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a b s t r a c t

Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address
the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Ser-
vice (CAaaS).We focus on analytics, because it is the knowledge gained from our interactions with Big Data
that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way
of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an
evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud
Computing plays an important role; however, we see it as only one element in a constellation of capabil-
ities that are essential to delivering climate analytics as a service. These elements are essential because in
the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many
of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-
enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA) data collection. TheMERRA reanalysis inte-
grates observational data with numerical models to produce a global temporally and spatially consistent
synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to
scientists doing climate change research and a wide range of decision support applications. MERRA/AS
brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabili-
ties: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance
virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS
has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers
and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer,
and provides the agility required to meet our customers’ increasing and changing needs. Cloud Computing
is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and
computational resources to new customers and newmobility-driven applications and modes of work. For
climate science, Cloud Computing’s capacity to engage communities in the construction of new capabili-
ties is perhaps the most important link between Cloud Computing and Big Data.

Published by Elsevier Ltd.

1. Introduction

The term ‘‘Big Data’’ is used to describe data sets that are too
large and complex to be worked with using commonly-available
tools (Snijders, Matzat, & Reips, 2012). Climate science represents
a Big Data domain that is experiencing unprecedented growth
(Edwards, 2010). NASA’s climate change repositories alone are pro-
jected to grow to 350 petabytes by 2013 (Skytland, 2012). Some of
the major Big Data challenges facing climate science are easy to
understand: large repositories mean that the data sets themselves

cannot be moved: instead, analytical operations need to migrate to
where the data reside; complex analyses over large repositories re-
quires high-performance computing; large amounts of information
increases the importance of metadata, provenance management,
and discovery; migrating codes and analytic products within a
growing network of storage and computational resources creates
a need for fast networks, intermediation, and resource balancing;
and, importantly, the ability to respond quickly to customer
demands for new and often unanticipated uses for climate data re-
quires greater agility in building and deploying applications. It is
useful to situate the Big Data challenges of the climate domain in
this larger context, because doing so helps us understand where
innovation can yield improvements.
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Cloud Computing is one of several technologies often invoked as
a solution to Big Data challenges. However, the technical definition
of ‘‘Cloud Computing’’ is so variously interpreted that the term has
become jargonized (Mell & Grace, 2011). That Cloud Computing is
both ubiquitous and ambiguous points to the need to examine
carefully how Cloud Computing enables.

1.1. Climate Analytics-as-a-Service (CAaaS)

In our efforts to address the Big Data challenges of climate sci-
ence, we are moving toward a notion of Climate Analytics-as-a-
Service (CAaaS). We focus on analytics, because it is the knowledge
gained from our interactions with Big Data that ultimately produce
societal benefits. We focus on CAaaS because we believe it provides
a useful way of thinking about the problem: a specialization of the
concept of business process-as-a-service, which is an evolving
extension of IaaS, PaaS, and SaaS enabled by Cloud Computing.
Within this framework, Cloud Computing plays an important role;
however, we see it as only one element in a constellation of capa-
bilities that are essential to delivering climate analytics as a ser-
vice. These elements are essential because in the aggregate they
lead to generativity – a capacity for self-assembly that we feel is
the key to solving many of the Big Data challenges in this domain.

1.2. Generative technologies

Generativity refers to a system’s capacity to produce unantici-
pated change through unfiltered contributions from broad and var-
ied audiences (Zittrain, 2008). The concept highlights aspects of an
innovation or process that enable an autocatalytic feeding-forward
that can help make growth, further innovation, and success possi-
ble. Generativity connects inputs from diverse people and groups,
who may or may not be working in concert, with emergent and
unanticipated outputs. How much the system facilitates partici-
pant contribution is a function of both technological design and so-
cial behavior (Baker & Bowker, 2007). A system’s generativity
describes not only its objective characteristics, but also the ways
the system relates to its users and the ways users relate to one an-
other. In turn, these relationships reflect how much the users iden-
tify as contributors or participants, rather than as mere consumers.

The Internet itself, modern operating systems, Apple’s iTunes,
Twitter, Facebook, and the emerging infrastructure for mobile
application development are examples of generative systems. In
both cases, the design elements contributing to their generative
potential are easy to see. The Internet’s framers made simplicity a
core value, defining in the process the classic end-to-end argument
that most features in a network should be implemented at its com-
puter endpoints rather than by the network itself, which appropri-
ately implements only those functions that are universally useful
(Saltzer, Reed, & Clark, 1984). To do otherwise might have tilted
the generic network toward specific uses and limited its potential
for growth. (Consider, for example, the proprietary, non-genera-
tive, and now defunct CompuServe network.).

Zittrain (2008) identifies five properties of generative systems:

(1) How extensively a system or technology leverages a set of pos-
sible tasks: Leverage makes a difficult job easier, and, in gen-
eral, the more a system can do, the more capable it is of
producing change.

(2) How well it can be adapted to a range of tasks: Adaptability
enables new, unintended, and innovative uses of a technol-
ogy. It broadens the technology’s use.

(3) How easily new contributors can master it: Ease of Mastery
reflects how easy it is for broad audiences to understand
how to adopt and adapt it. The more useful a technology is
both to the neophyte and the expert, themore generative it is.

(4) How accessible it is to those ready and able to build on it:
Accessibility makes it easier to obtain the technology and
the information necessary to achieve mastery. The more
accessible, the more generative.

(5) How transferable any changes are to others, including non-
experts: Transferability reflects how easily changes in the
technology can be conveyed to others.

A major deficiency in any one factor greatly reduces overall gen-
erativity. Conversely, the more these five qualities are maximized,
the easier it is for a system to welcome contributions from outsid-
ers as well as insiders. In general, generative tools are more basic
and less specialized for accomplishing a particular purpose.

In the remainder of this paper, we illustrate how we are trans-
lating these concepts into reality: we describe the context in which
we are working; the technology foundations important to us,
including our definition and rationale for the generative elements
we feel are crucial; a specific project, MERRA Analytic Services,
and applications that demonstrate these capabilities in action;
ways that Cloud Computing are contributing to the effort; and, fi-
nally, our plans for the future.

2. Background – The NASA Center for Climate Simulation and
climate science as a Big Data domain

Our understanding of the Earth’s processes is based on a combi-
nation of observational data records andmathematical models. The
size of NASA’s space-based observational data sets is growing dra-
matically as newmissions come online. However, a potentially big-
ger data challenge is posed by the work of climate scientists, whose
models are regularly producing data sets of hundreds of terabytes
or more (Edwards, 2010; Webster, 2013).

The NASA Center for Climate Simulation (NCCS) provides state-
of-the-art supercomputing and data services specifically designed
for weather and climate research (NCCS, 2013). The NCCS main-
tains advanced data capabilities and facilities that allow research-
ers within and beyond NASA to create and access the enormous
volume of data generated by weather and climate models. Tackling
the problems of data intensive science is an inherent part of the
NCCS mission.

There are two major challenges posed by the data intensive nat-
ure of climate science. There is the need to provide complete life-
cycle management of large-scale scientific repositories. This
capability is the foundation upon which a variety of data services
can be provided, from supporting active research to large-scale
data federation, data publication and distribution, and archival
storage (Berman, 2008). We think of this aspect of our mission as
climate data services.

The other data intensive challenge has to do with how these
large datasets are used: data analytics – the capacity to perform
useful scientific analyses over enormous quantities of data in rea-
sonable amounts of time. In many respects this is the biggest chal-
lenge; without effective means for transforming large scientific
data collections into meaningful scientific knowledge, our mission
fails. It is against this backdrop that the NCCS began looking at
CAaaS as a potential element in our technological and organiza-
tional response to changing demands.

3. Technology foundations – Toward a generative ecology for
Climate Analytics-as-a-Service

We believe there are five essential technology elements that
contribute to building a generative context for Climate Analytics-
as-a-Service: high-performance, data-proximal analytics; integra-
tive data management; software appliance virtualization; adaptive
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analytics; and domain-harmonized APIs. In this section, we de-
scribe what we mean by these terms and demonstrate how we
are implementing the concept.

3.1. High-performance, data-proximal analytics (MapReduce)

Clearly, at its core, CAaaS must bring together data storage and
high-performance computing in order to perform analyses over
data where the data reside. MapReduce is of particular interest
to us, because it provides an approach to high-performance analyt-
ics that is proving to be useful to many data intensive problems in
climate research (Dean & Ghemawat, 2008; Duffy et al., 2011,
2012; Tamkin, 2013). As typically implemented, MapReduce en-
ables distributed computing on large data sets using high-end
computers. It is an analysis paradigm that combines distributed
storage and retrieval with distributed, parallel computation, allo-
cating to the data repository analytical operations that yield re-
duced outputs to applications and interfaces that may reside
elsewhere. Since MapReduce implements repositories as storage
clusters, data set size and system scalability are limited only by
the number of nodes in the clusters. While MapReduce has proven
effective for large repositories of textual data, its use in data inten-
sive science applications has been limited (Buck et al., 2011), be-
cause many scientific data sets are inherently complex, have high
dimensionality, and use binary formats.

MapReduce distributes computations across large data sets
using a large number of computers (nodes). In a ‘‘map’’ operation
a head node takes the input, partitions it into smaller sub-prob-
lems, and distributes them to data nodes. A data node may do this
again in turn, leading to a multi-level tree structure. The data node
processes the smaller problem, and passes the answer back to a re-
ducer node to perform the reduction operation. In a ‘‘reduce’’ step,
the reducer node then collects the answers to all the sub-problems
and combines them in some way to form the output – the answer
to the problem it was originally trying to solve. Borrowing from the
LISP family of functional programming languages, the map and re-
duce functions of MapReduce are both defined as data structured
in <key, value> pairs (HDFS, 2013).

3.2. Scalable data management (iRODS)

The core data management infrastructure for CAaaS must en-
able collections scalability, rich metadata management, and feder-
ated discovery and access (Agrawal, Das, & Abbadi, 2011). For us,
iRODS plays a central role. The Integrated Rule-Oriented Data Sys-
tems, or iRODS, is an open source data grid software system being
developed by the Data Intensive Cyber Environments (DICE) group
and the Renaissance Computing Institute (RENCI) at the University
of North Carolina at Chapel Hill (iRODS, 2013). It is described by its
creators as peer-to-peer data grid middleware that provides a facil-
ity for collection-building, managing, querying, accessing, and pre-
serving data in a distributed data grid framework. A key feature of
iRODS is its capacity to apply policy-based control when perform-
ing these functions.

iRODS appeals to us for several reasons. It targets large reposi-
tories, large data objects, digital preservation, and integrated com-
plex processing, making it one of the more promising technologies
for grid-centric data services for scientific applications. We also
like the fact that its development culture has historic roots in dig-
ital libraries, persistent archives, and real-time data systems re-
search, having received support from the National Science
Foundation (NSF) and National Archives and Records Administra-
tion (NARA).

The iRODS data grid system consists of several components. It
has a metadata catalog server, called the iCAT, which provides
metadata and abstraction services. There can be multiple resource

servers that provide access to storage resources. A resource server
(iRES) can provide access to more than one storage resource, and
the system can support any number of clients at a time. A client
can connect to any server on the grid and request access to digital
objects from the system. The request is parsed using the contextual
and system information stored in the iCAT catalog, and a physical
object is identified and transferred to the client. The request can be
in terms of logical object names, or a conditional query based on
descriptive and system metadata attributes. iRODS is a peer-to-
peer server system; hence, requests can be made to any server,
which in turn acts on behalf of the client for transferring the file.
The final file transfer takes the shortest network path in terms of
number of hops.

An important aspect of iRODS is its built-in rule framework. As
part of each resource server, a distributed rule engine is imple-
mented that provides extensibility and customizability by encod-
ing server-side operations (including the main access APIs) into
sequences of microservices. The sequence of microservices is con-
trolled by user- or administrator-definedEvent:Condition: Action-
set:Recovery-set rules similar to those found in active databases.
The rules can be viewed as defining pipelines or workflows. An
ingestion or access process can be encoded as a rule to provide cus-
tomized functionality. Rules also can be defined by users and exe-
cuted interactively. Hence, changes to a particular process or policy
can easily be constructed by the user, then tested and deployed
without the aid of system administrators or application develop-
ers. The user also can define conditions when a rule gets triggered
thus controlling the application of different rules (or processing
pipelines) based on current events and operating conditions.

The building blocks for the iRODS rules are microservices –
small, well-defined procedures or functions that perform a certain
task. For example, one can use a rule that stipulates that when
accessing a data object from a particular collection, additional
authorization checks need to be made. These authorization checks
can be encoded as a set of microservices with different triggers that
can fire based on current operating conditions. In this way, one can
control access to sensitive data based on rules and can escalate or
reduce authorization levels dynamically as the situation warrants.
Apart from iRES servers and an iCAT server, iRODS also has two
other servers: iSEC for scheduling and executing queued rules,
and iXMS for providing a message-passing framework between
microservices.

3.3. Software appliance virtualization (vCDS)

Virtualization is central to Cloud Computing and important to
us in the way it enables agile development and deployment. We
have attempted to make virtualization even more convenient by
taking a software appliance approach to building a core element
of our technology cluster, the Virtual Climate Data Server (vCDS).
A vCDS is an iRODS-based data server specialized to the needs of
a particular climate data-centric application.

The basic configuration of an iRODS data server consists of a
specific version of iRODS installed on a particular operating system
running on particular hardware. Moving toward the vCDS virtual
appliance model has been a two-step process in which we (1)
encapsulate the operating system and iRODS as a virtual machine
image, then (2) specialize that image with functionality required
for managing climate data. Our approach to specialization has been
to build general-purpose scientific ‘‘kits,’’ such as those that can
externalize into the vCDS iCAT the internal metadata stored in Net-
CDF, HDF, and GeoTIF files. These kits sit in the vertical stack above
iRODS and below application-specific kits, such as those that might
be needed to handle the special data management requirements of
a particular collection (Fig. 1).
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Our initial focus has been building a vCDS to manage NetCDF
data. Additional details about these components are provided be-
low and in Schnase, Webster, Parnell, and Duffy (2011), Schnase,
Tamkin, et al. (2011), Schnase, Duffy, et al. (2011), Schnase et al.
(2012), but in summary, the core elements include the following:

Application-specific microservices – Basic archive operations, par-
ticularly the mechanisms required to ingest Open Archive Infor-
mation System (OAIS)-compliant Submission Information
Package (SIP) metadata for IPCC NetCDF objects (more about
IPCC and OAIS below).
Application-specific metadata – OAIS-compliant constitutive
(application-independent) Representation Information (RI)
and Preservation Description Information (PDI) metadata for
NetCDF objects.
Application-specific rules – NetCDF triggers and workflows.
A specific release of iRODS – In the current version we are using
iRODS 2.5 that has been augmented with what we refer to as
Administrative Extensions (AE) that log object-level actions
within the server.
A specific operating system – In our case, SuSE Linux Enterprise
Server (SLES) 11 SP1.

Collectively, we refer to the functionality associated with vCDS
as a the vCDS V1.0 ‘‘product suite.’’ Taken together, these elements
enable an approach to scientific collections management in which
virtualization is a driving concept. It supports access to a tiered

array of cloud services that are flexible, adaptable, scalable, and
stageable to ‘‘bricks and mortar’’ facilities as needed. We can provi-
sion capabilities into any resource class, migrate images from one
resource class to another, and use the iRODS federation mechanism
to assemble virtual collections that cross resource classes. This ap-
proach provides an agile entry point for new customers with data-
centric requirements and enables virtualization-as-a-service
(VaaS), software-as-a-service (SaaS), and platform-as-a-service
(PaaS), and, as shown below, lays the foundation for higher-order
offerings, such as CAaaS (Fig 2).

3.4. Adaptive analytics (Canonical Ops)

Data intensive analysis workflows bridge between a largely
unstructured mass of archived scientific data and the highly struc-
tured, tailored, reduced, and refined analytic products that are used
by individual scientists and form the basis of intellectual work in
the domain. In general, the initial steps of an analysis, those oper-
ations that first interact with a data repository, tend to be the most
general, while data manipulations closer to the client tend to be
the most specialized to the individual, to the domain, or to the sci-
ence question under study. The amount of data being operated on
also tends to be larger on the repository-side of the workflow,
smaller toward the client-side end products.

This stratification can be exploited in order to optimize efficien-
cies along the workflow chain. MapReduce, for example, seeks to
improve efficiencies of the near-archive operations that initiate

Fig. 1. Specialization of an iRODS server through appliance virtualization and the addition of domain- and application-specific ‘‘kits.’’
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workflows. In our work so far, we have focused on building a small
set of canonical near-archive, early-stage analytical operations that
represent a common starting point in many analysis workflows in
many domains. For example, average, variance, max, min, sum, and
count operations of the general form:

result avgðvar;ðt0; t1Þ; ððx0; y0; z0Þ; ðx1; y1; z1ÞÞÞ;
that return, in this example, the average value of a variable when
given its name, a temporal extent, and a spatial extent. Because of
their widespread use, we refer to these simple operations as
‘‘canonical ops’’ with which more complex analytic expressions
can be built. They provide a template for users as they begin their
exploration of MapReduce analytics and are useful in their own
right as steps in larger analyses. We tend to think of them as a type
of assembly language instruction for climate data analysis.

The goal is to deploy the canonical ops within a framework that
is able to capture their patterns of use and enable more complex
analyses to be assembled and incorporated back into the system.
The notion of engaging the broader community to deal with Big
Data challenges has been used successfully in other settings, per-
haps most notably with GalazyZoo, where a large user community

is helping search the Sloan Digital Sky Survey for patterns and
observations of potential scientific value (Christian, Lintott, Smith,
Fortson, & Bamford, 2012; Szalay et al., 2000; Young, 2010). We be-
lieve that this type of social networking can play an important role
in the future of climate analytics. The approach we are taking sets
the stage for the community construction of new capabilities that
are adapted to the socially expressed requirements of those who
use the system.

3.5. Domain-harmonized APIs (CDS API)

In order to knit these capabilities together and deliver them into
practical use, we are building the Climate Data Services (CDS)
application programming interface (API). APIs specify how soft-
ware components interact with each other; they can take many
forms, but the goal for all APIs is to make it easier to implement
the abstract capabilities of a system. In building the CDS API, we
are trying to provide for climate science a uniform semantic treat-
ment of the combined functionalities of large-scale data manage-
ment and data-proximal analytics. In doing so, we are combining
concepts from the Open Archive Information Systems (OAIS)

Fig. 2. vCDS cloud provisioning and migration paths.
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reference model, object-oriented programming APIs, and Web 2.0
resource-oriented APIs.

The Open Archive Information System (OAIS) reference model,
defined by the Consultative Committee on Space Data Systems, ad-
dresses a full range of archival information preservation functions
including ingest, archival storage, data management, access, and
dissemination – full information lifecycle management. It also ad-
dresses the migration of digital information to new media and
forms, the data models used to represent the information, the role
of software in information preservation, and the exchange of digi-
tal information among archives. OAIS provides examples and some
‘‘best practice’’ recommendations and defines a minimal set of
responsibilities for an archive to be called an OAIS (OAIS, 2013).
OAIS identifies both internal and external interfaces to the archive
functions, and it identifies a number of high-level services at these
interfaces (Fig. 3). These high-level services provide a vocabulary
that we have adopted for the Climate Data Services Reference Mod-
el and associated Library and API.

The CDS Reference Model is a logical specification that presents
a single abstract data and analytic services model to calling appli-
cations. As shown below, the CDS Reference Model can be imple-
mented using various technologies; in all cases, however, actions
are based on the following six primitives:

Ingest – Submit/register a Submission Information Package.
Query – Retrieve data from a pre-determined service request
(synchronous).
Order – Request data from a pre-determined service request
(asynchronous).
Download – Retrieve a Dissemination Information Package.
Status – Track progress of service activity.
Execute – Initiate a service-definable extension.

Within this OAIS-inspired framework, we are creating a Python-
based CDS Library that contains methods that support the basic
primitives (ingest, query, order, etc.) as well as extended utilities
that combine these primitives into automated multi-step canonical
ops (avg, max, min, etc.). The Library sits atop a RESTful Web Ser-
vices Client that encapsulates inbound and outbound interactions
with various climate data services. These provide the foundation

upon which we have built a CDS Command Line Interpreter (CLI)
that supports interactive sessions. In addition, Python scripts and
full Python applications also can use methods imported from the
API. The resulting client stack can be distributed as a software
package or used to build a cloud service (SaaS) or distributable
cloud image (PaaS) (Fig. 4).

This approach to API design focuses on the specific analytic
requirements of climate science and marries the language and
abstractions of collections management with those of high-perfor-
mance analytics. Doing so reflects at the application level the con-
fluence of storage and computation that is driving Big Data
architectures of the future. It is too early to tell, but we hope that
this ‘‘harmonization’’ will make CAaaS more accessible to our
users.

4. MERRA Analytic Services – A case study in cloud-enabled
Climate Analytics-as-a-Service

MERRA Analytic Services (MERRA/AS) pull these elements to-
gether in an end-to-end demonstration of CAaaS capabilities. MER-
RA/AS enables MapReduce analytics over NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA)

Fig. 3. Basic OAIS interactions that form the basis of the Climate Data Services Reference Model, Library, and API.

Fig. 4. Climate Data Services client stack built on the capabilities enabled by the
CDS Reference Model, Web ServicesClient, Library, and API.
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data. As we describe below, the MERRA collection is a reanalysis
dataset that is of particular interest to a broad community of users.

In simple terms, our vision for MERRA/AS is that it allows MER-
RA data to be stored in a Hadoop Distributed File System (HDFS) on
a MERRA/AS cluster. Functionality is exposed through the CDS API.
The API exposures enable a basic set of operations that can be used
to build arbitrarily complex workflows and assembled into more
complex operations (which can be folded back into the API and
MERRA/AS service as further extensions). The complexities of the
underlying (Java) mapper and reducer codes for the basic opera-
tions are encapsulated and abstracted away from the user, making
these common ops easier to use.

An important adjunct to the MERRA/AS service is a persistence
service, also exposed through the CDS API, that allows users to
store, download, annotate, and otherwise manage Java codes or
CDS scripts that implement the map and reduce functions of their
analyses. The persistence service has the capacity to execute these
codes on the MERRA cluster, capture the resulting output, and
manage the output as the user wishes under control of the persis-
tence service. The code sets essentially become realizable objects –
their logical representations are used in server-side processes that
cause their analytical results to be realized upon request.

In this section we describe these components in greater detail,
demonstrate the use of MERRA/AS in example applications, and
show the role that Cloud Computing is playing in these efforts.
We begin with background information about the MERRA
collection.

4.1. Reanalyses and the Modern Era Retrospective-Analysis for
Research and Applications (MERRA)

The MERRA reanalysis integrates observational data with
numerical models to produce a global temporally and spatially
consistent synthesis of 26 key climate variables (Rienecker et al.,
2011). Spatial resolution is 1/2� latitude � 2/3� longitude � 72 ver-
tical levels extending through the stratosphere. Temporal resolu-
tion is 6-h for three-dimensional, full spatial resolution,
extending from 1979 to present, nearly the entire satellite era.
MERRA data are typically made available to the general public
through the NASA Earth Observing System Distributed Information
System (EOSDIS, 2013). A subset of the data is made available to
the climate research community through the Earth System Grid
Federation (ESGF), the research community’s data publication
infrastructure (ESGF, 2013).

We are focusing on the MERRA collection because there is an
increasing demand for reanalysis data products by an expanding
community of consumers, including local governments, federal
agencies, and private-sector customers. Reanalysis data are used
in models and decision support systems relating to disasters, eco-
logical forecasting, health and air quality, water resources, agricul-
ture, climate energy, oceans, and weather. Currently, MERRA data
are generally moved to client applications for analysis and use.
Convenient access to storage-side analytics could significantly im-
prove the usefulness of this important collection.

4.2. The MERRA/AS HDFS repository

The Apache Hadoop software library is the classic framework
for MapReduce distributed analytics (HDFS, 2013). We are using
Cloudera, the 100% open source, enterprise-ready distribution of
Apache Hadoop. Cloudera is integrated with configuration and
administration tools and related open source packages, such as
Hue, Oozi, Zookeeper, and Impala (Cloudera, 2013). There are many
ways to configure a Hadoop cluster, but its basic architecture con-
sists of an HDFS file system and a MapReduce engine, which is

responsible for executing mapper and reducer codes in parallel
over the nodes that compose the HDFS.

MERRA data files are created from the Goddard Earth Observing
System version 5 (GEOS-5) model and are stored in HDF-EOS and
NetCDF formats (MERRA, 2013). Each file contains a single grid
with multiple 2D and 3D variables. All data are stored on a longi-
tude–latitude grid with a vertical dimension applicable for all 3D
variables. The GEOS-5 MERRA products are divided into 25 collec-
tions: 18 standard products, 7 chemistry products. The collections
comprise monthly means files and daily files at 6-h intervals run-
ning from 1979 to 2012. MERRA data are typically packaged as
multi-dimensional binary data within a self-describing NetCDF file
format. Hierarchical metadata in the NetCDF header contain the
representation information that allows NetCDF software to work
with the data. It also contains arbitrary preservation description
and policy information that can be used to bring the data into
use-specific compliance.

Total size of the native, compressed NetCDF MERRA collection
in a standard filesystem is approximately 80 TB. Native MERRA
files are sequenced and ingested into the Hadoop cluster in tripli-
cated 640 MB blocks. Total size of the MERRA/AS HDFS repository
is approximately 480 TB. The MERRA/AS HDFS is running on a 36-
node Dell cluster that has 576 Intel 2.6 GHz SandyBridge cores,
1300 TB of raw storage, 1250 GB of RAM, and a 11.7 TF theoretical
peak compute capacity. Nodes communicate through a Fourteen
Data Rate (FDR) Infiniband network having peak TCP/IP speeds in
excess of 20 Gbps.

4.3. The MERRA/AS server

The functional requirements of the MERRA/AS server derive
from the basic organization of a Hadoop MapReduce system. As
introduced above, a MapReduce Program has two components:
one that implements a mapper, and another that implements a re-
ducer. The mapper transforms each element of an input list to an
output element; the reducer aggregates these output elements into
a single result, which has the effect of turning a large volume of
data into a smaller summary of itself. A third component, called
the Driver, initializes the Program on the Job Tracker node, in-
structs the Hadoop engine to execute the mapping and reducing
codes on a set of input files, and controls where the output files
are placed.

In MapReduce, every value has a key associated with it. Keys
identify related values. The mapping and reducing functions re-
ceive not just values, but <key, value> pairs. The output of each
of these functions is the same: both a key and a value must be
emitted to the next list in the data flow. These filtering and com-
bining functions, executed in parallel over distributed data, collec-
tively accomplish analytical operations of varying complexity
within the MapReduce paradigm.

Most of the work of building the MERRA/AS server involves cre-
ating utilities to move MERRA data into and out of the HDFS and
writing the MapReduce programs that implement MERRA/AS’s
canonical ops. Each file of native NetCDF binary data is converted
into separate sequence files – flat files consisting of binary <key,
value> pairs that can be operated on by mapper and reducer func-
tions. These sequence files are block-compressed in HDFS and pro-
vide direct serialization of several arbitrary binary data types.
During sequencing, the data is partitioned by time, so that each re-
cord in the sequence file contains the timestamp and name of the
parameter (e.g. temperature) as the composite key and the value of
the parameter (which could have 1–3 spatial dimensions).

In operation, map processes filter each sequence file to cap-
ture <key, value> pairs that match the variable and time span of
interest; reduce processes perform calculations based on input
parameters (time, extents, etc.) and create new subset sequence
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files. The resulting sequence files are then transformed to NetCDF
format in the de-sequencing process (Fig. 5).

The canonical operations that implement MERRA/AS’s average,
variance, max, min, sum, and count calculations are Java MapRe-
duce programs that are ultimately exposed as simple references
to CDS Library methods or as web services endpoints. There is a
substantial code ecosystem behind these apparently simple opera-
tions, nearly 6000 lines of Java code being offloaded from the user
to the MERRA/AS service.

4.4. MERRA/AS in use – RESTful web services

Our initial exposure for client applications that wish to con-
sume MERRA/AS results is the MERRA/AS Web Service. We are
using a Representational State Transfer (REST)-style architecture,
which is the predominant web API design model. REST provides
scalability of component interactions, accommodates intermediar-
ies like firewalls and proxies without the need to change interfaces,
and allows independent deployment of components where imple-
mentations can change without the need to change interfaces. A
concrete implement of a REST Web Service uses HTTP methods
explicitly, is stateless, exposes directly structure-like URIs, and
transfers XML, JavScript Object Notation (JSON), or both.

Our REST service has been built using the CDS API and makes
calls to the CDS Library; its endpoint semantics adhere to the con-
ventions we have established in the CDS API. A specific call to the
MERRA/AS service to find the average temperature over a given
period of time, geospatial extent, and span of altitudes looks some-
thing like this:

http://skyportal.gsfc.nasa.gov/cds/mas/order.php?GetAverage
ByVariable_TimeRange_SpatialExtent_VerticalExtent&variable_
list=T&operation=avg&start_date=201101&end_date=201112&
avg_period=12&min_lon=125&min_lat=24&max_lon=-66&max
_lat=50&start_level=1&end_level=42.

A simple form-based interface has been provided to enable beta
testing of the MERRA/AS Web Services endpoints (Fig. 6).

4.5. MERRA/AS in use – The RECOVER wildland fire decision support
system

A more interesting machine-to-machine use of MERRA/AS Web
Services is demonstrated in the RECOVER project. In RECOVER,
which stands for Rehabilitation Capability Convergence for Ecosys-
tem Recovery, NASA is working with the Department of Interior’s
Bureau of Land Management (BLM) and the National Interagency
Fire Center (NIFC) to addresses two critical requirements in post-
fire decision-making for savanna ecosystems: identification and

prioritization of target areas for reseeding and long-term ecosys-
tem recovery monitoring.

RECOVER is a new decision support system (DSS) that will be
incorporated into a long-standing post-fire decision process, the
National Burned Area Emergency Response (BAER) program. After
a major wildfire, law requires that the federal land management
agencies certify a comprehensive plan for public safety, burned
area stabilization, resource protection, and site recovery. These
BAER plans are a crucial part of our national response to wildfire
disasters. The plans are due within 14 days of containment of a ma-
jor wildfire and become the guiding document for managing the
activities and budgets for all subsequent remediation efforts. There
are few instances in the federal government where plans of such
wide-ranging scope are assembled on such short notice and trans-
lated into action more quickly (BAER, 2013).

BAER plans are largely developed on-site by multi-agency
teams of specialists that include natural resource managers and
scientists with expertise in the salient disciplines. The nature and
setting of their work create a need for decision support tools that
allow sound decision-making and land management planning to
take place quickly for a specific region of interest. Remote sensing
imagery is often used to complement field-based assessments and
to provide landscape or regional scale monitoring. Several indica-
tors derived from satellite imagery can be used to characterize
both fire severity and intensity as well as vegetation recovery fol-
lowing fire. For several analyses, historical ecosystem conditions of
the type captured in MERRA’s variables are of importance.

Critical site-specific information that could otherwise improve
outcomes does not become part of the decision-making process
unless it is immediately available to the BAER teams. RECOVER is
a context-aware, site-specific DSS that brings together in a single
application the information necessary for BAER team post-fire
rehabilitation decision-making. In a typical scenario-of-use, a RE-
COVER instance is created automatically in response to a fire detec-
tion event. Using the rapid resource allocation capabilities of Cloud
Computing, Earth observational data, MERRA data, and derived
decision products are automatically collected and refreshed
throughout the burn so that when the fire is declared under con-
trol, BAER teams have at hand a complete and ready-to-use RE-
COVER dataset that is customized for the target wildfire.

The system itself comprises a RECOVER Server and RECOVER
Clients. The RECOVER Server is a tailored vCDS deployed in the
Amazon Elastic Compute Cloud (EC2). When provided a wildfire
name and geospatial extent, the RECOVER Server aggregates data
from a suite of web services, does the necessary transformations
and reprojections required for the data to be used by RECOVER Cli-
ents, and, in turn, exposes the tailored collection through a Web
Map Service running in the Server. RECOVER calls on MERRA/AS’s
Web Service, thereby providing an easy integration of this hereto-
fore seldom used resource into the BAER process (Fig. 7).

Fig. 5. Sequencing/de-sequencing operations performed by MERRA/AS utilities for the MERRA HDFS repository.
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RECOVER’s feasibility has been demonstrated in Idaho during
the 2013 wildfire season. Over the next 3 years, RECOVER will be
deployed into operational use in the Great Basin states of Idaho,
Utah, and Nevada where EC2’s auto-scaling and elastic load balanc-
ing capabilities will be particularly beneficial.

4.6. MERRA/AS in use – Earth System Grid Federation (ESGF)
publication

NASA scientists contribute climate data, including MERRA prod-
ucts, to the Intergovernmental Panel on Climate Change, which
represents a team of nearly 1000 experts working throughout the
world on issues of climate change (IPCC, 2013). This research com-
munity uses the Earth System Grid Federation (ESGF) as the pri-
mary mechanism for publishing IPCC data as well as the ancillary
observational and reanalysis products used in model/model and
observation/model data inter-comparison, an important aspect of
climate change research (Edwards, 2010). ESGF functions like a
peer-to-peer content distribution network in which geographically
distributed collections can be accessed by the climate research
community through a certificate authority mechanism (CA).
Published ESGF data, regardless of source, conforms to the commu-
nity-defined Climate Model Inter-comparison Program (CMIP5)
Data Reference Syntax and Controlled Vocabularies standard
(Taylor et al., 2012). The trust relationship set up by the CA mech-
anism essentially creates a virtual organization of producers and
consumers of ESGF products.

Institutions, such as the NCCS, that host ESGF servers have
responsibility for correctly formatting and registering their data
contributions. Preparing MERRA data for ESGF publication requires
reformatting in order to make it comply with the CMIP5 standard.

This ontological alignment – moving from the semantic frame of
reference defined by the producers of the MERRA data to that used
by ESGF – is often a mixed process of automatic and manual con-
version and contributes significantly to the data preparation over-
head of supporting the IPCC project.

To facilitate this process, we have deployed vCDS in the Amazon
cloud and have used the system to deliver a subset of NASA’s MER-
RA products to the ESGF server, also running in the Amazon cloud.
vCDS-managed objects are exposed to ESGF through FUSE (Filesys-
tem in User Space), which presents a POSIX-compliant filesystem
abstraction to applications such as the ESGF server that require
such an interface (Fig. 8). vCDS will ultimately provide a persis-
tence service that hosts the MapReduce codes that extract ESGF
products from MERRA/AS. vCDS will also provide a place in the
stack for other utilities, such as those required for ontology align-
ment and metadata management.

4.7. MERRA/AS in use – The Wei method for programmed data
assembly and capability enhancement

Wei, Dirmeyer, Wisser, Bosilovich, and Mocko (2013), in a
hydrological study that focuses on the contribution of irrigation
to precipitation, provides an excellent example of the way MERRA
data are used in investigations of this type. We are using the Wei
experiment, and others like it, to develop the MERRA/AS API, Com-
mand Interpreter, scripting, and programming capabilities. The
goal at this early stage is to demonstrate and evaluate the ability
of CAaaS and the CDS Client Stack to simplify the work of data
assembly and the community construction of enhanced CAaaS
functionality.

Fig. 6. MERRA/AS’s canonical MapReduce operations are exposed through RESTful web services and a simple forms interface.
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Simply put, the Wei team used MERRA data to study four inten-
sively irrigated regions – northern India/Pakistan, the North China
Plain, the California Central Valley, and the Nile Valley. The study

used a quasi-isentropic back-trajectory (QIBT) method to track
water vapor for precipitation events backward in time assuming
precipitated water is drawn from the atmospheric column along

Fig. 7. RECOVER Server (a) and Client (b) interfaces.
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a distribution that follows the vertical profile of atmospheric spe-
cific humidity. Seasonal rates of evapotranspiration with and with-
out irrigation over the studied areas were then compared to assess
the impact of irrigation.

The data required for these calculations include precipitation,
evapotranspiration, temperature, humidity, and wind at different
tropospheric levels at six-hourly time steps from 1979 to 2002.
This early-stage data reduction – average values for environmental
variables over specific spatiotemporal extents – is the type of data
assembly that historically has been performed on the scientist’s
workstation after wholesale transfers from public archives of large
blocks of data. The experiment provides a useful example of how
MERRA/AS pushes these first analytic steps onto the storage server.
The Python script shown in Fig. 9 demonstrates the ease with
which this work can be done through CAaaS as implemented by
the CDS API and MERRA/AS. As a further refinement, as QIBT anal-
ysis is perfected for this experiment, one can imagine developing
the analysis into an extended utility for subsequent inclusion in
the CDS Library for use by others.

5. Results and discussion

This CEUS special issue focuses on how Cloud Computing en-
ables Big Data processing. It also explores how Big Data challenges,
in turn, can foster the advancement of Cloud Computing. From our
perspective, Cloud Computing’s most import effects on Big Data are
a direct and indirect result of its contributions to generativity and
what that means for our ability to engage the community in solv-
ing some of the Big Data challenges of climate science. Cloud Com-
puting also is influencing the way we connect earthbound data
centers to an expanding array of customers and applications. We
discuss this in greater detail in this section, beginning with Cloud
Computing’s most immediate influence, which is on the way soft-
ware is developed and deployed.

5.1. Agile development and deployment

We use Cloud Computing extensively in our software engineer-
ing activities, working with a large collection of specialized images.
Doing so conveys the classic advantages almost universally recog-
nized as benefits of the technology (Ernst & Young, 2011). It gives
us the ability to manage risk by ‘‘trialing’’ hardware and software
solutions, its elasticity allows IT infrastructure to be increased at
will, and it advances the green agenda by allowing fuller use of
shared resources and lowering our carbon footprint.

Perhaps most important, however, Cloud Computing lowers the
barriers and risks to organizational change. Small groups can
experiment with sophisticated applications that they ordinarily
could not afford. This enables ‘‘skunkworks’’ experimentation,
encourages innovation, and, important to our work, provides the
flexibility we need to respond to an ever-increasing demand to
support new customers and new applications.

The economic appeal of Cloud Computing is often described as
converting capital expenses (CapEx) to operating expenses (OpEx),
this pay-as-you-go stance more directly capturing the cost benefit
to the buyer and enabling an agility beyond what is possible
through capital expansion. In the work we do, this consideration
has an interesting twist. As illustrated in the RECOVER project de-
scribed above, much of the work that NASA does is in partnership
with operational agencies that ultimately take ownership of jointly
developed new capabilities. Cloud-centered development greatly
simplifies these types of interagency transfers: capabilities devel-
oped in the Amazon cloud, for example, can be conveyed throughFig. 8. MERRA/AS ESGF publication stack.
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accounting actions, avoiding altogether the complexities of tradi-
tional hardware procurement in either agency. This is proving to
be a substantial benefit.

Finally, Cloud Computing enables higher order services that
heretofore have been impossible. Almost any slice of the software
stack, including IaaS, PaaS, SaaS – and importantly, new composi-
tions of services – can be bought or built as a service. New services
can ride atop multiple cloud services and engage an organization’s
internal staff, leading to the evolution of higher value business pro-
cesses, innovative offerings, and, ultimately, the ability to offer
specialized business processes-as-a-service. That is what we are
striving for with Climate Analytics-as-a-Service: connecting our
specialized science processes and knowledge to cloud-enabled
Big Data offerings for customers who need the knowledge gener-
ated by research in climate science.

5.2. Scalable, tailorable intermediation

The U.S. Federal Government spends nearly $80 billion each
year on information technology (VanRoekel, 2013). The Brookings
Institution estimates that government agencies can save 25–50%
by moving to the cloud (West, 2010). It is not surprising, then, that
Cloud Computing is receiving enormous attention at all levels of
government (Kundra, 2011). And, as one might expect, the nature
of those discussions depends on the type of work done by the var-
ious agencies.

The diversity of NASA’s engineering and scientific work poten-
tially enabled by Cloud Computing is quite broad (Little & Petraska,
2013). The focus of our interest and this paper is climate modeling,
which is a world dominated by high-performance computing and
the petabyte-scale storage of climate model outputs. The extent
to which aspects of high-performance climate modeling can effec-
tively be moved to the cloud is an open question. With regard to
large-scale storage, transfer rates and costs are an issue. In time,
these issues are likely to be sorted out. At this point, however, it
is safe to say that much of the core work we do remains earth-

bound – and one of the major advantages of Cloud Computing is
its flexible capacity to connect enterprise capabilities with diversi-
fying customer needs.

In the examples we have shown here, Cloud Computing is pro-
viding for us a new tier in the data services stack – a cloud-based
layer where agile customization occurs and enterprise-level prod-
ucts are transformed to meet the specialized requirements of
applications and consumers. It helps us close the gap between
the world of traditional, high-performance computing, which, at
least for now, resides in a finely-tuned climate modeling environ-
ment at the enterprise level and our new customers, whose expec-
tations and manner of work are increasingly influenced by the
smart mobility megatrend. That is not easy to do if the gap must
be bridged by accommodations at the enterprise level.

At a foundational level, this strategy of cloud-enabled interme-
diation resonates with contemporary trends. Smartphones are said
to be spreading faster than any technology in human history
(DeGusta, 2012). Most modern smartphones, tablets, etc. actually
consist of just the display and user interface components of sophis-
ticated applications that run in cloud data centers. This is a mode of
work that CAaaS is intended to accommodate, and Cloud Comput-
ing is crucial to our ability to participate in that world.

5.3. Cloud Computing’s contributions to generativity

We began this paper by introducing the idea that generativity –
the capacity for autocatalytic feeding forward of capability – is ulti-
mately the key to dealingwith the BigData challenges of climate sci-
ence. It represents our attempt to articulatewhatwebelieve is Cloud
Computing’s most important influence. For us, the transformational
link between Big Data and Cloud Computing is that Cloud Comput-
ing is a critical potentiator in a constellation of technologies that sat-
isfy Zittrain’s (2008) necessary requirements for generativity.

Table 1 summarizes what we believe are the major effects of the
core technologies behind Climate Analytics-as-a-Service.
MapReduce and iRODS fundamentally make analytics and data

Fig. 9. Python script using the CDS API to assemble MERRA/AS data required for the Wei experiment.
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aggregation easier; the approach to software appliance virtualiza-
tion in vCDS makes it easier to transfer capabilities to new users
and simplifies their ability to build new applications; the social
construction of extended capabilities facilitated by the notion of
canonical operations enable adaptability; and the CDS API enables
ease of mastery.

What is important to note about this is Cloud Computing is co-
evolving with and driving the development of three key elements
in this generative assemblage: virtualization, Web APIs, and
cloud-based analytics, including a burgeoning array of MapReduce
offerings. Granted, satisfying the requirements for generativity
does not guarantee a generative outcome. But we are hopeful that
we are beginning to develop the right framework for that.

5.4. Cloud Computing detractions

We have not been immune to the classic inhibitors of Cloud
Computing adoption. Organizational culture shock has been an is-
sue: it has at times been difficult for a traditional high-perfor-
mance computing center, skilled and comfortable with technical
implementation, to focus on differentiating Cloud Computing’s va-
lue-add for the organization. There have been control issues and is-
sues relating to data locality – it is still comforting for many
scientists to know the physical location of their data. Issues of
security, privacy, regulatory compliance, etc. have been a signifi-
cant early concern in all matters relating to Cloud Computing.

What is interesting to note is that we, like other organizations
transitioning to the cloud, are beginning to see many of these
inhibitors being transformed into accelerants (Ernst & Young,
2011). Clearly, a tipping point has been reached, where the poten-
tial adverse impact of inhibitory factors on the market potential of
the cloud industry is prompting a response. Cloud service provid-
ers are investing far more to develop their security infrastructure
and bring their services into regulatory compliance than any typi-
cal enterprise is able to do. As a result, consumers of cloud services
are beginning to turn to Cloud Computing as a means of simplify-
ing their lives and thus accelerating the adoption of the technology.
The shift in attitude about Cloud Computing in our organization
over the past 2 years has been dramatic.

5.5. Research directions

We still have much to learn about how to use Cloud Computing,
and the Big Data challenges of climate science are far from being
solved. In the near term, we intend to focus on hardening the
CDS API and its underlying data services architecture, since these
are the critical elements of our CAaaS approach. Administration
of the cloud intermediation tier is another crucial area requiring
attention: we need to identify and develop the tools, policies, pro-
tocols, and experience required to operationalize the cloud-en-
abled enterprise/customer bridge described above. Finally,
perhaps most interesting and valuable of all, we need to deploy Cli-
mate Analytics-as-a-Service at sufficient scale and in such a way
that we can definitely evaluate its potential for generativity and
capacity to address the Big Data challenges of climate science.
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