MESA: Reducing Cache Conflicts by Integrating Static and Run-Time Methods

Xiaoning Ding!, Dimitrios S. Nikolopoulos?, Song Jiang?, and Xiaodong Zhang'

!CSE Department
The Ohio State University
Columbus, OH 43210
{dingxn,zhang} @cse.ohio-state.edu

Abstract

The paper proposes MESA (Multicoloring with Embedded
Skewed Associativity), a novel cache indexing scheme that
integrates dynamic page coloring with static skewed asso-
ciativity to reduce conflicts in L2/L3 caches with a small de-
gree of associativity. MESA associates multiple cache pages
(colors) with each virtual memory page and uses two-level
skewed associativity, first to map a page to a different color
in each bank of the cache, and then to disperse the lines of
a page across the banks and within the colors of the page.
MESA is a multi-grained cache indexing scheme that com-
bines the best of two worlds, page coloring and skewed asso-
ciativity. We also propose a novel cache management scheme
based on page remapping, which uses cache miss imbalance
between colors in each bank as the metric to track conflicts
and trigger remapping. We evaluate MESA using 24 bench-
marks from multiple application domains and with various
degrees of sensitivity to conflict misses, on both an in-order
issue processor (using complete system simulation) and an
out-of-order issue processor (using SimpleScalar). MESA
outperforms skewed associativity, prime modulo hashing,
and dynamic page coloring schemes proposed earlier. Com-
pared to a 4-way associative cache, MESA can provide as
much as 76% improvement in IPC.

1. Introduction

Conflict misses are a perennial problem of caches with
limited associativity. Caches have gone through a sequence
of optimizations to reduce conflicts misses, including victim
buffers [14], pseudo-associativity [2] and eventually higher
associativity. Architects have considered intelligent cache
indexing functions[6, 16, 23] to disperse data more evenly
across the cache. Software techniques such as page col-
oring and bin hopping [7, 15] have also been proposed to
reduce conflict misses via careful mapping of pages in the
cache. Another approach to the problem is to use run-time

2CS Department
College of William and Mary
Williamsburg, VA 23187
dsn@cs.wm.edu

3CCS-3 Division
Los Alamos National Laboratory
Los Alamos,NM 87544
sjiang@lanl.gov

information and run-time cache management mechanisms
that alleviate hot spots. Techniques such as cache bypassing
[13], cache miss classification and isolation [10], and various
forms of cache reconfiguration, including reconfigurable as-
sociativity and dynamic cache partitioning [4, 9, 21] fall into
this category. Page remapping [5, 24] with hardware support
is yet another technique that attempts to reduce conflicts by
sampling misses and changing page colors at run-time.

Concerned with the high penalties of conflict misses in
secondary caches, we make three contributions in this pa-
per. The first is a novel cache indexing scheme called MESA
(Multicoloring with Embedded Skewed Associativity). MESA
combines a skewed-associative page coloring scheme with
a skewed-associative set indexing scheme to disperse both
pages and cache lines within a page between the banks of set-
associative secondary caches. MESA associates each page
with multiple colors, one per way of associativity in the
cache. The memory lines within each page are dispersed us-
ing skewed associative mapping, under the constraint that all
memory lines in the page are contained within the colors of
the page. MESA combines the advantages of page coloring in
resolving inter-page conflicts with the advantages of skewed
associativity in resolving inter-bank conflicts within sets. It
is in essence a multi-grained indexing scheme that attempts
to eliminate conflict misses within and across pages.

The second contribution of this paper is a dynamic page
remapping algorithm for a multicolored secondary cache.
The algorithm departs from page remapping algorithms pro-
posed earlier in that it tracks the hottest cache color at run-
time and uses cache miss imbalance between the hottest and
the coldest colors in each bank to make better remapping de-
cisions. The remapping criterion used in our mechanism is
more aggressive than criteria based on miss sampling [24].
Results from simulations show that this aggressiveness pays
off due to the high cost of conflict misses to memory.

The third contribution of this paper is a comprehensive
comparison between static cache indexing and dynamic col-
oring and remapping schemes for secondary caches. This
comparison shows that static indexing schemes perform re-
markably well. Most often, they are better than standalone

run-time remapping schemes, if the latter are used with-
out any provision for dispersing cache lines instead of just
pages. However, carefully designed run-time algorithms can
enhance sophisticated static indexing schemes, by conveying
cache miss information which is statically undetectable. This
argument is supported by the superior performance of MESA
when combined with our remapping algorithm. Our inte-
grated scheme reduces significantly the number of secondary
cache misses compared to both sophisticated static indexing
schemes and standalone dynamic remapping schemes.

We have experimented with a wide set of benchmarks (24
in total) from multiple application domains. Our simulations
show that MESA outperforms two of the best static cache
indexing schemes that disperse memory lines between sets
—skewed associativity and prime number based hashing—
and one previously proposed dynamic coloring algorithm
based on miss sampling, yielding IPC improvements of up
to 76% compared to conventional 4-way associative caches,
and at least 1%—5% compared to the next best cache indexing
scheme.

The rest of this paper is organized as follows. Section 2
discusses static and dynamic cache indexing schemes for
avoiding conflicts and motivates multicoloring with skewed
associativity. Section 3 presents the implementation and de-
sign choices for MESA and our dynamic remapping algo-
rithm. Section 4 discusses the experimental setting and Sec-
tion 5 presents our results. Section 6 overviews related work
and Section 7 concludes the paper.

2. Static and Run-Time Schemes for Eliminat-
ing Conflicts in Secondary Caches

Previous work adopts both static and run-time approaches
to distribute data in the cache and eliminate hot spots,so that
a cache with a small degree of associativity behaves like a
cache with a larger degree of associativity. Static approaches
use fixed indexing functions for data placement. Run-time
approaches utilize on-line dynamic statistics on accesses and
misses to adaptively change the mapping of data located in
hot spots and scatter these data throughout the cache.

Different mechanisms for eliminating conflict misses use
different data granularities. Page-based mechanisms attempt
to eliminate conflicts by intelligently mapping virtual pages
to page-sized slots in the cache and decoupling the indexing
of physical memory from the indexing of the cache. Set-
based mechanisms attempt to eliminate conflicts at the gran-
ularity of individual cache sets. In the following we review
some representative static and run-time schemes, to motivate
the work proposed in this paper.

2.1. Page-Based Schemes: Page Coloring
and Dynamic Remapping

Page coloring [15] is a well-known technique that reduces
conflict misses by mapping consecutive pages in the virtual

address space into consecutive cache frames. An alternative
to page coloring is bin hopping, in which pages accessed se-
quentially are mapped to consecutive cache bins (page-sized
slots). Although intuitive and simple to implement, page col-
oring variants are to some extent limited in sophistication,
since they do not take into account run-time information on
cache misses.

A natural extension to static page coloring is dynamic
page coloring, in which the hardware tracks information on
cache misses and take actions to remap pages to different col-
ors, if these pages are located in hot spots [5, 24]. Dynamic
remapping can correct poor operating system decisions and
adapt cache mapping to the access patterns of programs. The
benefit of dynamic coloring depends on the capability of the
hardware to detect cache conflicts and to react to them timely.
This issue has not been discussed extensively in the litera-
ture. An earlier paper from Sherwood et. al [24] appears to
be the only one to investigate this issue in detail. In their
scheme, if misses in hot sets are constantly above a thresh-
old, a remapping interrupt is fired and the operating system
changes the color of a page that maps to the congested color
in the cache. This mechanism will henceforth be referred to
as DynColoring.

The main drawback of DynColoring is that it tracks only
colors with number of misses above a fixed threshold in
a sampling period. To avoid mis-remapping pages from
‘normal-temperature’ colors in memory intensive process or
execution phases, the threshold is usually set high. Thus, the
scheme tends to be more conservative than needed. More-
over, this scheme may detect multiple colors as remapping
candidates, without making an informed choice between
them to identify which one is the hottest. In other words,
the mechanism may detect hot pages but not necessarily the
ones that cause most of the conflicts. It may be infeasible
to collect the entire information to track the hottest page in
hardware. However, it is possible to locate this page if the
hardware keeps track of the hottest (not just a hot) color in
the cache at any given time. We exploit this idea to derive
an improved remapping algorithm based on continuous bal-
ancing of misses between the hottest and the coldest color in
each cache bank.

2.2. Static Set Indexing Schemes: Skewed
Associativity and Related Techniques

Although page-based schemes can reduce conflicts by
mapping and moving data at a coarse granularity, static hard-
ware schemes exist that address the same problem at the
granularity of cache sets. The seminal work on skewed as-
sociativity [23] has introduced a design to scatter data in the
banks of associative caches, by allowing as many indexing
functions per cache line as the degree of associativity. With
skewed associativity, each memory line is mapped to a differ-
ent offset in each cache bank. Using carefully chosen XOR-
mapping schemes [11, 23] or other indexing schemes, such

2000

Number of misses on the same set

- X . |
% 2000 4000
Ll . xx ‘ * i x % x Xxxx‘ x
0 5000 10000 15000 20000

Number of accesses to cache sets

Figure 1. Accesses and Misses per set in NAS
LU.

as prime modulo hashing [16], memory lines mapped to a
given offset in one way are highly unlikely to map to the
same offset in another way. At the same time, consecutive
memory lines are unlikely to be mapped to the same cache
line in the same bank.

Static schemes try to achieve a highly randomized yet
uniform distribution of memory accesses between the cache
sets. A balanced distribution of accesses though is not nec-
essarily a reflection of the distribution of cache misses. Fig-
ure 1 illustrates the problem. We recorded the number of
accesses and the number of misses per cache set while run-
ning NAS LU, a program which suffers from conflicts in the
L2 cache. The (X,Y) scatter plot has a point per cache set.
For each set, the X coordinate is the number of accesses to
the set in a typical execution phase of the program and the
Y coordinate is the number of misses to the same set. The
embedded plot is a zoom into the lower left corner of the
chart. The larger the X coordinate the higher the access fre-
quency to the cache set. The chart shows several dark regions
(large concentrations of cache sets) with high access frequen-
cies but low miss frequencies. Such regions are shown more
clearly in the zoom chart, for sets with 1K to 4K accesses.

2.3. MESA Outline

Interestingly enough, the literature has given little em-
phasis on comparing and combining sophisticated static set-
indexing schemes against dynamic, page-based schemes in
terms of effectiveness in reducing conflicts. A cost-effective
scheme should make a trade-off between fully static and
fully dynamic approaches. One important contribution of
our work is that we provide such a framework and quanti-
tative evidence on which of three approaches, namely static
set indexing, hardware page coloring or an integrated scheme
is the best for a wide set of programs.

We propose a new cost-effective scheme called MESA
(Multicoloring with Embedded Skewed Associativity), which

virtual page# [mbits| cbits|:
TLB

Virtual Address ! :
: virtual page# |physical page#| cl c2|:

............................ 1......... s e

* Physical Address

mbits |mbits|cbits

Lv¢

hottest |—»{mer | color, hashing color; me hottest
> j
me, | color, _,"color2 me,
wayl way2
mcs | colors Y 4 colory |mcy
d
coldest ¢ | color, color, |mc, coldest
RSC, RSC,

Figure 2. Multicoloring and run-time remap-
ping implementation in MESA.

works in a two-level hierarchical fashion. Its high level com-
ponent is responsible for static and dynamic page (color)
mapping, while its low level component is responsible for
static cache line skewing within the colors of each page.

MESA treats a set-associative L2 cache as multiple banks.
Rather than using only one color per page and having the
color span all cache banks for a page, as in conventional col-
oring, MESA associates each page with multiple colors, as
many as the degree of associativity. The colors of each page
are identified with a skewed associative mapping scheme, ap-
plied at the page level. Furthermore, a new dynamic recol-
oring algorithm based on miss balancing is implemented on
the multi-colored pages. In this way, each bank is treated as
a large direct-mapped cache [5, 15], in which MESA utilizes
access information to resolve intra-bank conflicts.

The fixed placement of memory lines within a page can
still cause inter-bank conflicts, despite remapping. To resolve
these conflicts, MESA disperses the memory lines within a
page across the ways of the cache exactly as in a conventional
skewed associative cache. The difference from a conven-
tional skewed associative cache is that each line is confined
within one of the colors assigned to the page by MESA.

3. Implementation Details

MESA divides the cache into pages (colors) and uses the
TLB to identify the color of each virtual page, as in conven-

tional page coloring [24]. The main difference with previous
coloring schemes is that each page has multiple colors, rep-
resented by multiple fields in the TLB entry. The TLB entry
includes as many colors as the number of banks (ways) in the
cache. The color entries of each page are modifiable via a
dynamic remapping algorithm. In addition, hardware similar
to that used in a skewed associative cache is used to imple-
ment skewing functions to select the color of a page in each
bank. The following discussion describes an implementation
of MESA for large secondary caches.

3.1. Static Multicoloring

Figure 2 depicts the hardware implementation of MESA
for a cache with two cache banks. The 2-way associative
cache is used merely as an example for illustration purposes.
Each TLB entry includes two color fields ¢; and c;. The
color fields enable remapping of a page without memory
copying. Each field stores the color of the page in one way
(bank) of the cache. The cache color bits decouple cache
indexing from physical memory indexing. MESA performs
an N-dimensional division of the cache into pages (/N repre-
sents the degree of associativity), whereas standard coloring
performs a one-dimensional division. We use a skewed asso-
ciative mapping similar to the one proposed in [6], of a page
number from the TLB to set the initial colors of the page.

3.2. Miss Balancing Algorithm

Our dynamic remapping scheme is based on an algorithm
called M BA (Miss Balancing Algorithm), which uses cache
miss imbalance between colors independently in each bank,
as the remapping trigger. The basic idea is to remap pages
from the hottest (most overloaded) color in a bank to the
coldest (most underloaded) color in the same bank, with the
intuition that the hottest color tends to be the host of pages
that are heavily responsible for conflicts and that reshuffling
these pages in the bank is likely to ameliorate the problem.
Note that a cache color is a page-sized block of cache sets
inside a bank. Our remapping algorithm attempts to avoid
inter-bank interference and retain the benefit of skewed asso-
ciativity by not moving pages across banks.

The remapping algorithm uses one miss counter per
color per bank. These counters are denoted with
mci, mca, . .., mcy, in Figure 2. The counters are incre-
mented upon cache misses. They are aged periodically (ev-
ery 16K misses in our implementation) so that they do not
accumulate stale historical information. Aging is done pro-
gressively by rightward bit shifting of the counters.

For each cache bank, two additional counters are used to
point to the hottest and the coldest color in the bank. Upon
a miss to a color in the cache, the color miss counter is com-
pared to the hottest color’s miss counter and the hottest color
pointer is updated, if needed. The overhead of this check
is overlapped with the memory access. The coldest color is

maintained upon cache accesses as follows. On each access
to the cache to a specific color, the miss counter of the color
is compared against the miss counter of the coldest color,
which is initialized to 0. If the currently accessed color has
less misses, the coldest color pointer is updated. The over-
head of this check is overlapped with the cache access.

Remapping is effected by moving pages from the hottest
color to the coldest color in the same bank. It is necessary to
throttle remapping activity for several reasons. First, remap-
ping does have a non-negligible overhead. Second, too ag-
gressive remapping may thrash the cache by frequently mov-
ing pages back and forth between two colors. To throttle
remapping we use two thresholds. The first threshold is
used for controlling the speed of remapping (we call it the
RSC threshold, where RSC' stands for Remapping Speed
Control). An RSC counter per bank is used for this purpose.
The counter is initialized to 0, and incremented whenever
a cache miss occurs in the hottest color. While the cache
miss is being served, the miss counters of the coldest and the
hottest color are compared, and remapping is triggered if the
RSC of the hottest color exceeds a hardwired threshold, set
to 32 in the current implementation. The RSC counter is
reset to 0 after one page is remapped from the hottest color.

The second threshold corresponds to the minimum cache
miss imbalance (C'M I,,,;,,) between the hottest and the cold-
est color that needs to be observed by the hardware to trigger
remapping. CM I,y is set to be equal to the number of
misses in the coldest color. In other words, the hottest color
should see twice the number of cache misses of the coldest
color to activate remapping. The specific threshold allows
for a fast calculation of C'M I in hardware.

3.3. Embedded Skewing

When a memory line is accessed, MESA uses a skewed
associative scheme that provides as many candidate set in-
dices for the line, as the degree of associativity. The ¢; field
in the TLB determines the cache color (page) in the ¢th cache
way for the memory line, as well as the starting index of that
color. We use hashing hardware and a XOR-based index-
ing scheme in the address of the memory line to generate as
many offsets as cache ways, which are in turn used to locate
the target cache set inside each color. In our prototype im-
plementation we use the same skewing functions as in [6],
although alternative indexing schemes can be considered to
resolve pathological cases [16, 26].

4. Experimental Setting

We used Simics [19], a complete system simulator,
to evaluate MESA and other static and run-time schemes
for reducing cache conflicts. We used the out-of-the-box
UltraSPARC-II processor of Simics, executing the SPARC
VO instruction set and running SPARC Linux 7.2. While
Simics is capable of conducting a complete system simu-

lation and evaluating the performance impact of MESA in
the system as a whole, it models in-order issue proces-
sors. To show the effectiveness of MESA for modern out-of-
order issue processors, we used SimpleScalar [8], and mod-
eled a 4-issue, out-of-order processor. We set the load/store
queue(LSQ) size to be 8, and used the Alpha instruction set
for the SPEC 2000 benchmarks, and the PISA instruction set
for the rest of the benchmarks.

We simulated a two-level cache hierarchy. The parame-
ters are given in Table 1. The size of the secondary cache is
set to 1MB, to realistically support the data sets used in our
benchmarks.

Parameter Value
L1 cache 32KB, 32-byte lines, 2-way set associative,
write-back,write-allocate, 1 cycle latency, LRU
L2 cache 1MB, 64-byte lines, 4-way set associative,
10 cycles latency, LRU replacement
TLB 64-entry iTLB, 64-entry dTLB, fully associative
Memory 4K page size, 120 cycles latency in Simics,
80 cycles for the first chunk and 10 cycles
for each additional chunk in SimpleScalar

Table 1. Simulation parameters.

Parameter \ Value \

Length of interval 16K misses
Miss counter aging | right shift 4 bits each interval
RSC threshold 32
Remapping overhead 400 cycles

Table 2. Remapping algorithm parameters.

For the simulation of MESA, we chose the parameters
listed in Table 2. Besides MESA, we implemented four other
schemes for comparison, namely, 4-way (a standard 4-way
set-associative L2 cache), DynColoring (a conventional col-
oring scheme with dynamic remapping on a 4-way cache
[24]), prime (a 4-way associative cache with prime modulo
hashing [16]), and skewed (a 4-way skewed associative cache
[23]). 4-way is used as a baseline for comparisons. DynCol-
oring is used to assess how much additional benefit MESA
can obtain from its multicoloring design, as well as to inves-
tigate if the remapping algorithm used in conjunction with
MESA achieves further improvements. We compare prime
and skewed against MESA to investigate whether run-time
remapping reduces conflict misses further than plain skewed
associativity or prime modulo hashing.

In the experiments, we used 4093 as the prime number
used in the hashing function of prime, which is very close
to 4096, namely the number of cache sets of the L2 cache
used in our experiments. We used low thresholds for both
the sampling miss counters and the interrupt miss counters

in the implementation of DynColoring (64 and 4 as opposed
to 128 and 8 used in the original implementation [24]), both
because we are using a smaller page size than in the original
work and because we found that the original thresholds were
overly conservative for the workloads we tested.

We evaluated the aforementioned schemes with a total
of 24 applications, including 19 applications from SPEC
CPU2000, 4 applications from the NAS Benchmarks [3], and
one application (FFT) from SciMark 2.0 (C version) [1]. We
used the reference input size for SPEC benchmarks, the Class
A input size for the NAS benchmarks except from LU, in
which we used the Class C input size, and the large input
size for SciMark. All benchmarks were run on a simulated
uniprocessor system. The results include operating system
activity as recorded in Simics. For each application except
FFT, we simulated 2 billion instructions starting with a cold
cache. FFT completes in about 937 million instructions in
Simics and 755 million instructions in SimpleScalar.

5. Simulation Results

We divide the results from the 24 programs into three
groups: Group 1 contains the 10 integer programs from
SPEC 2000, group 2 contains the 9 floating point programs
from SPEC 2000, and group 3 consists of the rest programs
from the NAS suite as well as FFT from the SciMark suite.

5.1. Overall Results

5.1.1. Results with an In-Order Issue Processor

The normalized numbers of L2 misses for the programs in
each group are shown in Figures 3, 5, and 7, respectively.
All results are normalized to those of the baseline 4-way
associative cache. The run times of the programs in each
group are shown in Figures 4, 6, and 8, respectively. We
break run times into busy CPU cycles and memory stall cy-
cles. We observe that across a wide and diverse range of
programs, MESA provides consistently better performance
than the baseline 4-way set-associative cache, though the
performance gains vary between programs. Programs like
ammp, FFT, gcc, LU, twol f and sixtrack obtain signifi-
cant performance improvements while programs like applu,
gap, gzip, 1S, and wupwise obtain little or no benefit from
any of the conflict avoidance schemes. The other programs
obtain some benefit by suffering less L2 cache misses, but
this benefit is not translated into substantial performance im-
provements, as these programs access the L2 cache rarely.
The reaction of the programs to different cache mapping al-
gorithms can be explained by characterizing the imbalance
of their miss distributions across cache sets. To characterize
the instantaneous miss distributions, we calculate the coeffi-
cient of variation (CoV) of misses for every interval of 16384
misses, and average the CoVs. The larger the ratio, the more
serious the imbalance. Figure 9 shows the ratios for all 24
programs.

—_

2

1

0.8

0.6

0.4

0.2

0
gl ool ool Dol Dol ool Dopgl ool ool ool
EEQN EEON EE0N EEON EEON EEBN EEOH EE£0PN EEBN LE QD
sS=sW 5= 3w s5= 3w 5= 3w sS=3W 53w s5=3Ww sS5=3W 53w sz 3w
285> 283> 2633 2SS 2935 2933 2°9pS 2935 2633 295=
O % 0% O® 0% O®w 0% O®w O® O O
c c c c c c c c c c
> > > > > > > > > >
a a [a) [a) [a) [a) [a) [a) a a

bzip2 eon gap gce gzip mcf parser twolf vortex vpr

Figure 3. Normalized number of L2 cache misses of integer benchmarks in SPEC 2000.

1.2
1
0.8
0.6
0.4
0.2
0
2235 2285 £235 2285 2235 223d 2235 2285 ER%S 22%d
554 BFS=W FS=W FSsW FS=EW FSsW FEsW FSEW FEsw o ed
2%L= 5902 9983 5%9= 9902 50= 9983 590= 0= g92=
QO v O » O O O » QO v O » O QO O
c c c c c c c c c c
> > > > > > > > > >
) Aa Aa a a a a Aa a o)
bzip2 eon gap gcc gzip mcf parser twolf vortex vpr
mCPU Cycle m Memory Stall
Figure 4. Normalized run time of integer benchmarks in SPEC 2000.
1.2
1
0.8
0.6
04
0.2
0
oo < < << << < << < <
22380 ZE€3%» ZE80n £ZE3n ZET8m ZE3n ZE£Tm ZE3n ZETH
‘5':;LIJ ‘5':;LI.I 6':§LI.I ‘5':;LI.I ‘5':§LI.I 6':§I.IJ 5-:;u.| 5':§LIJ ‘5':§I.IJ
S0z BQEE BQ-_(JC)E BQEE —OQQE BagE EQEE —OQ$§ BQ$§
O% O % 0O % OB O ®» OB O B O O
c c c c c c c c c
> > > > > > > > >
a a =) a [a) [a) a [a) a
ammp applu art equake mesa mgrid sixtrack swim wupwise

Figure 5. Normalized number of L2 cache misses of floating point benchmarks in SPEC 2000.

For programs with high average CoV's, which indicate se-
rious load imbalance among cache sets, we observe signifi-
cant improvements from MESA in terms of number of misses
and run times. For example, F'F'T" has an average CoV of
1.9. Accordingly, MESA can reduce its misses by 52.1%,
and reduce its run time by 41.4%. This happens because the
imbalance causes a large number of conflict misses for over-
loaded cache sets, while leaving other sets underutilized. On
the other hand, for gzip, a well-balanced program with a very

low average CoV of 0.08, MESA reduces its misses by a mere
0.2% and its run time by 0.1%.

For the programs with serious miss imbalance, DynColor-
ing, prime and skewed also achieve better performance over
the baseline scheme by reducing conflict misses. However,
their improvements are consistently lower than those from
MESA. The performance advantages of MESA over DynCol-
oring, prime and skewed are shown in Table 3.

In general, prime and skewed are more effective than Dyn-

o000 -
oNR®®m LN

Dol Dol D0 o< Do <
SEOW S EON ESEEDN ESEEON
S5=2W FS2W FS W FS 2w
O O O O
f= f= c c
> > > >
a a a [a)

ammp applu art equake

prime
skewed

DynColoring

< ool Doogd ool DooL
@ EEQN EE8N EEQH EEOD
W SEzWw §S3zw FS3wW §5S3sw
= 6°—_§4)§ —OQ-_g‘)§ —OQ-$§ 60_$§
O O O w O w
= c c =
> > > >
[a) a a a)
mesa mgrid sixtrack swim wupwise

@ CPU Cycle mMemory Stall ‘

Figure 6. Normalized run time of floating point benchmarks in SPEC 2000.

12

1

0.8

0.6

04

0.2

0
2235 2235 2235 2235 2233
‘5':§LIJ ‘5':;LIJ s5":§I.IJ ’5-:gI.IJ ’5':3IJJ
30'_9‘)§ BQ$§ 3Q$§ BQE§ BQEE
Q) Q) Q [Q) Q [
c c c c c
> = > > >
a] [a] [a] [a] [a]

BT FFT 18 LU SP

Figure 7. Normalized number of L2 cache
misses of NAS benchmarks and FFT bench-
mark.

Coloring. Some imbalance that is detected at the fine gran-
ularity of cache lines remains undetected at the coarse gran-
ularity of pages. Both prime and skewed resolve this imbal-
ance implicitly, by dispersing hot spots at the granularity of
cache lines. The run-time DynColoring scheme cannot af-
ford such an option because of its excessive implementation
overhead. In some programs such as eon, prime performs
better than skewed. In other programs such as ammp, LU,
and siztrack, skewed performs better than prime. The aver-
age reductions shown in Table 3 indicate that skewed is better
than prime in general.

5.1.2. Results from an Out-of-Order Processor

We observe that there is a strong correlation between reduc-
tions of secondary cache misses and the improvements in
runtime in all benchmarks. An out-of-order execution pro-
cessor may weaken this correlation due to memory access
overlapping, thus lessening the improvements. To inves-
tigate whether MESA can achieve significant performance
improvements in an out-of-order processor, we ran experi-

2ggn 2235 2235 2235 2235
‘6':;LIJ StgLIJ ‘5':;LIJ ’5':;I.IJ Btgl.u
5= 5922= §52e= 5= 522=
o o o o S
c c = c c
> > > > >
a a a a a
BT FFT IS LU SP

@ CPU Cycle @ Memory Stall ‘

Figure 8. Normalized run time of NAS bench-
marks and FFT benchmark.

ments with the SimpleScalar simulator using five representa-
tive benchmarks, namely vpr and twolf from group 1, ammp
from group 2, FFT from group 3, and a new SPEC 2000
benchmark galgel, which we could not compile to run in
Simics. We compare the performance of MESA with skewed,
which is the cache management scheme which has exhibited
the best performance among the schemes used to compare
against MESA in our simulations with Simics. The run times
and miss reductions achieved by the skewed cache and MESA
running on SimpleScalar are shown in Table 4. We can see
that the relative performance trends observed in our simula-
tions with Simics remain the same in the simulations with
an out-of-order processor. For both ammp and FFT, skewed
associativity can reduce misses and run times by a large per-
centage, but MESA can still outperform skewed associativ-
ity due to its ability to dynamically resolve more conflicts.
This trend is consistent with the results on the in-order is-
sue processor. However, both the skewed cache and MESA
cannot reduce run times as much as in the in-order issue pro-
cessor in FFT. The reason is that the out-of-order proces-
sor overlaps successfully a significant fraction of L2 cache

g
:

il
-

1S
U

Q + = . .
5 L c o Q0 qa 009 X e X

EameOé&m%-ﬁ JEes 800 ET TS

Eg 3zt °9oe EfgE 2% 3

® g QX > a

) J

3

Figure 9. Average CoVs showing the balance
of miss distribution.

Reduction in Cache Misses
group 1 | group 2 | group 3
DynColoring | 4.31% | 3.83% | 0.18%
prime 841% | 2.16% | 9.65%
skewed 20.16% | 13.67% | 21.82%
MESA 22.70% | 18.18% | 24.56%
Run Time Improvements
group 1 | group 2 | group 3
DynColoring 1.02 1.01 1.00
prime 1.14 1.00 1.05
skewed 1.18 1.04 1.11
MESA 1.20 1.05 1.15

Table 3. Reductions in cache misses and run
time improvements of various confict avoid-
ance schemes.

misses. For vpr and twolf, skewed can hardly reduce misses
and run times. In these two programs, MESA can reduce L2
misses by about 14% and 23%. It therefore provides mea-
surable runtime improvements, despite that these programs
have very low L2 miss rates. For galgel, skewed can reduce a
large percentage of L2 cache misses. However, the reduction
of cache misses can hardly be reflected on runtime. MESA
eliminates 20% more cache misses, most of which can not be
overlapped, and achieves a measurable IPC improvement. In
all five programs, MESA outperforms skewed. Finally, MESA
achieves up to 76% improvement in IPC compared to a con-
ventional 4-way associative cache, which implies that it can
serve as a good substitute for caches with large associativity
and number of banks.

5.2. Analysis of MESA Performance Gains

To investigate how much each component of MESA con-
tributes to the total performance improvement and to un-

Reduction in Cache Misses

twolf vpr galgel ammp FFT
skewed | 1.24% | 3.37% | 40.99% | 88.13% | 44.49%
MESA | 14.28% | 23.94% | 60.85% | 95.38% | 49.13%
Run Time Improvements
twolf vpr galgel ammp FFT
skewed | 0.13% | 0.61% | 2.47% | 71.26% | 29.94%
MESA | 123% | 390% | 6.47% | 75.62% | 32.83%

Table 4. Performance of MESA and skewed in
out-of-order processors.

1.2

0.8 = —

0.6

0.4

0.2

MBA

g mutticoloring
MESA

DynColoring
DynColoring
DynColoring
DynColoring
DynColoring

Figure 10. Normalized number of misses for
full and stripped-down implementations of
MESA and DynColoring.

MBA
multicoloring
MBA

)
g multicoloring
MBA
multicoloring
MBA
MESA
MBA
T multicoloring
MESA

MESA
MESA
MESA

DynColoring

=
=

=
E

DynColoring
DynColoring
DynColoring
DynColoring

)
3
3

°
-
Ry
3

gce

‘ m CPU Cycle m Memory Stall ‘

Figure 11. Normalized run times for full and
stripped-down implementations of MESA and
DynColoring.

derstand why each component is necessary to obtain an in-
tegrated cache scheme with consistently improved perfor-
mance, we take the following steps: We first evaluate the
remapping algorithm of MESA in isolation (i.e. without any
support for skewed-associative multicoloring), in order to as-
sess the effectiveness of using miss imbalance for run-time
elimination of conflict misses. For this purpose, we replaced
the remapping algorithm of DynColoring with our MBA
remapping algorithm, and obtained a scheme, which we also
call MBA. We then evaluate a stripped-down implementa-

tion of MESA called multicoloring, in which a skewed as-
sociative mapping is enforced for multi-colored pages across
banks, but not for memory lines within a page. Comparison
of the simplified MESA against MESA coupled with the MBA
scheme and line-level skewed associativity gives an idea of
the effectiveness of fine-grain skewed associativity indexing
on cache performance.

We selected five programs, namely ammp, art, FFT,
gce, and LU, where MESA achieves striking performance
improvements over the two intermediate schemes (MBA and
multicoloring), as well as over DynColoring. Figure 10 plots
the normalized number of misses of DynColoring, MBA,
multicoloring, and MESA. Figure 11 plots the normalized
run times achieved with the same schemes. All results are
normalized to those of the 4-way set-associative cache.

From the results we make the following interesting obser-
vation. Though for the five programs MESA always achieves
considerable performance gains, the amount of contributions
made by each of its components vary significantly among
the programs. For example, in LU, MBA obtains the most
performance improvement over its counterpart, namely Dyn-
Coloring. This means that our remapping algorithm is more
effective in identifying and resolving hot spots. For the
same program, multicoloring and MESA achieve much lesser
improvements over their coarse grain dynamic counterpart,
namely MBA. This shows that skewed indexing on either
a page-sized granularity or a cache-line granularity is not
by itself effective for the access patterns exhibited in the
specific program. For ammp, we observe different trends.
Multicoloring and MESA generate the most performance
gains, while MBA contributes little to performance. The ex-
periments show that the effectiveness of each individual tech-
nique depends heavily on the specific program and its sec-
ondary cache access patterns. While none of the static and
run-time techniques prevails across all programs or access
patterns, a comprehensive scheme like MESA, which inte-
grates both static and dynamic mechanisms, yields a consis-
tent performance improvement.

6. Related Work

This section overviews related work which shares similar
objectives with MESA and our remapping algorithm.

Column caching allows software to specify which spe-
cific data is mapped to specific ways (columns) of a set-
associative cache [9]. Under a column caching scheme,
pages are mapped to tints (the equivalent of colors), so that
data within a tint cannot evict data from other tints. Our
scheme bares partial similarity to column caching in that it
restricts the remapping of pages within columns. The column
caching scheme proposed in [9] allows for dynamic remap-
ping of data, however no specific information on remap-
ping mechanisms and their performance was provided in this
work.

Min and Hu [20] have proposed to decouple cache ac-

cesses from memory accesses to allow for more flexible map-
ping of cache accesses and to avoid conflict misses. Similar
decoupling is encountered in other dynamic page remapping
schemes, including ours. Contrary to Min and Hu’s work
which uses reference information to tune cache mapping, we
use cache miss information for the same purpose.

Page coloring is a well-known technique to reduce cache
conflicts [5, 7, 15]. Software page coloring is simple to im-
plement, however it incurs significant overhead in the oper-
ating system. It also interferes with page replacement algo-
rithms, since the operating system needs to keep per-color
free lists. And it lacks the information for making informed
recoloring decisions at run-time. Hardware page coloring
schemes have been proposed for large secondary caches and
instruction caches [24, 18]. Our work differs from these
schemes in the mechanism used to activate remapping and
in that it combines run-time remapping with static schemes
to reduce cache conflicts. Compiler transformations for re-
ducing conflict misses have also been proposed [22]. How-
ever, such transformations are only applicable in the limited
context of loop-intensive scientific kernels.

7. Conclusions and Future Work

This paper makes several contributions in the direction of
designing more effective secondary caches with a reason-
able degree of associativity. We introduced MESA, a two-
level skewed associative cache indexing scheme that merges
effectively skewed-associative page coloring with skewed-
associative cache indexing. We have extended MESA with
a new run-time page remapping algorithm based on cache
miss imbalance within the banks of a set-associative cache.
Our integrated scheme combines the advantages of skewed
associativity, page coloring and page remapping to yield
a cost-effective, high-performance design. This paper has
also shown that fine-grained static indexing schemes are
often more effective than coarse-grain dynamic remapping
schemes, but at the same time, static and dynamic schemes
can complement each other to maximize the benefits of both
approaches.

Although this paper provides a proof of concept by show-
ing that MESA combined with our remapping algorithm can
reduce significantly conflict misses, we plan to perform an
accurate estimation of the impact of multicoloring on cache
area, cache access time and power consumption using a
cache model described in [25]. We also plan to investigate
MESA in the context of more aggressive processor archi-
tectures, by looking at the impact of multicoloring on the
caches of multithreaded processors and chip multiprocessors,
which suffer from destructive interference between threads,
as well as in caches with non-uniform access latencies [17]
and software-managed caches [12].

8. Acknowledgments

This research is supported by the National Science Foun-
dation (Grants CCF-0346867, ACI-0312980, CNS-0521381,
CNS-0098055, CNS-0405909, and CNS-0509054/0509061)

the

U.S. Department of Energy (Grant DE- FGO02-

05ER2568), and an equipment grant from the College of
William and Mary. The work with the third author is
supported by Los Alamos National Laboratory under grant
LDRD ER 20040480ER.

References

(1]
(2]

3

—

(4]

(5]

[6

—_

(7]

[8

—

[9

—

[10]

[11]

[12]

[13]

J. S. 2.0. http://math.nist.gov/scimark?2.

A. Agarwal and S. Pudar. Column-Associative Caches: A
Technique for Reducing the Miss Rate of Direct-Mapped
Caches. In Proc. of the 20th Annual International Sympo-
sium on Computer Architecture (ISCA-20), pages 179-190,
San Diego, California, May 1993.

D. Bailey, T. Harris, W. Saphir, R. V. der Wijngaart, A. Woo,
and M. Yarrow. The NAS Parallel Benchmarks 2.0. Techni-
cal Report NAS-95-020, Numerical Aerodynamic Simulation
Facility, NASA Ames Research Center, Dec. 1995.

R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory Hierarchy Reconfiguration for En-
ergy and Performance in General Purpose Processor Archi-
tectures. In Proc. of the 33rd Annual International Sym-
posium on Microarchitecture (MICRO-33), pages 245-256,
Monterey, California, Nov. 2000.

B. Bershad, D. Lee, T. Romer, and J. Chen. Avoiding Conflict
Misses Dynamically in Large Direct-Mapped Caches. ACM
SIGPLAN Notices, 29(11):158-170, Nov. 1994.

F. Bodin and A. Seznec. Skewed Associativity Enhances
Performance Predictability. In Proc. of the 22nd Annual In-
ternational Symposium on Computer Architecture (ISCA-95),
pages 265-274, St. Margherita Ligure, Italy, June 1995.

E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum, and
M. Lam. Compiler-Directed Page Coloring for Multiproces-
sors. ACM SIGPLAN Notices, 31(9):244-255, Sept. 1996.

D. Burger and T. Austin. The SimpleScalar toolset, version
2.0. Technical report, University of Wisconsin-Madison, June
1997.

D. Chiou, L. Rudolph, S. Devadas, and B. Ang. Dynamic
Cache Partitioning via Columnization. Technical report, MIT
LCS, 2000. CSG Memo 430.

J. Collins and D. Tullsen. Runtime Identification of Cache
Conflict Misses: The Adaptive Miss Buffer. ACM Transac-
tions on Computer Systems, 19(4):413-439, Nov. 2001.

A. Gonzalez, M. Valero, N. Topham, and J. Parcerisa. Elimi-
nating Cache Conflict Misses through XOR-based Placement
Functions. In Proc. of the 1997 ACM International Con-
ference on Supercomputing (ICS’97), pages 76—83, Vienna,
Austria, July 1997.

E. Hallnor and S. Reinhardt. A Fully Associative Software-
Managed Cache Design. In Proc. of the 27th Annual In-
ternational Symposium on Computer Architecture (ISCA-27),
pages 107-116, Vancouver, Canada, June 2000.

T. Johnson, D. Connors, M. Merten, and W. Hwu. Run-
Time Cache Bypassing. IEEE Transactions on Computers,
48(12):1338-1354, Dec. 1999.

[14]

[15]

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

N. Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In Proc. of the 17th Annual International Symposium
on Computer Architecture (ISCA-17), pages 364-373, Seattle,
Washington, May 1990.

R. Kessler and M. Hill. Page Placement Algorithms for Large
Real-Indexed Caches. ACM Transactions on Computer Sys-
tems, 10(4):338-359, Nov. 1992.

M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using Prime
Numbers for Cache Indexing to Eliminate Conflict Misses. In
Proc. of the 2004 International Symposium on High Perfor-
mance Computer Architecture (HPCA-10), pages 288-299,
Madrid, Spain, Feb. 2004.

C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-
Chip Caches. In Proc. of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), pages 211-222, San Jose,
California, Nov. 2002.

S. Kim, N. Vijaykrishnan, M. Kandemir, and M. Irwin.
Energy-Efficient Instruction Cache using Page-Based Place-
ment. In Proc. of the 2001 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems
(CASES’2001), pages 229-237, Atlanta, GA, Nov. 2001.

P. Magnusson, F. Dahlgren, H. G. amd M. Karlsson, F. Lars-
son, F. Lundholm, A. Moestedt, J. Nilsson, and P. Stenstrom.
SimICS/sun4m: A Virtual Workstation. In Proc. of the 1998
USENIX Annual Technical Conference, pages 119-130, New
Orleans, LA, June 1998.

R. Min and Y. Hu. Performance of Large Physically In-
dexed Caches by Decoupling Memory Addresses from Cache
Addresses. IEEE Transactions on Computers, 50(11):1191-
1201, Nov. 2001.

P. Ranganathan, S. Adve, and N. Jouppi. Reconfigurable
Caches and their Applications to Media Processing. In Proc.
of the 27th Annual International Symposium on Computer
Architecture (ISCA-27), pages 214-224, Vancouver, Canada,
June 2000.

G. Rivera and C. Tseng. Data Transformations for Eliminat-
ing Conflict Misses. In Proc. of ACM SIGPLAN 1998 Confer-
ence on Programming Language Design and Implementation
(PLDI’1998), pages 85-96, Montreal, Canada, June 1998.

A. Seznec. A Case for Two-Way Skewed-Associative Caches.
In Proc. of the 20th Annual International Symposium on Com-
puter Architecture (ISCA-20), pages 169-178, San Diego,
CA, May 1993.

T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses
using Hardware and Software Page Placement. In Proc. of
the 1999 ACM International Conference on Supercomputing
(ICS’99), pages 155-164, Rhodes, Greece, June 1999.

P. Shivakumar and N. Jouppi. CACT 3.0: An Integrated
Cache Timing, Power and Area Model. Technical report,
WRL Research Report, Aug. 2001.

N. Topham, A. Gonzélez, and J. Gonzdlez. The Design and
Performance of a Conflict-Avoiding Cache. In Proc. of the
30th Annual International Symposium on Microarchitecture
(MICRO-30), pages 71-80, Research Triangle Park, NC, Nov.
1997.

