
Review Article

Mesenchymal Conversion of Mesothelial Cells
Is a Key Event in the Pathophysiology of
the Peritoneum during Peritoneal Dialysis

Manuel López-Cabrera

Centro de Biologı́a Molecular-Severo Ochoa, CSIC, UAM, Cantoblanco, C/Nicolás Cabrera 1, 28049 Madrid, Spain

Correspondence should be addressed to Manuel López-Cabrera; mlcabrera@cbm.uam.es
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Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum
as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to
hyperosmotic PD
uids causes in
ammation, loss of themesothelial cellsmonolayer, �brosis, vasculopathy, and angiogenesis, which
may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with
these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated
with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD 
uids include the high content of
glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH 
uids have improved
biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based 
uids are still needed, as
biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane,
complementary to the e�orts to improve 
uid biocompatibility, is the use of pharmacological agents protecting the mesothelium.
	is paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic
target to preserve membrane function.

1. Introduction

Peritoneal dialysis (PD) is a form of renal replacement ther-
apy that has become an established alternative to hemodial-
ysis [1–3]. During the last years, great e�ort was made
to improve the biocompatibility of the dialysis solutions
with the expectancy of diminishing their adverse e�ects on
peritoneal morphology and function [4–12]. 	e number of
patients included in PDprograms has increased progressively
worldwide and is presently used by approximately 10 to 15%
of the total global dialysis population [2, 13]. PD o�ers major
advantages in terms of quality of life, costs, and home-based
treatment opportunities. 	e increase of PD programs could
also be attributed to the undoubted improvement of the PD
technique, especially in terms of peritonitis prevention and of
biocompatibility of the dialysis solutions. At present, PD is a
successful treatment for end-stage renal disease, and several

studies have con�rmed equivalent adequacy, mortality, and

uid balance status when compared with hemodialysis, at
least for the �rst 4-5 years [14–17]. However, the growth
of PD continues being limited by the membrane incapacity
to perform adequate di�usive and/or convective transports
at long term [2, 18]. Peritonitis and ultra�ltration failure,
with a clinical result of extracellular volume overload and
an increased cardiovascular risk, are still the major factors
contributing to technique dropouts [2, 18, 19].

PD technique requires the instillation and periodical
renovation, through a permanently installed catheter, of
a hyperosmotic PD 
uid into the peritoneal cavity. 	e
peritoneum acts as a semipermeable membrane across which
ultra�ltration and di�usion take place [1–3]. In consequence,
one of the most important goals in PD is the long-term
preservation of the peritoneal membrane integrity [2, 18, 19].
	e use of solutions with neutral pH and with low content
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of glucose degradation products (GDPs) may represent a
potential strategy to attenuate some of the PD-related adverse
e�ects [20]. 	e impact of these novel, more biocompatible,
solutions on the clinical outcomes is currently being recog-
nized [21, 22]. However, classical glucose-based PD 
uids
are still needed, because the new-generation biocompatible
solutions are expensive and many potential users cannot
a�ord them. One possibility to reduce the adverse e�ects
of classical PD 
uids on the peritoneum is by decreasing
the dwell time of the dialysate [23, 24]. Another alternative
approach to preserve the peritoneal membrane could be the
use of pharmacological agents protecting themesothelium or
targeting in
ammation and�brosis [25, 26]. In this review,we
discuss two putative long-term pharmacological intervention
strategies that have been tested in experimental animal mod-
els of PD. One strategy is the addition of pharmacological
agents into the PD 
uids and the other strategy is the use
of drugs that are administrated by oral route. We summarize
the current knowledge regarding the therapeutic approaches
in experimental PD models directed against the epithelial to
mesenchymal transition (EMT) of mesothelial cells (MCs) or
against the EMT-promoting stimuli operating in vivo.

2. Pathogenesis of Peritoneal
Membrane Dysfunction

	e structure of the peritoneum is simple and is composed
of a single layer of MCs that lines a compact zone of
connective tissue that contains few �broblasts, mast cells,
macrophages, and vessels [27, 28]. It was generally believed
that the uremic status might a�ect the architecture of the
peritoneal membrane and its transport characteristics. In
this context, the peritoneum of partially nephrectomized rats
showed altered permeability [29]. Despite these �ndings in
animal models, the e�ect of uremia itself on the peritoneum
in humans is controversial. Two human peritoneal biopsy
studies have shown a modest compact zone thickening and
vasculopathy in predialysis renal patients [30, 31]. In contrast,
in other studies no signi�cant �brosis or vasculopathy was
observed in uremic non-PD patients [32].

	e bioincompatible nature of some PD 
uids and
episodes of bacterial and fungal infection are considered the
main etiologic factors of peritoneal deterioration [2, 12, 19,
25, 33]. 	ey induce acute and chronic in
ammatory and
reparative responses that initiate the structural alterations of
the peritoneal membrane including loss of MCs monolayer,
�brosis, angiogenesis, and hyalinizing vasculopathy [30, 31,
34–36] (Figure 1). Such alterations are considered the major
cause of ultra�ltration failure and loss of the dialytic capacity
of the peritoneum [2, 19, 37, 38]. 	ere is emerging evidence
suggesting that the local injury induced by classical glucose-
based PD 
uids is mediated, at least in part, by the presence
of GDPs and by the acidic pH. GDPs through the formation
advanced glycation-end products (AGEs) may stimulate the
production of extracellular matrix components (ECM) as
well as the synthesis of pro�brotic and angiogenic factors
[2, 19]. Several studies have demonstrated the appearance
of AGEs in the peritoneal e�uents of PD patients, which

correlated with the time on PD treatment. Biopsy studies
have con�rmed the accumulation of AGEs in the peritoneal
tissues of PD patients.	e intensity of AGEs accumulation is
associated with �brosis and ultra�ltration dysfunction [2, 19].

	e peritoneal immune response to injury or infection
involves, among other cells, MCs and resident macrophages
that work in a coordinatedmanner to recruit other in
amma-
tory cells, including mononuclear phagocytes, lymphocytes,
and neutrophils. MCs and in�ltrating immune cells can
produce a wide number of cytokines, growth factors, and
chemokines to establish a complex network that feedbacks
resulting in acute or chronic in
ammation [2, 25, 39–41].
Sustained in
ammation might trigger the �brogenic and
angiogenic processes associatedwith the ultra�ltration failure
that causes PD technique dropout (Figure 1).

	ere are two di�erent pathologic forms of PD-related
�brosis [42–44]. 	e most common is simple peritoneal
sclerosis (SPS), which occurs in almost all patients. 	e
degree of �brosis is mild and shows a relation with the time
on dialysis. In general terms, SPS ceases when the patient
is transplanted or shi�ed to hemodialysis [28, 31, 38, 42–
44]. On the other end of the spectrum is encapsulating
peritoneal sclerosis (EPS), which is a rare form of sclerosis
that evolves rapidly with intense �brosis, in
ammation, and
�brin deposits [43–46]. It is a life threatening condition that
in many cases evolves to visceral encapsulation with a �brous
cocoon and progresses even if the patient is removed from
PD. In this context, EPS o�en becomes apparent a�er renal
transplantation or switching patients to hemodialysis [47–
49]. 	e etiopathogenesis of EPS is still debated, with some
sustaining that it is a rare form of progression of SPS and
others that it is a primitive form of sclerosis [50–52]. 	us,
the main reasons that have led to PD-induced sclerosis to
become a subject of active research are the high frequency
of mild degree peritoneal �brosis (SPS) and the severity and
poor prognosis of EPS.

However, �brosis does not appear to be the unique
structural alteration of the peritoneal membrane induced by
PD. Besides this alteration the peritoneum may also show an
increase of capillary number (angiogenesis) and hyalinizing
vasculopathy [2, 25] (Figure 1). Vascular endothelial growth
factor (VEGF) is a strong angiogenic factor involved, among
othermolecules, in endothelial cell proliferation and vascular
permeability [53]. It has been suggested that local production
of VEGF during PD plays a central role in the processes
leading to peritoneal angiogenesis and functional decline
[54–58]. It has been demonstrated that MCs can produce
high amounts of VEGF in vitro in response to various stimuli
[59–62]. In addition, it has been suggested that MCs, via a
mesenchymal conversion, may convert into the major local
producer of VEGF during PD, which in turn appears to
be associated with peritoneal transport alteration [57, 62,
63]. Some studies of peritoneal biopsies have suggested that
angiogenesis and vasculopathy are the most characteristic
structural alteration in PD-related peritoneal pathology, at
least in patients with severe membrane failure [30, 34]. In
contrast, other studies have shown that in stable uncompli-
cated PD patients vascular density does not increase, while
intact vessels decrease with time of treatment and severe
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Figure 1: Structural alteration of the peritoneal membrane during PD. (a) Normal peritoneal tissue from a healthy donor stained with
Haematoxylin-eosin (H&E) shows a preservedMCsmonolayer that lines a compact zone of connective tissue (A). Peritoneal membrane from
a PD patient stained with H&E shows the loss of the MCs monolayer and increased thickness of the compact zone (B). Magni�cation ×200.
Staining of the peritoneal vessels with anti-CD31 antibody demonstrates an intense angiogenesis in peritoneal membrane from PD patient
(C). Hyalinizing vasculopathy can be observed in the peritoneal tissue from PD patient (D). Immunohistochemical analysis of the peritoneal
membrane from PD patient reveals the presence of �broblast-like cells embedded in the �brotic stroma expressing the mesothelial markers
cytokeratins and calretinin (E) and (F). Magni�cation ×150. (b) Schematic representation of the progressive alterations of the peritoneal
membrane in the time course of PD.
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vasculopathy predominate mostly in long-term PD [36, 64,
65]. 	e only change that is constantly found in peritoneal
biopsies a�er a time on PD is submesothelial �brosis [2, 19,
30–32, 34]. Nevertheless, there is increasing evidence that
�brosis in conjunction with angiogenesis and most probably
with augmented vessel permeability are key determinants of
ultra�ltration dysfunction [25, 30]. In animal models of PD
it has been shown that �brosis and angiogenesis may be two
separate responses to peritoneal injury [66–69]. However,
in PD patients, it is possible that �brosis and angiogenesis
are intimately and closely related in the response of the
peritoneum to prolonged injury [25].

3. Peritoneal Dialysis Induces
the Accumulation of Myofibroblasts

Another characteristic structural alteration of the peri-
toneum during PD is the loss of the MC monolayer and the
progressive accumulation of a particular type of activated
�broblast termed myo�broblast (Figure 1), which, as will be
discussed below, derive partially from the local conversion of
MCs.	e termmyo�broblast de�nes a cell with intermediate
features between a �broblast and a smooth muscle cell.
From an immunophenotypic perspective, they are de�ned by
the expression of �-smooth muscle actin (�-SMA). Myo�-
broblasts were initially described by Gabbiani et al. in the
granulation tissue of a cutaneous model of wound repair
[70, 71]. Since then, they have been reported as important
protagonists of almost all situations of repair and �brosis
that take place in human pathology [72]. 	eir capacity
to synthesize extracellular matrix elements, growth factors,
cytokines, and participation in the in
ammatory response,
as well as their contractile properties, converts them to the
most important �broblastic phenotype. As stated by Phan
they must be considered the “reference” �broblast phenotype
to which all others must be related or compared [73]. Myo�-
broblasts are neither present in the normal peritoneum nor
in the peritoneum obtained from uremic non-PD patients
[32, 74]. In contrast, they can be easily observed in many
patients undergoing PD treatment [32, 34, 75].

	e origin of myo�broblasts is still an open question
and a matter of intense debate [76–81], but it is generally
accepted that these �broblasts constitute a heterogeneous
population that may derive frommultiple sources (Figure 2).
	ere is emerging evidence that the origin of myo�broblasts
may vary between di�erent organs and within di�erent areas
of individual organs. 	ese observations may suggest that
tissue- and organ-speci�c microenvironments dictate the
di�erent proportions of myo�broblasts subpopulations [76,
77, 82–87]. 	e activation of resident �broblasts has classi-
cally been considered the main origin of myo�broblasts in
most �brotic pathologies [70–73, 83, 86]. Other studies have
pointed to cells recruited from the bone marrow (�brocytes)
as an important source of myo�broblasts in several �brotic
disorders [76, 87–90]. In addition, it has been shown that
the local conversion of epithelial cells and endothelial cells
may also contribute to the accumulation of myo�broblasts
in some reparative and �brotic diseases. 	e conversion

into myo�broblasts by these cells is achieved through two
closely related processes termed epithelial to mesenchymal
transition (EMT) and endothelial to mesenchymal transition
(EndMT), respectively [86, 90–95]. More recently it has
been suggested that vessel-associated pericytes may also
transdi�erentiate into myo�broblasts [77, 96] (Figure 2).

In the peritonealmembrane, themyo�broblastsmay have
at least a dual origin: (1) from resident �broblasts through an
activation process and (2) from the mesothelium via EMT
[25, 32, 97] (Figure 1). 	e presence of other myo�broblasts
subpopulations in the damaged peritoneum during PD has
not been described so far in PD patients [25]. However, in a
mouse model of PD 
uid exposure, it has been shown that
myo�broblasts may have di�erent origins including resident
�broblasts, MCs, endothelial cells, and bone marrow-derived
cells [82]. As we will discuss below, the identi�cation of the
EMT of MCs as a key process in the onset and progression of
peritoneal �brosis and angiogenesis opens new insights for
therapeutic intervention.

4. Mesothelial Cells Undergo
a Mesenchymal Transition in Response to
PD-Induced Damage

	e mesothelium is a continuous surface layer formed by

attened, polygonal, andmononuclearMCs [28].	ismono-
layer shows remarkable �brinolytic properties and is thought
to be involved in the prevention of �brous adhesion for-
mation in the peritoneum. MCs cells have vast biosynthetic
capacity and secrete phospholipids and phosphatidylcholine
in the form of lamellar bodies that provide a lubricating
surface for the movement of abdominal viscera [98–100].
	e presence of MCs that have undergone a mesenchymal
conversion in vivo in the e�uent and in the peritoneal tissue
of PD patients was �rst demonstrated in a landmark paper
published in 2003 [97]. 	e authors described that soon
a�er PD is initiated, peritoneal MCs showed a progressive
loss of epithelial phenotype and acquired myo�broblast
characteristics [97]. About the same time it was demonstrated
that the treatment in vitro of omentum-derived MCs with
TGF-�1 induced amyo�broblast conversion of these cells that
were reminiscent of an EMT-like process [101].

E�uent-derived MCs can be easily isolated from PD
patients using standard methods [97, 102]. It was described
that ex vivo cultures of e�uent-derived MCs showed
two main morphologies: epithelioid and nonepithelioid
(�broblast-like). A�er analyzing several hundred MC cul-
tures with growth capacity, it could be determined that the
frequencies of the di�erent e�uent-derived MC cultures
were approximately 53 percent for epithelioid phenotype
and 44 percent for nonepithelioid MCs. 	e prevalence of
nonepithelioid MC cultures appeared to be associated with
the time the patients have been subjected to PD and with the
episodes of acute or recurrent peritonitis or hemoperitoneum
[97, 102]. A less frequent cell culture type (less than 6 percent)
with mixed morphologies has also been described [97, 102].
In the course of practicing ex vivo cultures of e�uent-derived
cells, it can be observed occasionally hypertrophic MCs,
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Figure 2: Multiple origins of myo�broblasts have been proposed in tissue �brosis. Myo�broblasts may derive from at least �ve di�erent
sources through various mechanisms: phenotypic activation from interstitial �broblasts; di�erentiation from vascular pericytes; recruitment
from circulating �brocytes; capillary endothelial-mesenchymal transition (EndMT); and epithelial-mesenchymal transition (EMT). 	e
relative contribution of each source to the myo�broblast pool in peritoneal �brosis still requires further studies.

which might appear alone or accompanied by MCs with
a normal size [102, 103]. Hypertrophic MCs could be the
consequence of an arrest of the cell cycle, since these cells are
unable to proliferate [104].

Proliferating MCs from e�uents showed high expression
of ICAM-1 independently of their morphology, and even
mixed cultures were homogeneous in the expression of
this marker. On the contrary, ICAM-1 was negligible on
�broblasts from omentum, supporting that e�uent non-
epitheliod cells have a mesothelial origin [97]. In addition,
e�uent-derived cells also showed high expression of CA-
125, a known mesothelial marker, independently of their
shape, whereas �broblasts were negative for this molecule,
reinforcing the concept of a mesothelial origin of these
cells and rule out possible �broblast contaminations [102].
	e analysis of the expression of the epithelial markers
cytokeratins and E-cadherin was important to determine
more precisely the nature of e�uent-derived cells. High
expression of cytokeratins and E-cadherin was only observed
in näıve omentum-derived MC, whereas e�uent-derived
cells showed a progressive reduction in the expression of
these molecules, although even nonepithelioid MCs might
maintain a small population of positive cells. Fibroblasts were
completely negative for these twomarkers [97, 102].	emor-
phological changes and downregulation of cytokeratin and E-
cadherin in e�uent-derivedMCs were indicative of an EMT-
like process. However, the de�nitive prove to demonstrate
that the PD-induced phenotype changes of the MCs were
related with an EMT process came from the analysis of the
expression of several mesenchymal markers including snail,
N-cadherin, �bronectin, collagen I, �-smooth-muscle actin
(�-SMA), and �broblast speci�c protein-1 (FSP-1) that were
gradually upregulated in e�uent MCs with epithelioid and
nonepithelioid phenotypes [19, 25, 97, 102].

MCs that have undergone a mesenchymal phenotype
acquire highermigratory and invasive capacities, which allow
these cells to invade the submesothelial stroma [25, 58, 97,
105]. 	us, the mesenchymal conversion of MCs may also
be observed in vivo in the peritoneum as a response to
PD. Immunohistochemical analysis of peritoneal biopsies

from PD patients has shown the presence of �broblast-like
cells embedded in the compact zone expressing mesothelial
markers such as cytokeratins, E-cadherin, ICAM-1, and
calretinin [25, 32, 57, 65, 97] (Figure 1(a)). In addition, these
peritoneal biopsies showed expression of �-SMA in the
�brotic stroma, especially in the upper submesothelial level,
and in many cases these myo�broblasts showed coexpression
of cytokeratins [32, 74]. 	ese results indicated that new
myo�broblastic cells could arise from local conversion of
MCs by EMT during the repair responses that take place
in PD. 	e myo�broblastic conversion of MC has been
con�rmed in an in vivo animal model based on the injection
of an adenovirus vector that transferred active transforming
growth factor (TGF)-�1 in rodent peritoneum [106, 107].

MCs have a mesodermal origin and share characteristics
with both epithelial cells and endothelial cells, which may
undergo EMT and endothelial to mesenchymal transition
(EndMT), respectively. 	us, recently several authors have
proposed renaming the mesenchymal conversion of MCs,
that takes place in di�erent organs such as lung, liver, or
peritoneum, with a more appropriate term: mesothelial to
mesenchymal transition (MMT) [62, 82, 108–111]. MMT is
a complex and step-wise process that requires alterations
in cellular architecture and a deep molecular reprogram-
ming with new biochemical instruction [19, 25, 58]. MMT
starts with the dissociation of intercellular junctions, due
to downregulation of intercellular adhesion molecules, and
with the loss of microvilli and apical-basal polarity. 	en,
the cells adopt a front to back polarity and acquire �-SMA
expression and increased migratory capacity. In the latest
stages of MMT, the cells increase their capacity to degrade
the basement membrane and to invade the �brotic compact
zone (Figure 3). During the end-stages of the myo�broblast
conversion, the MCs are able to produce large amount
of extracellular matrix components and to synthesize a
wide range of in
ammatory, pro�brotic, and angiogenic
factors that may contribute to the structural and functional
deterioration of the peritoneal membrane [2, 19, 25, 58].
Other commonly used molecular markers for MMT include
the downregulation of cytokeratins, Wilm’s tumor protein-1
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(WT1), and calretinin and up-regulation of N-cadherin, FSP-
1, and transcription factor snail (Figure 3).

MMT process in vivo results from an integration of
diverse signals triggered by multiple factors, being di�cult to
assign priorities or hierarchy [25, 58, 63]. Receptors-mediated
signaling in response to these factors trigger the activation of
a complex network of intracellular e�ectors such as Smad 2
and 3, integrin-linked kinase (ILK),Notch1, nuclear factor-�B
(NF-�B), extracellular-signal regulated kinases 1/2 (ERKs1/2),
phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, c-jun-
N terminal kinase (JNK), and TGF-�-activated kinase-1
(TAK-1) (Figure 3). 	ese e�ectors orchestrate the dissoci-
ation of intercellular adhesion complexes, the changes in
cytoskeletal organization, and the acquisition of migratory
and invasive capacities that take place during MMT [25, 63,
105, 106, 112, 113].

It is noteworthy that MMT is a reversible process, at least
during the early stages. 	erefore, molecules that negatively
regulate MMT and promote mesenchymal to mesothelial
transition (rMMT) must exist. Two endogenous factors,
namely, hepatocyte growth factor (HGF) and bone mor-
phogenetic protein-7 (BMP-7), have been demonstrated to
block and reverseMMT [114–116]. Smad7 is anothermolecule
that negatively regulates MMT [117–119]. On the other hand,
the MMT process may be modulated by mitogen-activated
protein (MAP) kinase p38 to prevent an exacerbated response
to MMT-promoting stimuli [120]. Recently, it has been
shown that caveolin-1 (CAV-1) impedes the exacerbation
of the mesenchymal conversion of endothelial cells [121]
and MCs (unpublished data) by promoting the internaliza-
tion of TGF-� receptor and modulating TGF-� signaling
(Figure 3).

5. TGF-�1 Is a Master Molecule in
the Pathogenesis of Peritoneal Damage and
in the Regulation of MMT

In the complex microenvironment that occurs during PD

uid-induced tissue injury a wide range of cytokines and
factors are upregulated making it di�cult to assign priorities
or hierarchy for their e�ects on MMT and on the onset and
progression of peritoneal damage [25]. Nonetheless, TGF-
�1 is considered a master molecule in the development of
peritoneal dysfunction, because its overexpression has been
correlated with worse PD outcomes [122–124]. 	e rele-
vance of TGF-�1 in peritoneal damage is further suggested
in experimental animal models, in which TGF-�1 gene is
overexpressed into the peritoneal cavity with adenovirus vec-
tors, recapitulating the structural and functional alterations
observed in PD patients [106, 107, 125]. Overexpression of
molecules counteracting TGF-�1-triggered Smad signaling,
including Smad7 and BMP-7, prevents and reverses PD 
uid
induced peritoneal damage in animal PDmodels [115, 116, 118,
119]. Recently, it has been demonstrated that direct targeting
of TGF-�1, by using speci�c TGF-�1-blocking peptides, pre-
serves the peritoneal membrane from dialysis 
uid-induced
damage in a mouse PD model [82]. TGF-�1 is a prototypical

inducer of EMT in several tissues and organs [126–128]. TGF-
�1 is also a key factor for the myo�broblastic conversion of
MCs through MMT [58, 82, 97, 101].

5.1. Smad-Dependent Signaling Pathways in TGF-�1-Induced
MMT. TGF-�1 belongs to a family of growth factors that
includes TGF-�s, activins, and bone morphogenic proteins
(BMPs) [126–130]. We will focus on the members TGF-
�1 and BMP-7 because the balance between these two
factors is a key determinant in the maintaining of the
epithelial-like phenotype of MCs, and conversely, in the
acquisition of mesenchymal-like characteristics [114, 116].
In fact, BMP-7 is a natural antagonist of TGF-�1 during
organ �brosis [130]. 	ese factors signal via heterodimeric
serine/threonine kinase transmembrane receptor complexes
[129–131]. 	e binding of the ligand to its primary receptor
(receptor type II) allows the recruitment, transphosphoryla-
tion, and activation of the signaling receptor (receptor type
I) (Figure 4). 	e receptor type I of TGF-�1, also known
as activin receptor-like kinase 5 (ALK5), is then able to
exert its serine-threonine kinase activity to phosphorylate
Smad2 and Smad3. 	e receptor type I of BMP-7 (ALK3)
phosphorylate Smad1, Smad5, and Smad8 (Figure 4). 	ese
receptor-activated Smads (R-Smads) interact directly with
and are phosphorylated by activated TGF-� or BMP recep-
tor type I, respectively. Upon phosphorylation, they form
heterodimers with Smad4, a common mediator of all Smad
pathways [126, 129–131].	e resulting Smad heterocomplexes
are then translocated into the nucleus where they bind
directly to DNA and activate target genes involved either in
the mesenchymal conversion of MCs (MMT) in the case of
Smads2/3 or in the blocking/reversion of the mesenchymal
transition (rMMT) in the case of Smads1/5/8 (Figure 4).
Members of the third group of Smads, known as inhibitory
Smads (Smad6 and Smad7), control BMP-7- and TGF-�1-
triggered Smad signaling by preventing the phosphorylation
and/or nuclear translocation of R-Smads and by inducing
receptor complex degradation through the recruitment of
ubiquitin ligases [126, 127, 129, 130].

	e necessity of Smad2/3 signaling in TGF-�1-induced
MMT is clearly illustrated in vivo in Smad3 knockout
mice, which are protected from peritoneal �brosis, show
reduced collagen accumulation, and display attenuatedMMT
[106]. Targeting Smad signaling by inhibitory Smad7 also
blocks MMT and reduces peritoneal �brotic lesions [129–
131]. Blockade of Smad2/3 signaling is also linked to the
inhibition of MMT by hepatocyte growth factor (HGF)
and BMP-7 [115, 116]. Mechanistically, HGF interferes with
TGF-�1-mediated MMT by inducing the expression of the
transcriptional corepressors such as SnoN and TGIF that
interact with activated Smad2/4 complex and block the
expression of Smad-dependent genes [132–134]. 	e mech-
anism underlying BMP-7 blockade of MMT is by activation
of Smad1/5/8 protein that counteracts with TGF-�-activated
Smad2/3 [116, 130].

It has been shown that MCs constitutively express
BMP-7 and display basal activation of Smad1/5/8, which
probably contribute to the maintaining of the epithelial-
like phenotype. Induction of MMT with TGF-�1 results in
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Figure 3: Schematic illustration of the key events during MMT. Mesothelial to mesenchymal transition (MMT) occurs when mesothelial
cells lose their epithelial-like characteristics, including dissolution of cell-cell junctions, that is, tight junctions, adherens junctions and
desmosomes, and loss of apical-basolateral polarity, and acquire a mesenchymal phenotype, characterized by actin reorganization and stress
�ber formation, migration, and invasion. 	e diagram shows four key steps essential for the completion of entire MMT, the most commonly
used mesothelial and mesenchymal markers, and the molecules and signal transduction pathways that act either as inducer or modulator of
the MMT process. See text for details.

downregulation of BMP-7 and inactivation of BMP-7-speci�c
Smad proteins [116]. Mechanistically, the TGF-�1-mediated
inhibition of BMP-7 signaling might be explained by BMP-
7 downregulation itself, or alternatively, by the upregulation
of modulators of BMP-7 and TGF-�1 pathways. In this
context, it has been shown that connective tissue growth
factor (CTGF), a cytokine that is induced inMCs upon TGF-
�1 treatment [135–138], inhibits BMP-7 and activates TGF-
�1 signals by direct binding in the extracellular space [139,
140]. In addition, mesothelial BMP-7 signaling might also
be in
uenced by other BMP-7 modulators such as gremlin-
1, kielin/chordin-like protein (KCP), or uterine sensitization-
associated gene 1 (USAG-1) [130, 141] (Figure 4).	us, the rel-
ative contribution of these di�erent factors in the inhibition
of BMP-7 pathway by TGF-�1 remains to be established and
deserves further studies.

5.2. Non-Smad Signaling Pathways in TGF-�1-Induced MMT.
	e Smad-dependent pathways are not the only ways by
which TGF-�1 regulate cellular functions in MCs includ-
ing the MMT process. Smad-independent pathways includ-
ing the mitogen-activated protein kinases (MAPKs) ERKs
1/2, JNK, and p38, as well as NF-�B, TAK-1, and PI3-
K/Akt pathways, also participate in TGF-�1-induced MMT
(Figure 5). 	ese pathways can either potentiate or modulate
the outcome of TGF-�1-induced Smad signaling. Emerging
evidences suggest that Smad signaling is tightly integrated

within a complex network of signaling pathways with cross-
talks that modify the initial Smad signals and allow the
pleiotropic activities of TGF-�1 [142, 143]. In this context, it
has been shown that the signaling pathways of ERKs 1/2, JNK,
NF-�B, and TAK-1 potentiate the TGF-�1-induced MMT
[105, 112]. On the contrary, the p38-mediated pathway mod-
ulates the mesenchymal conversion of MCs by a feedback
mechanism based on the downregulation of ERKs 1/2, NF-
�B, and TAK-1 activities [120] (Figure 5).

	ere are instances in which Smad signaling is not
required for TGF-�1 responses, as exempli�ed by the acti-
vation of the PI3-K/Akt pathway in Smad3 de�cient mice
leading to the stabilization of �-catenin, which in turn pro-
mote MMT [106]. A central role in this Smad3-independent
signaling pathway is achieved by glycogen-synthase kinase
(GSK)-3�, which has been shown to phosphorylate �-
catenin and the transcriptional repressor Snail, leading to
their ubiquitinization and degradation via the proteasome.
	e phosphorylation of GSK-3� by PI3-K/Akt leads to its
functional inhibition. As a result, �-catenin is stabilized
and localizes to the nucleus, where it feeds into the Wnt
signaling pathway by interacting with lymphoid enhancer
factor-1/T-cell factor (LEF1/TCF) and contributes to the
transcription of mesenchymal-related genes. In addition, the
inhibition of GSK-3� also drives the stabilization and nuclear
translocation of Snail, a potent transcriptional repressor
of E-cadherin and other intercellular adhesion molecules
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[144–147] (Figure 5). Interestingly, in vivo inhibition of the
mammalian target of rapamycin (mTOR) by rapamycin com-
pletely abrogates theMMT response in Smad3-de�cient mice
[106]. 	us, TGF-�1 causes peritoneal injury through Smad-
dependent and Smad-independent pathways suggesting that
suppression of both pathways may be necessary to abrogate
MMT.

6. Pathologic Significance of MMT in
Peritoneal Dysfunction

It has been shown that during the progression of MMT,
MCs acquire the ability to synthesize large amounts of
components of the matrix such as �bronectin and collagen
I [25, 57, 58]. In addition, MCs that undergo a MMT
express high levels of cyclooxygenase (COX)-2 [148, 149],

CTGF [135, 136, 138], andVEGF [54, 56, 57], which have been
implicated in in
ammatory responses as well as in the �brotic
and angiogenic processes [2, 19, 25, 58]. In this context, it has
been described that MCs from e�uents with non-epitheliod
(�broblast-like) phenotype produced higher levels of COX-2
and VEGF ex vivo than MCs with epithelial-like phenotype.
Interestingly, the levels of expression of these molecules by
cultured e�uent MCs correlated with the rate of peritoneal
transport in PDpatients [57, 148]. In addition, it was observed
that patients draining non-epitheliod cells had higher blood
VEGF levels than patients with MCs with epithelial-like
phenotype in their e�uents. Again, a correlation between
in vivo VEGF levels and the rate of peritoneal transport in
PD patients could be demonstrated [57]. A clinical study
using peritoneal biopsies from 35 stable patients being on
PD for up to 2 years demonstrated that patients in the
highest quartile of mass transfer area coe�cient of creatinine
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(Cr-MTAC) showed signi�cantly higher MMT prevalence in
the peritoneal compact zone. In the multivariate analysis, the
highest quartile of Cr-MTAC remained as an independent
factor predicting the presence of MMT a�er adjusting for
�brosis [65]. 	ese �ndings indicate that MMT is a frequent
morphological change in the peritoneal membrane.

Another study showed that the dialysate-to-plasma ratio
for creatinine (D/P Cr) was positively correlated to dialysate
CTGF concentration. Furthermore, CTGFmRNAexpression
was higher in peritoneal tissueswith ultra�ltration failure and
was correlated with thickness of the peritoneum. Interest-
ingly, the study demonstrated that high peritoneal transport
state was associated with increased CTGF production by
e�uent MCs stimulated with TGF-�1 [138]. 	us, these
results suggest that functional alteration of MCs, namely,

acquisition of mesenchymal properties, may be involved in
the progression of peritoneal structural alteration and in high
transport state.

7. MMT as a Potential Therapeutic Target

Having accepted that MMT is a key event in peritoneal
damage induced by PD, during the last years it has been
suggested that MMT might be a potential target for thera-
peutic intervention [25, 58]. 	e therapeutic strategies may
be designed to block or revert the MMT itself because
this process can be manipulated with a wide range of
agents and pharmaceutical products. Conversely, the ther-
apeutic approaches may be directed to interfere or modify
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uids, which contribute to
the formation of advanced glycation-end products (AGEs) and stimulate the mesenchymal conversion of MCs. 	e low pH of the dialysates
and the mechanical injury during PD 
uid exchanges may cause tissue irritation and contribute to chronic in
ammation of the peritoneum,
which promoteMMT. Episodes of bacterial or fungal infections or hemoperitoneum cause acute in
ammation and upregulation of cytokines
and growth factors such as TGF-�, IL-1, TNF-�, and Angiotensin II, among others, which are strong inducers of MMT. 	e therapeutic
strategies may be designed either to prevent or reverse the MMT itself, to decrease the MMT-promoting stimuli, or to treat MMT-associated
e�ects such as the invasion capacity to avoid their accumulation in the compact zone. 	e diagram illustrates aspects related with the MMT
process that can be clinically managed, alone or in combination, in order to prevent peritoneal membrane failure. See text for details.

the upstreamMMT-promoting stimuli operating in vivo (e.g.,
in
ammation, low pH, mechanical injury, GDPs content of
PD 
uids, and accumulation of AGEs) (Figure 6). For the
design of the di�erent therapeutic approaches, in vitro and ex
vivo cultures ofMCs aswell as experimental animalmodels of
PD have been very useful for testing pharmacological agents
with potential e�ects on MMT.

	e use of solutions with neutral pH and low GDPs
content may represent the �rst and most obvious approach
to attenuate some of the PD-related adverse e�ects including
the mesenchymal conversion of MCs [20–22]. It has been
shown that these new-generation low-GDPs 
uids have less
impact on MMT in vivo in PD patients and in vitro in
cultured MCs [150, 151]. In agreement with these results,
it has been demonstrated that low-GDPs 
uids induce less
in
ammatory response and less �brosis in amouse PDmodel
[148]. However, completely biocompatible PD 
uids will be
di�cult to develop, at least under cost-e�ective perspec-
tives. In addition, classical glucose-based PD 
uids are still
needed, because the new-generation biocompatible solutions
are expensive and many potential users cannot a�ord them.
An alternative approach to preserve the peritoneal mem-
brane could be the use of pharmacological agents targeting

in
ammation and injury or preserving the mesothelium
(Figure 6). Two long-term pharmacological intervention
strategies have been tested in experimental animal models of
PD. One strategy is the addition of pharmacological agents
into the PD 
uids and the other strategy is the use of drugs
that are administrated by oral route.

As discussed above, TGF-�1 is a master molecule in the
pathogenesis of peritoneal damage and in the regulation of
MMT. In fact it has been demonstrated that addition to the
PD 
uid of two speci�c TGF-�1-blocking peptides preserved
the peritoneal membrane from damage in amouse PDmodel
[82]. However, it should be considered that agents directly
blocking TGF-�1 cannot be easily employed in the clinical
practice of PD, at least for long-term treatments, because
TGF-�1 has important modulating functions of the immune
and in
ammatory responses [152, 153]. 	e molecular stud-
ies of the TGF-�1 Smad-dependent and Smad-independent
signaling pathways involved in MMT provide more speci�c
strategies for the preservation of peritoneal membrane with
less side e�ects (Figure 6). In this context, the endogenous
factors HGF and BMP-7 have been demonstrated to block
MMT in vitro. In addition, intraperitoneal administration of
these proteins prevented and reverted peritoneal damage in
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experimental animal models [115, 116, 154]. It is important to
note that the use of BMP-7 may be di�cult to be used in the
clinical practice of PD because it has been associated with
ossi�cation; indeed, BMP-7 has been administered locally
into bone lesions to promote bone formation [155]. An
alternative to BMP-7 would be the use of synthetic agonists
of the BMP-7 receptor ALK3 [156].

	ree examples of therapeutic drugs that have demon-
strated to preserve the peritoneal membrane a�er admin-
istration by oral route are Celecoxib, Rosiglitazone, and
Tamoxifen [108, 111, 148, 149] (Figure 6). Celecoxib is a potent
anti-in
ammatory drug whose mechanism of action is based
on the inhibition of COX-2. In mouse or rat PD models,
orally administered Celecoxib decreased peritoneal in
am-
mation, angiogenesis, and �brosis and preserved peritoneal
membrane function [148, 149]. Rosiglitazone is an agonist
of the peroxisome proliferator-activated receptor (PPAR)-
� that improves insulin sensitivity. 	e high concentration
of glucose and GDPs in standard PD 
uids induce a local
diabetic environment, which leads to the formation of AGEs
that have an important role in peritoneal membrane in
am-
mation. PPAR-� agonists are used to treat type II diabetes
and they have bene�cial e�ects on in
ammation [157, 158].
Hence, the e�cacy of the Rosiglitazone in ameliorating peri-
toneal membrane damage was tested in a mouse PD model.
Rosiglitazone reduced peritoneal AGEs accumulation, pre-
served the mesothelial cell monolayer, reduced �brosis and
angiogenesis, and improved peritoneal ultra�ltration. 	is
was associated with increased peritoneal concentration of
the anti-in
ammatory cytokine interleukin-10 (IL-10) and
with a higher percentage of CD4/CD25/FoxP3 regulatory
T cells (Tregs) [108]. 	ese animal experiments provide
proof-of-concept evidence for the feasibility and potential
e�cacy of targeting the in
ammation in order to preserve
the peritoneal membrane. 	e clinical use of some of the
speci�c compounds tested so far in animals may encounter
several hurdles. 	us, side e�ects associated with thiazo-
lidinediones including edema, weight gain, bone fracture
risk, heart failure, and an adverse lipid pro�le, have led to
the withdrawal from the European market of Rosiglitazone
[26, 108]. Prolonged use of COX-2 inhibitors may exert
vasoconstrictor and thrombogenic e�ects, especially worri-
some in renal patients, who have a high cardiovascular risk
[26]. Immunomodulatory drugs may have an impact on the
risk or severity of peritonitis. Further studies are needed in
this regard since none of the in vivo PD studies addressed
infectious complications. Still, independently of any speci�c
drug considerations, preclinical studies support the feasibility
of modulating in
ammation pharmacologically to improve
the response to bioincompatible PD 
uids [26, 108, 148].

Tamoxifen is a synthetic modulator of the estrogen recep-
tor that has been used successfully to treat retroperitoneal
�brosis and EPS associated with PD [52, 111]. 	us, the
e�cacy of Tamoxifen to preserve the peritoneal structure and
functionwas tested in themouse PDmodel. Oral administra-
tion of Tamoxifen signi�cantly reduced peritoneal thickness,
angiogenesis, invasion of the compact zone by mesenchy-
mal MCs, and improved peritoneal function. Tamoxifen
also reduced the e�uent levels of VEGF and leptin [111].

In contrast to Celecoxib and Rosiglitazone that did not
exert any e�ect on the MMT process in vitro [108, 148],
Tamoxifen blocked the MMT induced by TGF-�1, as it pre-
served the expression of E-cadherin and reduced the expres-
sion of mesenchymal-associated molecules [111]. Tamoxifen
also inhibited the invasion capacity of mesenchymal-like
MCs by a mechanism implicating the inhibition of matrix
metalloproteinase-2 (MMP-2) synthesis [111]. 	ese results
demonstrate that Tamoxifen is a therapeutic option to treat
peritoneal �brosis and that its protective e�ect is mediated
via modulation of the MMT process.

Other examples of drugs that can be administrated either
locally or by oral route are certain inhibitors of the renin-
angiotensin-aldosterone system (RAAS) including Aliskiren,
Valsartan, Enalapril, and Lisinopril (Figure 6). Components
of the RAAS are constitutively expressed within peritoneal
MCs and are upregulated in the presence of acute in
amma-
tion and chronic exposure to peritoneal dialysate. Further-
more, activation of the RAAS contributes to MMT, resulting
in progressive �brosis and angiogenesis of the peritoneal
membrane [159]. Administration of the RAAS inhibitors by
di�erent routes reduced peritoneal thickening and improved
peritoneal function in PDF exposure models in rats [159–
162].

Activators of vitamin D receptor (VDR) are used to
treat secondary hyperparathyroidism in PD patients. VDR
activation modulates in
ammation, �brosis, and immune
responses, modifying the 	1/	2 pattern, inducing Tregs,
and decreasing NF-�B [163]. It also exerts antiproliferative
actions, increases anti�brotic factors such as BMP-7, and
decreases renal �brosis [163]. However, the potential bene�t
of VDR activators for the peritoneum has not been studied so
far.

	e molecular characterization of the TGF-�1-mediated
signaling and other pathways involved in the regulation of
MMT provide a wide range of possible molecular targets
such as ERKs-1/2, JNK, TAK 1, NF-�B, and Notch 1, many
of which still require to be tested in animal PD models
[105, 112, 120] (Figure 6). In this regard, it has been shown that
TGF-�1 induced Notch signaling in rat peritoneal MCs. 	e
gamma-secretase inhibitor “DAPT” signi�cantly inhibited in
vitro the TGF-�1-induced expression of the mesenchymal
markers �-SMA, collagen I, and VEGF. Furthermore, it has
been demonstrated that intraperitoneal injection of DAPT
signi�cantly attenuated peritoneal �brosis, decreased mass
transfer of glucose, and increased ultra�ltration rate in a rat
PD model. 	us, the gamma-secretase inhibitor that inter-
feres with Notch signaling prevents biochemical, histological,
and functional consequences of peritoneal �brosis through
inhibiting MMT [113].

Finally, an alternative therapeutic approach that still
needs to be tested in vivo consists of the blocking of
the invasive capacity of mesenchymal MCs to avoid their
accumulation in the submesothelial compact zone (Figure 6).
MMT is accompanied by upregulated expression of matrix
metalloproteinases such as MMP-2 and MMP-9, which
would degrade the basal membrane and the connective tissue
allowing the submesothelial invasion by the mesenchymal-
likeMCs. It could be expected thatMMPs inhibitors, or drugs
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that inhibit the synthesis of MMPs (e.g., Tamoxifen), may
prevent the accumulationMCs-derivedmyo�broblasts in the
submesothelial compartment. Recently, it has been demon-
strated that invasion capacity of MCs that have undergone
a MMT is governed, at least partially, by the VEGF/VEGF
receptors/coreceptors axis [62]. It was shown that block-
ing antibodies directed against VEGF or the coreceptor
neuropilin-1 e�ciently interfered the invasion of MCs in
vitro [62]. It would be interesting to test in vivo whether the
prevention of the accumulation of MCs-derived myo�brob-
lasts would, in turn, diminish the structural alteration of the
peritoneal membrane.

8. Conclusions

During the last years several studies using ex vivo cultures
of e�uent-derived MCs, in conjunction with immunohis-
tochemical analysis of peritoneal biopsies, have allowed the
identi�cation of the MMT as a key process in peritoneal
membrane failure. In fact, it could be demonstrated that
e�uent-derived MCs re
ect the functional status of the
peritoneal tissue of PD patients. It can be expected that
di�erent omics approaches applied to the MMT process will
provide new biomarkers, with diagnostic and/or prognostic
value, for the progressive peritoneal deterioration, and for the
identi�cation of master molecules governing the mesenchy-
mal conversion of MCs.

Pharmacological interventions targeting MMT or MMT-
promoting stimuli operating in vivo (e.g., in
ammation)
represent interesting approaches to limit peritoneal damage
during PD. 	e feasibility of two pharmacological inter-
vention approaches has been tested in experimental animal
models of PD. One was the addition of pharmacological
agents to the PD 
uids. 	is approach has been useful for
proof-of-concept studies. However, incorporation of new
components to the PD solutions requires major changes
from a regulatory point of view and will increase the cost
of PD. Self-administration of a therapeutic agent into the
solution by the patient will also increase the cost of PD and
has a potential risk of contamination. 	e other approach,
the use of oral agents, is technically easier. 	e general
response to tissue injury involves in
ammation to eliminate
the insult as well as damaged tissue in order to restore
its architecture and functionality. Sustained in
ammation
promotes �brosis and angiogenesis, processes associatedwith
the ultra�ltration failure that causes PD technique dropout.
PD patients present a chronic in
ammatory state and may
su�er acute in
ammatory processes induced by infection or
“haemoperitoneum.” A better understanding of the role and
regulation of in
ammation in PD-related peritoneal damage
is essential to design novel therapeutic strategies to protect
the peritoneal membrane.

Careful bene�t/risk studies are required. Ideally, we
should better understand the potential bene�ts for the peri-
toneum of drugs that may serve multiple purposes for PD
patients. Since a key market for these approaches is the
low-income countries that cannot a�ord the newer, more
biocompatible PD 
uids, cost will be an issue and generic

drugs are preferable over new compounds. In one scenario,
patients may use the drug for as long as they are on PD.
In other scenarios, the drugs would be required during
especially vulnerable periods, as the peritonitis episodes or
when hyperosmotic 
uids are needed.
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