
UC San Diego
UC San Diego Previously Published Works

Title
Mersaquinone, A New Tetracene Derivative from the Marine-Derived Streptomyces sp. 
EG1 Exhibiting Activity against Methicillin-Resistant Staphylococcus aureus (MRSA).

Permalink
https://escholarship.org/uc/item/8s89c1sq

Journal
Antibiotics (Basel, Switzerland), 9(5)

ISSN
2079-6382

Authors
Kim, Min Cheol
Cullum, Reiko
Hebishy, Ali MS
et al.

Publication Date
2020-05-01

DOI
10.3390/antibiotics9050252
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8s89c1sq
https://escholarship.org/uc/item/8s89c1sq#author
https://escholarship.org
http://www.cdlib.org/


antibiotics

Communication

Mersaquinone, A New Tetracene Derivative from the
Marine-Derived Streptomyces sp. EG1 Exhibiting
Activity against Methicillin-Resistant
Staphylococcus aureus (MRSA)

Min Cheol Kim 1 , Reiko Cullum 1 , Ali M. S. Hebishy 2, Hala A. Mohamed 2,
Ahmed H. I. Faraag 3 , Nehad M. Salah 1, Mohamed S. Abdelfattah 2,* and William Fenical 1,*

1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography,
University of California, San Diego, La Jolla, CA 92093, USA; mck008@ucsd.edu (M.C.K.);
rcullum@ucsd.edu (R.C.); nehad.mo.salah@std.pharma.cu.edu.eg (N.M.S.)

2 Natural Products Research Unit, Chemistry Department, Faculty of Science, Helwan University,
Cairo 11795, Egypt; ashebishy@gmail.com (A.M.S.H.); Halaasklany89@gmail.com (H.A.M.)

3 Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
professor.ahmed85@googlemail.com

* Correspondence: mabdelfattah@science.helwan.edu.eg (M.S.A.); wfenical@ucsd.edu (W.F.);
Tel.: +2-114-647-5234 (M.S.A.); +1-858-534-2133 (W.F.)

Received: 31 March 2020; Accepted: 11 May 2020; Published: 14 May 2020
����������
�������

Abstract: New antibiotics are desperately needed to overcome the societal challenges being
encountered with methicillin-resistant Staphylococcus aureus (MRSA). In this study, a new tetracene
derivative, named Mersaquinone (1), and the known Tetracenomycin D (2), Resistoflavin (3) and
Resistomycin (4) have been isolated from the organic extract of the marine Streptomyces sp. EG1.
The strain was isolated from a sediment sample collected from the North Coast of the Mediterranean
Sea of Egypt. The chemical structure of Mersaquinone (1) was assigned based upon data from
a diversity of spectroscopic techniques including HRESIMS, IR, 1D and 2D NMR measurements.
Mersaquinone (1) showed antibacterial activity against methicillin-resistant Staphylococcus aureus
with a minimum inhibitory concentration of 3.36 µg/mL.

Keywords: MRSA; marine actinomycetes; Streptomyces sp.; anthraquinone; spectroscopy

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is an infectious Gram-positive bacterium that is
widely distributed worldwide in hospitals, convalescent homes and community settings [1]. It causes
serious infections to the skin and soft tissues and also systemic infections that are responsible for
significant mortalities [2–4]. MRSA is multidrug resistant and has evaded successful control [5].
Consequently, discovery of new antibiotics is urgently needed to control MRSA infections.

Marine bacteria have been shown to produce compounds that inhibit the growth of
methicillin-resistant Staphylococcus aureus [6–9]. Among these bacteria, actinomycetes appear to be the
most prolific producers [10,11]. The marine-derived actinomycetes are known to produce compounds
of unique structures with antimicrobial activities [12–14]. As per the literature, marine actinomycetes
are widely distributed in seawater, sea sand, and deep-sea sediments [15–17]. The Mediterranean Sea,
which has received relatively little examination, is one of the most important marine ecosystems in
Egypt and considered as a region of high biodiversity [18,19]. The Mediterranean Sea is known to
possess unique marine habitats, including those dominated by macroalgae, seagrasses, invertebrates,

Antibiotics 2020, 9, 252; doi:10.3390/antibiotics9050252 www.mdpi.com/journal/antibiotics

http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
https://orcid.org/0000-0002-9861-6131
https://orcid.org/0000-0003-0884-1640
https://orcid.org/0000-0002-2568-6059
https://orcid.org/0000-0002-6416-9011
http://www.mdpi.com/2079-6382/9/5/252?type=check_update&version=1
http://dx.doi.org/10.3390/antibiotics9050252
http://www.mdpi.com/journal/antibiotics


Antibiotics 2020, 9, 252 2 of 7

seabirds and different types of microbes [19]. Only a few studies have been carried out to isolate
natural compounds from marine-derived actinomycetes of the Mediterranean Sea [20,21]. This paper
reports the isolation and structure elucidation of a new tetracene derivative (1) from the culture extract
of the marine-derived Streptomyces sp. EG1.

2. Results and Discussion

The marine-derived Streptomyces sp. EG1 was isolated from a sediment sample collected near
Mersa Matruh city along the Mediterranean coast of Egypt. Cultivation of the strain on a Waksman
medium at 28 ◦C for 7 days followed by extraction, evaporation and chromatographic purification of
the organic extract led to the isolation of one new compound Mersaquinone (1) as well as the known
Tetracenomycin D (2) [22], Resistoflavin (3) [23] and Resistomycin (4) [24] (Figure 1).Antibiotics 2020, 9, x FOR PEER REVIEW 4 of 9 
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Figure 1. Structures of the isolated compounds 1–4.

Mersaquinone (1) was isolated as a red amorphous powder and its molecular formula was
assigned as C19H12O6 based on HR-ESI-MS data ([M+H]+ at m/z 337.0714, Figure S1). The UV
spectrum of 1 measured in MeOH exhibited absorption bands at 218, 277, 308, 350, 480, 515 and
550 nm, indicating the presence of an anthraquinone moiety [25]. The IR spectrum of 1 showed
absorption bands for OH (3475 cm−1) and carbonyl groups (1685 cm−1). The 1H NMR spectrum
(Figure S2) showed five aromatic methine signals at δH 7.75 (s), 7.45 (br d, J = 2.2 Hz), 7.00 (br d,
J = 2.2 Hz), 6.84 (br d, J = 1.8 Hz), and 6.51 (br d, J = 1.8 Hz) and one methyl group at δH 2.70. The 13C
NMR spectrum (Figure S3), and gHSQC NMR spectrum (Figure S4) of 1 displayed 19 carbon signals
composed of two carbonyl carbon signals (δC 186.4, and 181.8), 11 quaternary sp2 carbon signals
(δC 162.2, 162.0, 158.0, 157.8, 137.7, 145.2, 138.9, 122.6, 109.7, 106.1, and 128.0), five aromatic methine
carbon signals (δC 124.8, 120.2, 112.2, 106.4, and 104.7), and one methyl signal (δC 23.9). The 1H-1H
COSY NMR spectrum (Figure S5) displayed correlations of δH 7.45 (H-4) and 7.00 (H-2), and of δH

6.84 (H-7) and 6.51 (H-9), which showed long-range meta spin-spin coupling constants in the 1H
NMR spectrum. In the HMBC spectrum (Figure S6), the two meta coupled protons signals showed
long-range HMBC correlations from H-2 to C-4, C-13 and C-12a, H-4 to C-2, C-5, and C-12a, H-7 to
C-6, C-9, and C-10a, and H-9 to C-7, C-8, C-10, and C-10a. Additionally, the aromatic methine proton
H-6 correlated to C-5, C-6a, C-10a, and C-11a (Figure 2). These results indicated the presence of a
3,8,10,11-tetrahydroxy-1-methyltetracene-5,12-dione ring system. Based on the above spectroscopic
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data, the full planar structure of Mersaquinone (1), was confirmed as shown in Figure 1. The known
compounds 2–4 were identified by comprehensive NMR and MS analysis (Table S1 and Figures S7–S17).Antibiotics 2020, 9, x FOR PEER REVIEW 5 of 9 
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The antibacterial activity of Mersaquinone (1) was evaluated against methicillin-resistant
Staphylococcus aureus (MRSA) strain TCH1516. The carbon skeleton of tetracenomycin derivatives
has been reported to show anti-methicillin-resistant Staphylococcus aureus (MRSA) activities [26,27].
Our results showed that 1 had anti-MRSA activity with an MIC value of 3.36 µg/mL. Ciprofloxacin
HCl hydrate was used as a positive control and showed antibacterial activity with an MIC value
of 0.93 µM. As per literature, Napyradiomycins A80915 and A80915B with naphthoquinone moiety,
isolated from the marine-derived Streptomyces sp. CNQ-525, exhibited potent antibacterial activity
against contemporary MRSA strains [28]. Both Napyradiomycin derivatives displayed MIC values in
the range of 1–3 µg/mL. Balachandran et al. [29] also reported that 2-hydroxy-9,10-anthraquinone from
Streptomyces olivochromogenes showed anti-MRSA activity with MIC value of 50 µg/mL.

3. Materials and Methods

3.1. General Experimental Procedures

The UV spectra were measured with a Beckman Coulter DU800 spectrophotometer with a path
length of 1 cm, and IR spectra were acquired on a JASCO FTIR-4100 spectrometer. The 1D and 2D
NMR spectroscopic data were obtained on a JEOL 500 NMR spectrometer. The values of the chemical
shifts are described in ppm and coupling constants are reported in Hz. The high-resolution ESI-TOF
mass spectral data were recorded on an Agilent 6530 Accurate-Mass Q-TOF. The mass spectrometer
was coupled to an Agilent 1260 LC system with a Phenomenex Luna C18 column (4.6 × 100 mm, 5 µm,
flow rate 0.7 mL/min). Preparative HPLC separations were performed using a Shimadzu SCL-10A
with a Shimadzu SPD-M10A UV/Vis detector and a reversed-phase C18 column (Phenomenex Luna,
10.0 × 250 mm, 5 µm) at a flow rate of 3.0 mL/min.

3.2. Isolation and Identification of Streptomyces sp.EG1

A sediment sample was collected from Mersa Matruh city on the North Coast of the Mediterranean
Sea of Egypt. Briefly, one gram of wet sediment was dispersed in 9 mL of sterilized water and vortexed
for 3 min. The sample was subjected to heat treatment at 60 ◦C for 15 min to remove non-sporulating
bacteria. A serial dilution (10−1, 10−2 and 10−3) of the suspension with sterilized seawater was
carried and an aliquot (100 µL) was spread on starch-casein agar plate (starch 10 g/L, KNO3 2 g/L,
casein 0.3 g/L, NaCl 2 g/L, K2HPO4 2 g/L, MgSO4 7 H2O 0.05 g/L, CaCO3 0.02 g/L, FeSO4 7 H2O
0.01 g/L, agar 18 g/L, 50% seawater and 50% deionized water) [30,31]. Cycloheximide (50 µg/mL) and
nalidixic acid (75 µg/mL) were added to the media as antifungal and antibacterial agents, respectively.
The plates were kept at 28 ◦C for 15 days until colonies appeared. Colonies that produced an orange
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pigment were selected and purified by streaking on Waksman seawater agar plates. The strain, our
voucher EG1, was identified as a Streptomyces sp. by 16S rRNA gene sequence analysis (GenBank
accession no. MT186138). The closest matching strain was Streptomyces griseorubens strain IMB16-121
(99.85% identity; Sequence ID: MG190723.1).

3.3. Cultivation, and Extraction of Streptomyces sp. EG1

The strain was cultivated in 1 L scale using a Waksman medium (WM). A seed culture was first
prepared by adding a piece of an agar plate with a growth colony into a 250 mL Erlenmeyer flask
containing 25 mL of a Waksman medium (Glucose (20 g/1 L), peptone (5 g/1 L), meat extract (5 g/1 L),
yeast extract (3 g/1 L), CaCO3 (3 g/1 L), NaCl (5 g/1 L), 50% seawater, 50% deionized water) and then
cultivated on a rotary shaker at 120 rpm, 28 ◦C for 5 days as a seed culture. The seed culture (20 mL)
was then added to a 2.8 L Fernbach flask containing 1 L WM. After 7 days of cultivation, 20 g of XAD-7
resin was added to the broth. The resin was collected and extracted with acetone, and the solvent was
removed under vacuum. The remaining solution was then extracted with ethyl acetate, and the ethyl
acetate layer was collected and evaporated under reduced pressure to yield 0.59 g of organic extract.

3.4. Isolation of Compounds

The organic extract (0.59 g) was subjected to silica gel vacuum flash chromatography (Merck Type 60,
3 × 50 mm), using stepwise elution with CH2Cl2 and MeOH (100:0, 100:1, 50:1, 10:1, 5:1, 1:1, and 0:100;
each 40 mL) to afford seven fractions. Fractions 4 (232 mg) and 5 (63 mg) were further purified by
repeated C-18 reverse-phase HPLC (Phenomenex Luna C-18 column, 10 × 250 mm, 5 µm column;
3 mL/min flow rate, UV detection at 254 nm) with 50% to 100% MeCN/H2O over 25 min with elution
thereafter isocratic with the same solvent for 5 min to yield four pure compounds: compound 1 (3.4 mg,
tR 15.7), 2 (5.2 mg, tR 17.2), 3 (6.6 mg, tR 21.8), and 4 (9.6 mg, tR 28.7).

3.5. Spectral Data of Mersaquinone

Red amorphous powder. IR (ZnSe) νmax 3457, 1685, 1592, 1438, 1359, 1326, 1209, 1193 cm−1. UV
(MeOH) λmax (log ε) 218 sh (3.44), 277 (3.68), 308 sh (3.34), 350 sh (3.95), 480 sh (3.09), 515 (3.20), 550 sh
(3.04). 1H NMR (500 MHz, DMSO-d6) δH: 7.75 (1H, s, 6-H), 7.45 (1H, d, J = 2.2 Hz, H-4), 7.00 (1H, d,
J = 2.2 Hz, H-2), 6.84 (1H, d, J = 1.8 Hz, H-7), 6.51 (1H, d, J = 1.8 Hz, H-9), 2.70 (3H, s, 13-CH3). 13C
NMR (125 MHz, DMSO-d6) δC: 185.4 (Cq-12), 181.8 (Cq-5), 162.2 (Cq-8), 162.0 (Cq-3), 158.0 (Cq-11),
157.8 (Cq-10), 145.2 (Cq-1), 138.8 (Cq-6a), 137.7 (Cq-4a), 128.0 (Cq-5a), 124.8 (CH-2), 122.6 (Cq-12a),
120.2 (CH-6), 112.2 (CH-4), 109.7 (Cq-10a), 106.4 (CH-7), 106.1 (Cq-11a), 104.7 (CH-9), 23.9 (CH3-13).
HR-ESI-TOF-MS: m/z 337.0714 [M+H]+ (calcd. For C19H13O6, 337.0712).

3.6. Antibacterial Testing

The methicillin-resistant Staphylococcus aureus (MRSA) strain TCH1516 was used in our study.
The minimum inhibitory concentration (MIC) for Mersaquinone (1) was evaluated by the broth
microdilution method according to CLSI guidelines [32]. Briefly, a few colonies of a pure culture of
TCH1516 on agar were put into cation adjusted Mueller–Hinton broth (CAMHB). The inoculum was
diluted in CAMHB broth to give a final organism density of 1×105 cfu/mL. Ten-fold serial dilutions of
Mersaquinone (1) were dispensed in a microtiter plate as well as the inoculum. The overall volume in
each well was 180 µL. The plate was incubated at 37 ◦C in air for 20 h, then the optical density (OD)
at 650 nm was read using a plate reader (EmaxPrecision Microplate Reader by Molecular Devices).
Ciprofloxacin HCl hydrate was used as a positive control. Negative control and quality control showing
growth of pathogen were carried out in replicate analyses. The MIC assay was carried out using
molarity concentrations at 10 fold dilutions. The MIC (obvious no growth) was confirmed in one of the
10-fold dilutions at 10 micro M, which is equal to 3.36 mcg/mL.
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4. Conclusions

A new tetracene derivative, Mersaquinone (1), was isolated from the culture broth of the
marine-derived Streptomyces sp. strain EG1. Mersaquinone (1) shows moderate antibacterial activity
against methicillin-resistant Staphylococcus aureus (MRSA). Our study revealed that sediments of the
Mediterranean Sea are a good source of actinomycetes, which may produce new compounds with
promising biological activities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/5/252/s1,
Figure S1: chromatographic data and HR-ESI-MS data, as well as 1D and 2D data for mersaquinone (1), and 1D
and 2D NMR data for compounds 2-4. Table S1: NMR spectroscopic data for compounds 1 and 2. Figure S2. 1H
NMR data of mersaquinone (1), 500 MHz, DMSO-d6; Figure S3. 13C NMR data of mersaquinone (1), 125 MHz,
DMSO-d6.; Figure S4. gHSQC NMR data of mersaquinone (1), 500 MHz, DMSO-d6; Figure S5. 1H-1H COSY
NMR data of mersaquinone (1), 500 MHz, DMSO-d6; Figure S6. gHMBC NMR data of mersaquinone (1),
500 MHz, DMSO-d6; Figure S7. 1H NMR data of compound 2, 500 MHz, DMSO-d6; Figure S8. 13C NMR data
of compound 2, 125 MHz, DMSO-d6; Figure S9. 1H-1H COSY NMR data of compound 2, 500 MHz, DMSO-d6;
Figure S10. gHSQC NMR data of compound 2, 500 MHz, DMSO-d6; Figure S11. gHMBC NMR data of compound
2, 500 MHz, DMSO-d6; Figure S12. 1H NMR data of compound 3, 500 MHz, DMSO-d6; Figure S13. 13C NMR
data of compound 3, 125 MHz, DMSO-d6; Figure S14. gHSQC NMR data of compound 3, 500 MHz, DMSO-d6;
Figure S15. gHMBC NMR data of compound 3, 500 MHz, DMSO-d6; Figure S16. 1H NMR data of compound 4,
500 MHz, DMSO-d6; Figure S17. 13C NMR data of compound 4, 125 MHz, DMSO-d6.
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