as a replacement for measuring quality values. This assumes all k-mers in the child are

found in the parental genomes, ignoring the small fraction of k-mers from de novo

mutations in the child. Although we currently recommend using Illumina data for the

k-mer-based validation, it may require special library preparation to minimize sequen-

cing biases [40–42]. We note that Merqury’s methods are general and would be com-

patible with any reasonable high-accuracy, high-throughput sequencing technology.

Currently, Merqury does not explicitly validate the structural accuracy of an assem-

bly, which is another important factor of assembly quality [32]. Although certain mis-

assemblies, such as the systematic collapse of repeats, would be visible from the

spectra-cn plots, other types of structural mis-assemblies, such as inversions, could go

unnoticed. This is one drawback of Merqury’s k-mer-centric design. However, we have

observed that regions of mis-assembly often correlate with a decrease in consensus

quality, similar to the haplotype switch example shown in Fig. 5. This information can

be used to draw attention to unreliable regions of the assembly that can be later vali-

dated using orthogonal approaches.

Hap-mers are currently computed by a simple set operation, similar to trio-binning

[10]. A higher portion of hap-mers are identifiable when the parents are divergent, with

minimal shared ancestry. Our hap-mer spectrum plots (Fig. 3c, d) show the 1-copy

haplotype markers that are specific to each parent, which may not be as prevalent for

genomes of low heterozygosity, such as humans. Merqury is also extensible to polyploid

genomes for most of the evaluations. However, for the phasing measurements, Merqury

currently reports at most two parental (or ancestral) haplotypes. In the case of a poly-

ploid genome, Merqury’s reported phase blocks would reflect inheritance from a single

parent, but not necessarily the correct phasing of homologous chromosomes (e.g., two

homologous chromosomes inherited from the same parent would be indistinguishable).

To accurately measure the phasing of homologous chromosomes in a polyploid gen-

ome would require a different method for identifying hap-mers that does not rely solely

on parental inheritance. To support alternative k-mer classification methods (e.g., Hi-C,

Strand-seq, linked-reads), Merqury is designed to receive any pre-computed hap-mer

set as input.

We argue that Merqury’s k-mer-based method provides better haplotype complete-

ness estimates, because it does not rely on a reference genome. Mapping to a reference

can be biased by mis-mapping to repetitive or low-quality regions of the assembly.

Moreover, k-mers naturally capture heterozygous insertion and deletion variants and

are thus immune to the problems of calling these types of variants with a reference

mapping approach. For example, consortiums such as the GA4GH exclude all variant
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calls within complex, repetitive regions of the genome [26]. In contrast, k-mers inher-

ently capture genetic context, regardless of the structural complexity surrounding them

in the genome. Moreover, k-mers are especially robust for evaluating sequences in

highly diverged sequences, where mapping-based approaches cannot map reads to call

variants.

Lastly, Merqury provides an efficient way of determining phase blocks in diploid as-

semblies. In the past, phase blocks were defined based on heterozygous SNPs, mea-

sured by aligning each haplotype to one another [9] or by mapping to a reference

genome [8]. These alignment-based approaches may not consider the full genome

when the identity between the two haplotypes is lower than the alignment threshold, or

the alignment is confused by genomic repeats. Moreover, a reference genome may not

represent the entire haplotype of an assembled individual, thereby omitting haplotype-

specific sequences from the analysis. The phase blocks measured by Merqury are gen-

erated regardless of the haplotype being assembled and provide more reliable phasing

information for allele-specific studies.

Conclusions

Merqury provides a suite of efficient methods for assessing the quality, completeness,

and phasing of genome assemblies using a reference-free, k-mer-based approach. Merq-

ury extends the spectra-cn functionality of KAT and introduces novel features such as

spectra-asm, spectra-hap, and blob plots; assembly QV and completeness measure-

ments, and the first reference-free approach for measuring assembly phase blocks using

parental k-mers. The included Meryl k-mer counter also provides fast and flexible

methods for k-mer set manipulation. Compared to traditional assembly metrics, such

as N50 contig size, Merqury provides a much broader evaluation of assembly quality

and we recommend reporting these metrics along with any new genome assembly.

Methods

Counting k-mers with Meryl

Meryl is a tool for counting and working with sets of k-mers that was originally developed

for use in the Celera Assembler [43] and has since been migrated and maintained as part

of Canu [33]. Here we have improved Meryl’s efficiency and extended it to support a var-

iety of functions useful for k-mer-based assembly validation. A set of k-mers and their as-

sociated counts is termed a k-mer database. The count is the number of times a k-mer

occurs in some collection of sequences. The k-mer database is stored in sorted order,

similar to words in a dictionary. Meryl comprises three modules: one for generating k-

mer databases, one for filtering and combining databases, and one for searching databases.

All Meryl operations are exact (i.e., do not result in false positives or negatives).

The counting module uses two different algorithms: one for k-mers up to size 16 and

the other for k-mers up to size 64. For small k-mers, Meryl directly counts the number

of times each k-mer occurs in the input sequences. An array of 4k 16-bit integers is al-

located. Each k-mer is converted to an integer index into the array, and the cell for that

k-mer is incremented. When any cell exceeds the maximum possible value that can be

represented, the width of the array is extended by allocating a supplementary array of

4k bits. For large k-mers, Meryl generates lists of all the k-mers present in the input
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sequences, sorts each list, then scans each to determine how many times a specific k-

mer occurs. Each k-mer is split into a prefix and a suffix. The prefix is used to select a

list, and only the suffix is added. A trade-off is made between a small prefix (which

would result in only a few lists, each storing many suffixes) and a large prefix (which

would result in many lists). As we do not know how big each list will be, the lists must

be able to grow as needed. Each list is therefore an array of memory blocks where each

block can store a few thousand k-mers. While counting, the memory usage of the lists

is tracked, and if a user-supplied memory limit is reached, the lists are sorted, k-mers

are counted, and output written to an intermediate database. After all k-mers are proc-

essed, the intermediate, sorted databases are efficiently merged into one.

With one or more databases on disk, Meryl can filter or combine k-mers to create

new databases. Each database is stored in 64 independent pieces, and each piece can be

processed in parallel. Within each piece, k-mers are in the same order; thus, all set op-

erations require linear time and constant space. Meryl can filter a database by count

(e.g., less-than, greater-than or equal-to some user-supplied constant), or by a fraction

of distinct k-mers in a database (e.g., the most common 5% of the k-mers). It can mod-

ify the count of every k-mer in a database by a constant (e.g., add 1, subtract 1, multiply

by 2). Meryl can also output the union or intersection of multiple databases, setting the

count of a k-mer to the minimum, maximum, sum of all copies of the k-mer, or as the

count of the first database. It can output the difference of databases (e.g., the k-mer oc-

curs only in the first database) or the symmetric difference (e.g., the k-mer occurs in

exactly one database). Conveniently, any number of these operations can be combined

into one command, using a reverse-polish-notation inspired format. The following ex-

ample invocations are used in Merqury:

1. Write the k-mers that occur in both db1.meryl and db2.meryl to

db3.meryl. Set the count of each output k-mer to the sum of the counts in the

input k-mers:

meryl union-sum db1.meryl db2.meryl output db3.meryl

2. Output k-mers that occur in both db4.meryl and db5.meryl, additionally re-

quiring the k-mer in db5.meryl to be unique. The count of the output k-kmer is

set to the count of the k-mer in the first input to the intersect operation,

namely db4.meryl:

meryl output db6.meryl \

intersect \

db4.meryl \

[ equal-to 1 db5.meryl ]

3. For each k-mer in asm.fasta, output the (0-based) coordinate of the kmer in

the sequence, the forward and reverse k-mer sequences, and the count of the k-

mer in db7.meryl:

meryl-lookup -dump -sequence asm.fasta -mers db7.meryl

Meryl includes a C++ API to extend its functionality. For example, random lookups

can be added using either the simple existence of a k-mer in a database or the count as-

sociated with a k-mer. On the command line, lookups can return the number of k-

mers a sequence shares with a database, a list of each k-mer in a sequence annotated
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with the count the k-mer has in a database, or a filtered list of input sequences based

on the presence or absence of k-mers in the database.

Evaluating assemblies with Merqury

Copy number spectrum (spectra-cn plot)

Given a genome size G and tolerable collision rate p, an appropriate k can be computed

as k = log4 (G(1 − p)/p) [44]. However, alternative values of k may be desirable for differ-

ent scenarios, e.g., increasing k has the effect of increasing the relative fraction of 1-

copy k-mers, which may be useful for genomes with low heterozygosity, but this also

increases the fraction of erroneous k-mers. Decreasing k reduces the fraction of errone-

ous k-mers but increases the fraction of repetitive k-mers. Once an appropriate size of

k is determined (typically 18~21), we count the canonical k-mers observed in the as-

sembly and in the accurate, whole-genome read set. A typical k-mer spectrum for a

heterozygous diploid genome consists of two primary peaks, one representing k-mers

that are 1-copy in the diploid genome (heterozygous, on a single haplotype) and one

representing those that are 2-copy in the diploid genome (homozygous, on both

haplotypes or two copies on one haplotype) (Fig. 1a). The 2-copy k-mers appear with a

frequency approximately equal to the average depth of sequencing coverage, where the

1-copy k-mers appear with frequency approximately equal to half the sequencing

coverage. If a genome is entirely homozygous, only the 2-copy peak may appear, and if

the genome is extremely heterozygous, only the 1-copy peak may appear. With suffi-

cient sequencing coverage (to separate the peaks along the axis), and a proper choice of

k, both peaks are visible for most genomes. Using the multiplicity of the k-mer counts,

and modeling the k-mer survival rate (i.e., how many k-mers are unaffected by sequen-

cing error), it is possible to predict the size and repeat content of a genome from the k-

mer spectrum alone [36].

The spectra-cn plot was introduced by Mapleson et al. [17], which colors k-mers of

the read set by their copy numbers in the assembly. In addition to the original stacked

version of the spectra-cn plot (Fig. 1b), we provide additional options to plot the

unstacked copy number spectrum (Fig. 1c). We have found this style more useful for

visually detecting abnormal k-mer copy numbers and their distribution in an assembly.

Assembly spectrum (spectra-asm plot)

Similar to the spectra-cn analysis, we can color each k-mer in the read set by the as-

sembly in which it is found. This becomes useful when two haploid assemblies are eval-

uated. This way, we can detect k-mers that are present only in one assembly, k-mers

shared in both assemblies, and k-mers not present in the assembly and only found in

the read set (Fig. 2).

K-mer completeness

We define a “reliable k-mer” as a k-mer that is truly in the genome and unlikely to be

caused by sequencing error. With exact k-mer counts, it is easy to filter out low-copy

k-mers that are likely to represent sequencing errors. We use the same strategy as

Koren et al. [10] to find the cutoff. In brief, we take the histogram of the k-mer counts

and set the multiplicity (number of times we see the k-mer in the read set) as x and
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counts (number of k-mers with x multiplicity) as y. When differentiating the histogram,

we compute the slopes and the first k-mer multiplicity with a positive slope defines the

reliable k-mer threshold. Examples of these cutoffs are shown as dashed lines in Fig. 3c,

d. The k-mer completeness is calculated as the fraction of reliable k-mers in the read

set that are also found in the assembly. For repetitive genomes, erroneous read set k-

mers can sometimes appear above this threshold due to recurring errors in high-copy

repeat families, but this is rare.

Consensus quality (QV) estimation

We can also use k-mers to estimate the frequency of consensus errors in the assembly.

We use a binomial model of k-mer survival and assume all k-mers in the assembly

should be found at least once in the read set. Here, we use the containment score from

Mash Screen [39] to estimate consensus accuracy. In brief, we estimate the probability

P that a base in the assembly is correct as:

P ¼

K shared

K total

� �1
k

where the Ktotal is the total number of k-mers found in an assembly and Kshared are the

number of shared k-mers between the assembly and the read set. If the read set is as-

sumed to completely cover the genome, any k-mer found only in the assembly (Kasm =

Ktotal − Kshared) likely reflects a base error in the assembly consensus. Hence, the error

rate E can be defined as:

E ¼ 1 − P ¼ 1 − 1 −
K asm

K total

� �1
k

Using this formula, the widely used Phred [45] quality score (often denoted as QV)

can be computed by treating the E as base error probability:

QV ¼ − 10 log10 E

Note that this QV estimate depends on the coverage and quality of the read set. The

assembly QV will be underestimated if the read set does not contain all true k-mers of

the genome due to low or heavily biased sequencing coverage. Conversely, the QV may

be overestimated if the read set contains a high proportion of false k-mers (e.g., due to

the combination of extreme coverage and sequencing error). Lastly, the k-mer survival

model assumes both k-mers and errors are independent, but k-mers overlap one an-

other and errors tend to cluster together. As a result, the choice of k also affects the

QV estimates, with k ≈ 21 recommended by Mash based on empirical testing.

Positions of k-mers for mis-assembly detection

Merqury reports the positions of the k-mers found only in an assembly for further in-

vestigation in .bed and .tdf formats that can be loaded into most genome browsers. In

addition, the k-mers found in unexpected copy numbers (i.e., false duplications) are

also provided as .bed and .tdf files. The format details are described at:

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

https://github.com/igvteam/igv/wiki/TDF-Format
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Evaluating phasing completeness with parental genomes

Haplotype-specific k-mers (hap-mers)

Parental haplotype markers can be obtained directly from the parental or ancestral

genomes [10]. In brief, distinct k-mers found in only one parent are collected, and the

erroneous low-frequency k-mers are filtered out. This filtering strategy relies on the k-

mer count histogram, where the cutoff for identifying reliable k-mers is computed as

described above. When the child’s short-read data is also available, the inherited

haplotype-specific markers can be obtained by intersecting the child’s k-mers with the

parental marker sets. This time, we keep the k-mer counts from the child’s reads for

further ploidy estimation (Fig. 3).

Hap-mer blob plot

To get a global visual representation of the phasing completeness on assembled se-

quences, we can count the total number of hap-mers found on each contig or scaffold

(Fig. 4c, d). Here, each axis becomes the number of hap-mers found in a sequence

entry (contig or scaffold). Each circle (blob) represents a sequence, the size being rela-

tive to the length of the sequence. Sequence bubbles near the diagonal represent mix-

tures of markers from both haplotypes, while bubbles closer to a haplotype axis are

predominately comprised of markers from a single haplotype.

Phase block statistics and switch error

Whenever a hap-mer switch occurs, Merqury can flag that position in the assembly

and output a haplotype block report. This feature is useful for identifying phase blocks

from a partially or completely phased assembly such as FALCON-Unzip [9], FALCON-

Phase [12], or Supernova2 [4]. Merqury defines a phase block as a continuous sequence

with at least two hap-mers originating from the same haplotype (Fig. 4a). Usually,

short-range switches are caused by consensus, rather than phasing, errors. By default,

Merqury allows at most 100 hap-mer switches per 20 kbp as short range switches

within a phase block. Each unexpected hap-mer found will be counted as a switch error

but will not necessarily terminate the phase block. Ideally, when no switches are found,

the phase block N50 will be the same as the scaffold N50 and the sum of the phase

blocks will be identical to the assembled sequences. In reality, a scaffold often does not

end with a haplotype-specific sequence, so the total phase block length is shorter. Trio-

binned or haplotype-resolved assemblies are a special case, where the entire haplotype

assembly is essentially a single block. Still, in this case, hap-mers from the other haplo-

type can be counted as switch errors. Merqury also provides an option to restrict phase

blocks to contigs and break the blocks at any gap. At the end, Merqury reports the

number of switches and total hap-mers on each block along with the switch error rate

in order to identify blocks with more frequent switch errors.

Hap-mer copy number spectrum

The total k-mer spectrum of the assembled individual is also useful for tracking the

fates of haplotype-specific k-mers in a diploid assembly. Similar to the overall copy

number analysis performed with spectra-cn plots, we can count k-mers in each haplo-

type assembly and estimate the completeness of haplotype-specific assembled bases
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compared to the hap-mer sets. For example, by plotting separate histograms for hap-

mers of different copy numbers in the assembly (Fig. 6), we can identify whether the as-

sembly is artificially collapsing or duplicating sequence in each haplotype. If hap-mers

appear over (or under) represented by the assembly relative to the read set, it is an indi-

cator of artifactual duplication (or absence) of haplotype-specific sequence. When

evaluating a pseudo-haplotype assembly, which is designed to collapse or pick one

haplotype as much as possible, we can count the number of hap-mers present in the

child’s read set but not present in the pseudo-haplotype assembly and use this to quan-

tify the amount of under-represented haplotype sequence. These missing hap-mers

could then be used to identify a set of alternative haplotype reads that were incorrectly

excluded from the assembly.

Assemblies

All TrioCanu assemblies were downloaded from Koren et al. [10], available at https://

obj.umiacs.umd.edu/marbl_publications/triobinning/index.html. The A. thaliana F1

FALCON-Unzip assembly was obtained from Chin et al. [9]. We generated a Canu as-

sembly to show a typical example of an interim mixed-haplotype assembly that has not

been polished or purged of haplotypic duplications. The same Pacific Bioscience reads

were used for all three assemblies, obtained from Chin et al. [9].

The Canu assembly was generated with Canu 1.9 release version using the following

command:

canu -p canu -d athalF1_notrio genomeSize=130m 'corOutCover-

age=100' 'batOptions=-dg 6 -db 6 -dr 1 -ca 500 -cp 50' 'batMem-

ory=200' -pacbio-raw *.fastq.gz

Haplotype specific k-mers (hap-mers) for A. thaliana F1 and NA12878

Appropriate size of k was obtained as k = 18 for the A. thaliana F1 with 130~260 Mbp

genome size and k = 21 for NA12878 with 3.2~6.4 Gbp genome size using $MERQURY/

best_k.sh.

As parental Illumina sequencing was not available for this F1, the parental genome

assemblies from Chin et al. [9] were used to obtain parental specific k-mers. Each

assembly from the inbred Col-0 and Cvi-0 lines were downloaded from:

https://downloads.pacbcloud.com/public/dataset/PhasedDiploidAsmPaperData/FUN

ZIP-PhasedDiploidAssemblies.tgz.

Meryl databases for the parental strains were built directly with meryl count k=18

output $hap.meryl $hap.fasta for each haplotype assembly.

The parental Illumina whole-genome sequencing sets for NA12878 were downloaded

from the high coverage dataset of the 1000 Genomes Project (NA12891 and NA12892)

and combined with Illumina Platinum Genomes Project data from PRJEB3381. Illumina

whole-genome sequencing of NA12878 was downloaded from PRJEB3381.

All Meryl databases from sequencing read sets were built with $MERQURY/_sub-

mit_build.sh. Once the k-mer databases were built, inherited hap-mers were ob-

tained with $MERQURY/trio/hapmers.sh.
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Merqury on all assemblies

Merqury was run for the A. thaliana F1 and NA12878 with the following command

line for diploid assemblies, where $hap1 and $hap2 are maternal (mat) and paternal

(pat) for the TrioCanu assemblies, and primary (pri) and alternate (alt) for FALCON-

Unzip assemblies.

$MERQURY/_submit_merqury.sh $sample.k21.meryl mat.inheri-

ted.meryl pat.inherited.meryl $hap1.fasta $hap2.fasta

$asm_name

The A. thaliana F1 Canu assembly was run with:

$MERQURY/_submit_merqury.sh $sample.k21.meryl mat.inheri-

ted.meryl pat.inherited.meryl canu.contigs.fasta Canu

BUSCO

BUSCO v3 was run on using embryophyta_odb9 for the A. thaliana Canu assembly

and the combined Col and Cvi TrioCanu assembly with the following commands:

python run_BUSCO.py -i asm.fasta -o SAMPLE -l embryophyta_odb9

-m genome -c 16 -sp arabidopsis

For NA12878, BUSCO was run in the same way, using mammalia_odb9 for the com-

bined TrioCanu maternal and paternal assembly. BUSCO scores for each haplotype of A.

thaliana F1 and NA12878 were obtained from Koren et al. [10] Supplementary Table 2.

QV estimates

CPU time, memory consumption, and disk usage were measured for generating QVs

on each haploid assemblies and the combined diploid assembly. A Intel(R) Xeon(R)

Gold 6140 CPU @ 2.30 GHz node was used allowing up to 24 CPUs. Detailed node in-

formation is available at https://hpc.nih.gov.

Meryl-based QV

Meryl-based QV estimation to benchmark computing resources was evaluated for the

counting (count), merging (union-sum), and QV steps with the following command:

$MERQURY/eval/qv.sh NA12878.k21.meryl mat.fasta pat.fasta

meryl_qv

This generates Meryl databases for mat.fasta and pat.fasta, does a union for the data-

bases, and generates QV scores for all three combinations (maternal, paternal, and both).

Mash-based QV

Mash-based QV estimation was performed using sketch size of 1000000 with the

same k-mer size of 21:
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mash sketch -s 1000000 -k $k $asm

mash screen -p $cpus $asm.msh `cat $input_fofn | tr '\n' ' '` >

$name.msh.idy

cat $name.msh.idy | awk -v name=$name '{print name"\t"$2"\t"-

10*log(1-$1)/log(10)"\t"(1-$1)}' | tr '/' '\t' > $name.msh.qv

Mapping-based QV

The Illumina WGS reads used to build the Meryl database were aligned to both

mat.fasta and pat.fasta using BWA [46]. Base pair errors were called using Free-

Bayes [47] v1.3.1 --skip-coverage 600, skipping variant calling in regions

with > 600× read depth to help prevent unnecessary computing on high coverage

regions that violate the diploid assumption. The exact commands used were:

# Add mat and pat at sequence names to prevent naming collisions

in contigs

sed ‘s/>/>mat_h_/g’ mom.fasta > mat.fasta

sed ‘s/>/>pat_h_/g’ dad.fasta > pat.fasta

# bwa indexing

bwa index both.fasta

# bwa alignment

bwa mem -t 24 both.fasta F_1.fastq.gz F_2.fastq.gz >

na12878.sam

# Sorting and converting to bam

samtools sort -@24 -O bam -o na12878.bam -T na12878.tmp

na12878.sam

# Freebayes variant calling

freebayes --bam na12878.bam --skip-coverage 600 -f both.fasta

| bcftools view --no-version -Ou > na12878.tmp.bcf

bcftools index na12878.tmp.bcf

# Normalize indels

bcftools view -Ou -e'type="ref"' na12878.tmp.bcf | bcftools

norm -Ob -f both.fasta -o na12878.bcf --threads 24

bcftools index na12878.bcf

# Filter out low quality variant calls

bcftools view -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Oz

--threads=24 na12878.bcf > na12878.changes.vcf.gz

bcftools index na12878.changes.vcf.gz

# Get number of bases called as errors

bcftools view -H -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Ov

na12878.changes.vcf.gz | awk -F "\t" '{print $4"\t"$5}' | awk

'{lenA=length($1); lenB=length($2); if (lenA < lenB ) {sum+=

lenB-lenA} else if ( lenA > lenB ) { sum+=lenA-lenB } else

{sum+=lenA}} END {print sum}' > na12878.numvar

# Get number of bases with alignment

samtools view -F 0x100 -u na12878.bam | bedtools genomecov
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-ibam - -split > aligned.genomecov

awk -v l=3 -v h=600 '{if ($1=="genome" && $2>l && $2<h) {numbp

+= $3}} END {print numbp}' aligned.genomecov > na12878.numbp

# QV calculation

NUM_BP=`cat na12878.numbp`

NUM_VAR=`cat na12878.numvar`

QV=`echo "$NUM_VAR $NUM_BP" | awk '{print (-10*log($1/$2)/

log(10))}'`

echo $QV

This pipeline is used in the Vertebrate Genomes Project, and the code used is avail-

able from https://github.com/VGP/vgp-assembly/tree/master/pipeline/ under the “bwa,

” “freebayes-polish,” and “qv” directories.

Comparison to KAT

KAT comp (v2.4.1) was run three times using k = 21 to generate the equivalent spectra-

cn plots generated by Merqury. For consistency, both Merqury and KAT were run

using at most 24 threads. Unlike Merqury, KAT must recount k-mers for each spectra-

cn plot (https://kat.readthedocs.io/en/latest/faq.html#should-i-dump-jellyfish-hashes-

to-disk). The following command was executed three times for the maternal, paternal,

and the combined assembly:

kat comp -o $out -t 24 -m 21 -h 'F_1.fastq.gz F_2.fastq.gz' $asm
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