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Abstract Tissue engineering is a multidisciplinary field of research in which the cells,
biomaterials, and processes can be optimized to develop a tissue substitute. Three-
dimensional (3D) architectural features from electrospun scaffolds, such as porosity,
tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell
behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolal-
ity, temperature, nutrient, and metabolite concentrations dictate cell viability inside the
constructs. The effect of different electrospun scaffold properties, bioreactor designs,
mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can
be studied individually or combined with phenomenological modeling techniques. This
work reviews the main culture and scaffold factors that affect tissue development in vitro
regarding the culture of cells inside 3D matrices. The mathematical modeling of the
relationship between these factors and cell behavior inside 3D constructs has also been
critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.

Keywords Stem cells . Tissue development . Electrospun scaffolds . Phenomenological
modeling

J Biol Phys (2018) 44:245–271
https://doi.org/10.1007/s10867-018-9482-y

* Ágata Paim
agata@enq.ufrgs.br

1 Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng.
Luis Englert, s/n, Porto Alegre, Rio Grande do Sul 90040-040, Brazil

2 Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752,
Porto Alegre, Rio Grande do Sul 90610-000, Brazil

3 Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul 90020-010, Brazil

Mesenchymal stem cell cultivation in electrospun

scaffolds: mechanistic modeling for tissue engineering

# Springer Science+Business Media B.V., part of Springer Nature 2018

http://orcid.org/0000-0001-5319-7167
http://crossmark.crossref.org/dialog/?doi=10.1007/s10867-018-9482-y&domain=pdf
mailto:agata@enq.ufrgs.br


1 Introduction

Tissue engineering is a potential alternative for tissue transplants and applies basic principles
of engineering to restore, preserve, and/or enhance tissue function [1]. In tissue engineering,
biomaterials can be engineered to produce scaffolds that mimic the extracellular matrix
environment, taking into consideration appropriate architecture, biodegradability, biocompat-
ibility, and mechanical properties [2].

There are commercial devices available for tissue engineering but their high cost can
impair the treatment of large tissue damage [3]. In addition, according to the regulated
commercial products presented by Place, Evans, and Stevens [4], 87% of these products use
animal-derived materials (e.g., porcine, bovine, equine or rat collagen, or decellularized tissue);
37% present nutrient diffusion limitations (products in sheet form) and only 25% contain cells
(e.g., MACI, Hyalograft C autograft and CaRes contain chondrocytes, and TransCyte,
Apligraf, and Dermagraft contain human fibroblasts). In order to reduce the risks of
adverse immunological response and animal component contamination and pathogen
transmission, many efforts are being made to develop low-cost xeno-free (with no
animal-derived components) devices [5, 6].

The combination of different scaffold fabrication techniques (freeze-thawing [7], knitting
[8], braiding [9], fused deposition modeling [10]) and biomaterials (natural [11], synthetic [7,
9, 10], and hybrid [8]) have been explored in several commercial products. After an initial
focus on the development of skin substitutes for burn treatment, the engineering and avail-
ability of devices for other tissue types, such as bone [12], cartilage [13], vascular [14], and
nerve [15], have become possible.

Many tissue-engineering strategies are based on the culture of autologous cells in
scaffolds: BioSeed-C, CaRes, Hyalograft C autograft, MACI, Neo-bladder, and VascuGel
[4, 13]. However, autologous cell sampling requires an invasive procedure and may not
provide a sufficient cell number for expansion or transplant techniques [16, 17]. Mean-
while, mesenchymal stem cells (MSCs) are a potential alternative for tissue regeneration
because of their differentiation potential and highly proliferative and immune-privileged
characteristics [17–20].

However, the success of cell culture in three-dimensional scaffolds requires adequate
culture conditions. Aside from cell viability, the culture parameters should be able to provide
chemical, electrical, and mechanical stimuli to induce specific cell responses and generate
functional tissue [21, 22]. In this review, the main scaffold architecture and culture conditions
features affecting tissue development in vitro are discussed with an emphasis on the culture of
mesenchymal stem cells in electrospun scaffolds. Furthermore, tissue engineering applications
of several bioreactor systems and seeding techniques are synthesized. Regarding these process
variables, mechanistic modeling applications in tissue engineering are reviewed.

2 Scaffolds

Several types of biomaterials can be used as scaffolds in tissue engineering, such as films,
beads, and porous three-dimensional matrices (Fig. 1).

Films can be used as bi-dimensional (2D) scaffolds and, along with MSCs, can be
employed to develop substitutes for vascular tissue [23]. However, 2D scaffolds are unable
to support in vitro cell growth and organization in a tissue-like structure because in vivo

246 Á. Paim et al.



the extra-cellular matrix (ECM) provides a three-dimensional (3D) microenvironment for
the cells [24]. While 2D cultures are not affected by biophysical properties of the matrix,
3D scaffolds provide physical and chemical signals to guide tissue development [25]. In
this context, the interaction of MSCs with biomaterials can be investigated using a 2D
platform to determine suitable models for further investigation in 3D structures for bone
engineering [26]. In addition, porous films seeded with cells can be stacked to engineer a
3D corneal substitute [27].

3D scaffolds can be fabricated in the form of beads or blocks with a defined shape [28].
Beads are usually alginate [29], collagen [30], calcium phosphate, e.g., tricalcium phosphate
[29], and polymer [31] based spherical structures designed for further molding into a 3D
defined shape [30–32] or for injection for minimally invasive treatment to repair bone defects
[29]. Beads and injectable hydrogels have also been used as soft tissue fillers in adipose [33]
and cartilage [34] tissue engineering. Hydrogels are composed of crosslinked hydrophilic
polymer chains [35] and can be produced in specific shapes other than microspheres [36].
However, their application is usually limited to soft tissue due to their poor mechanical
properties [37].

MSCs have been cultivated in ceramic [38], metallic [39], and polymeric [40] porous 3D
solid scaffolds to develop substitutes for load-bearing tissue. However, metals are non-
resorbable [39] and ceramics present low fracture toughness and brittleness [41]. On the other
hand, synthetic biodegradable polymers have been used to develop 3D porous scaffolds for
hard [42] and soft [43] tissue engineering due to their adequate mechanical properties and
degradability.

The use of biodegradable polymer blends in tissue engineering allows for adjustment of the
scaffold performance in terms of biocompatibility, processability, mechanical resistance, and
degradation rate [44]. Aliphatic polyesters, such as polycaprolactone (PCL), polylactic acid
(PLA), polyglycolic acid (PGA), and their copolymers degrade mostly by the hydrolysis of the
ester bonds in acid monomers that can be removed from the body by metabolic routes,
characterizing them as bioresorbable materials [45, 46]. However, degradation byproducts
can affect the medium acidity, and consequently, cell viability, migration, and angiogenesis
[47]. The local accumulation of these byproducts can be avoided with a perfusion culture
system, which can also reduce the polymer degradation rate [48].

The fabrication process can determine the architecture and mechanical properties of the
scaffold. The more common techniques to produce polymeric porous 3D structures for tissue
engineering are gas foaming, fiber extrusion and bonding, electrospinning, solid free-form
fabrication, 3D printing, phase separation, solvent casting/particulate leaching, freeze-drying,
and emulsion freeze-drying [43]. However, interconnectivity and pore size and shape are not
always controllable with most of these methods [49].

Fig. 1 Types of structures for cell attachment and culture: film (a), beads (b), and porous scaffold (c)
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According to Pulikkot et al. [50], when compared to non-porous and microporous
polycaprolactone scaffolds, microfibrous matrices enhanced cell proliferation as a result of
the higher surface roughness and area available for cell adhesion. Electrospinning is a
technique capable of producing micro and nanofibrous scaffolds with interesting characteris-
tics for tissue engineering, allowing for the use of a wide range of polymers [51]. The self-
organization process of the fibers is induced by electrostatic repulsion forces (Fig. 2), assigning
to the technique high versatility in terms of morphology, surface topology, and fiber property
control [52]. The stability of the fiber-formation process can be complex, as it is influenced by
the spinning solution properties, electrospinning parameters, environmental conditions, and
interactions among these variables [53, 54]. Besides this, the electrospinning technique is
characterized by a low productivity rate [54, 55] and tendency to produce thin scaffolds with
small pores. The latter is a significant drawback in the production of 3D tissues because it can
hinder cell infiltration and the manufacture of large structures [56, 57].

Electrospun scaffolds have high packing density (ratio of surface area to total volume),
highly interconnected pore networks, and fibers with diameters similar to the dimensions of the
extracellular matrix protein network [58]. In addition, electrospinning enables the fiber
thickness to be controlled through the manipulation of process variables, allowing for the
study of the impact of the porous matrix spatial architecture on cell behavior [59].

Due to their unique features, the use of nanofibrous electrospun scaffolds in tissue
engineering is expanding rapidly. Polycaprolactone/collagen/hydroxyapatite (PCL/col./HA)
[60], fibrinogen/polydioxanone (Fg/PDO) [61], and polycaprolactone/polylactic acid (PCL/
PLA) [62] nanofibrous electrospun scaffolds have been shown to promote bone regeneration
in vitro when seeded with human MSCs. In diabetic animal models, 3D poly(lactic acid-co-
glycolic acid) (PLGA) electrospun scaffolds have been used for chronic wound repair [63],
while poly-L-lactide acid (PLLA) electrospun devices have been able to improve insulin

Fig. 2 Electrospinning setup scheme
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secretion [64]. Polymeric nanofibrous electrospun scaffolds have also been applied in clinical
trials for the treatment of cutaneous leishmaniasis [65], diabetic foot ulcers [66], and for human
pelvic floor reconstruction [67].

3 Scaffold architecture impact on cell behavior

The chemical nature and architecture of a 3D scaffold can affect cell proliferation and
differentiation due to its importance in cell adhesion and migration and in mass transport
within the matrix [68].

Scaffold porosity has a direct impact on the supply of nutrients to the cells, metabolite
dispersion, pH local stability, and cell signaling [69]. Higher porosities are known to support
larger cell densities and to enhance cell proliferation and differentiation [70, 71]. In addition,
scaffolds with higher porosity often present higher permeability and cell infiltration [72, 73].
However, a larger void fraction can lead to poor mechanical resistance [72]. Thus, the
biomaterial porosity must be optimized to allow for cell interaction and provide the mechanical
properties required for the intended application.

Tortuosity is another factor that has an impact on mass transport, affecting the nutrients’
effective diffusivity and the cell migration rate within the scaffold [69]. The tortuosity refers to
the path that the culture medium has to take through the interconnected pores to get from one
extremity of the scaffold to another. Thus, scaffolds with high tortuosity present high resistance
to fluid passage through the porous structure, resulting in low permeability.

Pore size should also be appropriate to allow for cell spreading and network formation and
its optimal value usually depends on the material of the scaffold and the cell type [25].
According to Fu and Wang [74], the optimal mean pore diameter is the approximate diameter
of the cell. This is because pore size establishes the proximity between the cells in the initial
stages of the culture and the space available for their 3D organization during tissue develop-
ment [69]. Although large pores can enhance cell proliferation, excessively large pores can be
prejudicial to the mechanical properties of the structure [75] and discourage the extracellular
matrix synthesis between the fibers [76].

In fibrous scaffolds, mean fiber diameter can affect the scaffold hydrophilicity, mechanical
strength, porosity, pore size mean values, and distribution. In PLGA [77] and PCL [78]
electrospun scaffolds, smaller fiber diameters were associated with more hydrophobic struc-
tures. However, even though scaffolds with larger fibers presented improved cell attachment
due to higher hydrophilicity, the decreased available surface area led to reduced stem cell
growth rates [78]. Microfibrous PLGA/PCL scaffolds with different fiber diameters presented
similar ultimate tensile strength, but thicker fibers resulted in stiffer and less ductile scaffolds,
associated with higher cell infiltration (due to pore size) and poor ECM production [79]. In a
range from 1 to 2.5 μm, electrospun scaffolds with higher fiber diameters can be associated
with higher porosity [80]. However, in a range of 1 to 10 μm, fiber thickness may not present a
linear correlation with the porosity [81–83]. Elsayed et al. [80] observed the highest levels of
cell infiltration and migration through the electrospun scaffolds with the largest pore size and
greatest porosity. In addition, scaffolds with smaller fiber diameters present smaller pores [82,
84], which can hinder cell migration and colonization [58]. Furthermore, while electrospun
scaffolds with smaller fiber diameters can present higher human MSC densities at the
beginning of the in vitro cell culture, larger fiber diameter scaffolds can influence the cellular
phenotype and differentiation [85].
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Figure 3 presents a scheme for a porous structure where the architectural features discussed
above are illustrated.

4 Culture conditions

The culture conditions directly affect cell behavior and tissue development in vitro. Parameters
such as pH, osmolality, and temperature should be kept in an optimal operating range to ensure
the viability of the cells. Other factors, like nutrient and metabolite concentrations, can be used
to induce a specific cell reaction. Thus, some key culture variables that influence the cell
culture are discussed below.

4.1 pH and osmolality

The main reason for pH variation in the culture medium is the production of carbon
dioxide by metabolic processes. The most appropriate pH for the majority of mammalian
cells is between 7.2 and 7.4 [86]. The decrease of the pH of the culture medium leads to
lower cell proliferation and glucose uptake rate [87]. Alkaline microenvironments do not
affect human bone marrow-derived MSC proliferation, but may inhibit ECM production
and affect the differentiation potential of the cells [88]. A buffer of bicarbonate-carbon
dioxide provides an excellent control of the pH while the cell culture remains in an
incubator (usually with 5% CO2) [89].

Cells need an isotonic environment because of the necessity to maintain the osmotic
pressure over the culture, usually between 260 and 320 mOsm/kg [90]. Hypo and hyperosmotic
cultures, when compared to cultures with a physiologic osmolality, can present smaller
extracellular matrix (ECM) synthesis and reduced cell metabolism, and in extreme cases lead
to cell death [91]. Hypertonic stress results in vesicle formation, increased cell area, and reduced

Fig. 3 Architectural features of three-dimensional scaffolds. The porosity (void fraction) is indicated by the
amount of blank space and the pore size and geometry is represented by the size and geometry of the blank

spaces; the tortuosity is illustrated by the paths signaled by black arrows
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proliferation in monolayer cultures of adipose-derived stem cells, with reduced cell viability in
three-dimensional cultures [92].

4.2 Oxygen concentration

Oxygen levels lower than the atmospheric concentration (21%, v/v) can characterize a hypoxia
condition and are part of the physiologic conditions found in vivo in the microenvironment of
several stem-cell types (1–8%, v/v) [93]. Under hypoxia, oxygen is not only a nutrient but
becomes a signaling molecule that acts on cell development and organization [94]. Human
MSCs under hypoxia initiate the exponential phase of growth earlier and have reduced nutrient
uptake and inhibitory metabolite production, when compared to cell cultures in normoxia [95].

The culture of human MSCs under hypoxia can modify the conversion of glucose in lactate
(gradual accumulation of lactate) and change the energy production metabolism from aerobic
to anaerobic [96]. Cell expansion under this condition can also affect the differentiation
potential of MSCs through the up-regulation of the transcriptional expression of HIF-2α
[97]. Low oxygen tensions can be used in rotating bioreactors but can lead to reduced and
non-uniform ECM component deposition and, consequently, smaller tissue size [98].

4.3 Glucose concentration

Glucose is an important metabolic fuel and a limiting nutrient for MSC culture because their
ATP production occurs mainly through glycolysis, which leads to the degradation of glucose
into pyruvate [99]. According to Machado [100], glucose concentrations of approximately
5 mM propitiate higher viability and proliferation of human dental stem cells. Glucose can also
affect the oxygen uptake rate of chondrocytes, resulting in near anoxia region formation in
scaffolds cultivated with low glucose medium [101]. Furthermore, cell viability has shown to
be hindered by carbon sources and not oxygen availability in 3D tumors [102].

Glucose concentration can drop drastically to 0.5 or 1.5 mM, within 3 days in cell cultures
with low glucose medium, under hypoxia and normoxia, respectively, leading to reduced cell
viability [103]. According to Deschepper et al. [96], combined low oxygen and glucose
depletion leads to cell shrinkage and decreased cell viability and ATP production. Furthermore,
not a single viable cell is observed after 3 days in cultures with no glucose with or without
bovine fetal serum addition (which contains a small glucose concentration).

On the other hand, high glucose conditions can suppress bone-marrow MSC proliferation
and migration [104]. This condition can activate glycogen synthase kinase-3β (GSK3β),
which inhibits the expression of cyclin D through the Wnt/β-catenin pathway, reducing cell
proliferation. Simultaneously, the migration ability of the cells is reduced by the activation of
GSK3β, which can decrease C-X-C chemokine receptor type 4 (CXCR4) expression via
stromal cell-derived factor 1 (SDF-1)/CXCR4 signaling [104].

4.4 Toxic metabolite concentration

In glycolysis, cells convert pyruvate by lactate dehydrogenase (LDH) to lactate and this can
lead to lactate accumulation at high glycolytic rates due to the increase of lactate production
and efflux from the cells [105]. Mammalian cells, including MSCs, can also produce energy
through glutaminolysis, generating ammonia and glutamate by hydrolysis of glutamine and
lactate or alanine by further conversion of pyruvate [106]. The accumulation of toxic
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metabolites such as lactate and ammonia can change the pH and the osmolality of the culture
medium and inhibit cell growth. Lactate concentrations up to 20 mM inhibit MSC growth from
the fifth day of cultivation [107]. According to Schop et al. [106], the source of the MSCs can
influence cell metabolism and the capacity of the cells to tolerate high concentrations of toxic
metabolites.

Metabolite concentration can also affect cell morphology, changing the fibroblast form of the
MSCs to a more stretchy or cubic morphology. This can be related to the alkalinization or
acidification of the cytoplasm, induced by high lactate and ammonia concentrations, respectively.
However, humanMSCs do not lose their differentiation potential when their growth is hindered by
high amounts of lactate or ammonia in the culture medium [106].

5 Bioreactors

Dynamic culture systems, such as spinner flasks, rotating systems, and perfusion bioreactors
(Fig. 4), can be used to reduce mass transport limitations in vitro and/or to optimize a specific
process, such as cell expansion, differentiation, extracellular matrix (ECM) synthesis, or growth
factor secretion. A dynamic culture more efficiently mimics the natural environment in which the
scaffold will be transplanted afterwards because it can regulate the cell microenvironment and
simulate different conditions of oxygen and shear stress [108]. Furthermore, bioreactors can be
designed to control time and spatial cell signaling through the incorporation of biological or physical
stimuli [109].

Spinner flask and stirred tank bioreactors (Fig. 4a) have been widely used to expand MSCs
in commercial microspheres, which are also called microcarriers, due to the enhanced mass
transport inside the constructs and resultant higher cell growth [110]. In order to optimize MSC
growth, different microcarriers [111], culture medium [111–113], and shear stress levels [114]
have been studied in stirred bioreactors. However, contrary to microcarriers, tissue substitutes
require appropriate geometry and functions, usually being cultivated in dynamic systems with
perfusion and rotation (Fig. 4b-f). Regarding engineered 3D scaffolds, the use of bioreactors in
tissue engineering constitutes an alternative for providing appropriate nutrient supply, residual
removal, gas exchange, and mechanical forces stimulus for cells [68].

Rotating wall bioreactors (Fig. 4b) provide mechanical stress stimulation, which induces
osteogenic and chondrogenic differentiation [115]. This system involves lower shear stress

Fig. 4 Bioreactor types for cell culture in tissue engineering (culture medium in gray, air in white): spinner flask
(a), rotating wall (b), rotating bed (c), perfusion (d), rotating bed perfusion (e), and hollow fiber (f)
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than other dynamic culture systems, while also resulting in homogeneous cell distribution due
to enhanced mass transport. In a similar way, bioreactors with a rotating bed (Fig. 4c), where
the scaffold rotates instead of the bioreactor wall, have been used to cultivate human umbilical
vein smooth muscle cells in tubular electrospun scaffolds. Elsayed et al. [80] showed that a
rotation dynamic system promoted cell infiltration through the scaffold thickness and increased
cell proliferation when compared to a static culture.

Other bioreactors use flow perfusion (Fig. 4d) to provide higher nutrient transport, leading
to enhanced cell viability and uniform distribution through 3D scaffolds [116]. Higher cell
growth, osteoblastic differentiation induced by the shear stress [71, 117–119], and cell
migration [120–123] are often observed in perfusion bioreactors when compared to static
culture. Furthermore, oxygen concentration gradients can be produced in perfusion bioreactors
to mimic in vivo ECM conditions and enhance cell migration and growth [124].

Direct perfusion bioreactors have also been shown to enhance ECM deposition and
distribution [119, 125]. Liao et al. [126] used perfusion bioreactors to generate an ECM
coated in electrospun microfibrous scaffolds by cultivating chondrocytes and then
decellularizing the construct. The constructs were later used for MSC chondrogenic
differentiation under serum-free conditions and with no transforming growth factor beta
1 (TGF-β1) addition. Thibault et al. [127] also used perfusion flow to induce ECM
deposition by MSCs in an electrospun scaffold followed by decellularization of the
construct and reseeding with MSCs, but used osteogenic medium and focused on osteogenic
differentiation.

In direct perfusion systems, it is important to establish an optimal perfusion flow rate to
avoid cell death due to high shear stress [118]. Small pores can also result in high shear stress
levels, with bioreactor cultures being performed mainly with porous matrixes with mean pore
sizes in the range of 100 to 500 μm, which are not possible in electrospun scaffolds (maximum
mean pores of 45 μm reported by Pham et al. [82]). The perfusion culture of human MSCs
seeded in electrospun nanofibers can lead to initial round-shaped morphology and may result
in cell proliferation, chondrogenic differentiation, and ECM synthesis, similarly to what is
observed in static culture [128]. Gugerell et al. [129] also obtained no improvement with direct
perfusion of MSCs seeded in hydrogels or on top of the bottom layer in stacked electrospun
scaffolds.

One alternative to reduce shear stress inside the pores in perfusion systems is to use a
bypass to release pressure build-up [130]. Fixed-bed fibrous bioreactors can also allow for
lower shear stress inside electrospun scaffolds [131]. Yeatts et al. [132] used an indirect
perfusion system with flow through a packed bed of electrospun scaffolds seeded with human
MSCs to produce tissue substitutes for further subsequent implantation into rat femoral
condyle defects. Kim and Ma [133] compared two indirect perfusion systems with parallel
flow and transverse flow for growth factor secretion by human MSCs in 3D constructs. It was
verified that parallel flow allowed for cell-secreted basic fibroblast growth factor (FGF-2)
accumulation in the scaffolds whereas transverse flow increased the mass transport through the
scaffold and affected FGF-2 redistribution in the construct.

For direct perfusion, da Silva et al. [128], Grayson et al. [134], Dahlin et al. [135], and
Santoro et al. [136] used a system in which the flow split in several channels, reaching lower
flow rates and reducing shear stress in electrospun scaffolds. However, the culture medium
was the same for all the scaffolds and it was not possible to control the individual metabolite
production, nutrient consumption, and flow because each scaffold has a random geometry and
consequently results in a different resistance to flow, as highlighted by Dahlin et al. [135].
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On the other hand, medium perfusion and scaffold rotation can be combined in a direct
perfusion bioreactor with rotating bed (Fig. 4e). Diederichs et al. [137] compared the culture of
human MSCs seeded in macroporous ceramic scaffolds in static conditions and in a direct
perfusion bioreactor with rotating bed. Under the proposed dynamic conditions, high glucose
consumption and lactate production indicated increased cell proliferation. In addition, the
bioreactor promoted enhanced osteogenic differentiation. Neumann et al. [138] also expanded
human MSCs in a perfused rotating bed (cell carrier slides), but used a disposable bioreactor.
Their dynamic culture scheme provided low shear stress and high cell yields while maintaining
MSC morphology and stemness characteristics (specific MSC surface markers and osteo/
adipo/chondro lineages differentiation potential).

Tubular electrospun scaffolds have also been seeded with human MSCs for cultivation in
rotating bed perfusion bioreactors with alternate exposure to air and culture medium phases.
This dynamic culture system, when combined with appropriate growth factors and serum
amounts, stimulated MSC differentiation into a smooth muscle cell phenotype [139]. The
bioreactor culture also increased ECM synthesis and deposition and the homogeneity of cell
distribution on the scaffold surface; it also presented cell colonization inside the scaffold,
which was not observed in static culture due to small pore size [139].

Another dynamic system that has been used to produce bone tissue substitutes with MSCs
is the hollow fiber bioreactor (Fig. 4f), in which cells are seeded in the extracapillary space and
culture medium flows inside the hollow fiber lumen [140]. Furthermore, higher cell density,
proliferation, and osteogenic differentiation can be achieved by 3D scaffolds seeded with MSC
cultures in bioreactors with combined perfusion and cyclic compression [141]. Furthermore, in
order to generate functional tissue responsive to both mechanical and electrical signaling,
MSCs have been incorporated in electrospun fibers and cultivated in bioreactors with dynamic
uniaxial strain and electrical stimulus [21].

6 Cell seeding

The seeding density of cells can influence tissue development because high cellularity
increases the cell–cell contact and communication. However, its effect is not so evident when
cells become confluent with culture time, which occurs with high cell concentrations in long-
term cultures [142]. Cell seeding methods can be static (droplet or suspension) or dynamic
(agitation, vacuum, centrifugation, stirring, rotational, and perfusion), observing that in some
cases (stirred, rotational, and perfusion) bioreactors can be used for cell seeding by using a cell
suspension instead of the culture medium [143]. As the seeding methods affect the quantity
and the distribution of viable cells adhered to the scaffolds at the beginning of the culture, the
main features of these seeding methods, schematized in Fig. 5 (except for stirring, rotational,
and perfusion, already presented in Fig. 4), are discussed below.

Static methods by droplet (Fig. 5a) or suspension (Fig. 5b) are simpler but have a low level
of efficiency and superficial adhesion. Droplet seeding, for instance, can lead to 20–50% of
cells not being attached to the scaffold due to breakup of the cell suspension and further floating
of the cells [76]. Yamanaka et al. [144] used an alternative droplet seeding in which the floating
of MSCs was avoided by using an absorbent surface under the scaffold to force the flow of cell
suspension from the top to the bottom of the scaffold. However, there is no evidence that this
would be an effective solution for electrospun scaffolds, as they used scaffolds produced by
solvent casting and particulate leaching, with large and interconnected pores.

254 Á. Paim et al.



Other methods, such as vacuum seeding (Fig. 5e) [145] and centrifugation seeding (Fig. 5d)
[146, 147] require small cell quantities and can be applied to reduce the time of the procedure,
increase cell infiltration, and homogenize their distribution in 3D scaffolds. However, scaffold
porosity and pore size may affect the results of both vacuum [148] and centrifugation [147]
seeding. Accordingly, different systems and protocols result in distinct seeding efficiencies and
even optimized protocols for these methods can lead to results inferior to those with static
seeding [144]. Furthermore, Griffon et al. [143] studied MSC attachment with several seeding
techniques and verified that the scaffold material and structure could be determinant in seeding
efficiency.

Regarding electrospun scaffolds, Wanasekara et al. [149] observed that nanofiber and
microfiber structures presented different fibroblast infiltration and may require distinct vacuum
pressures to optimize cell distribution inside the scaffolds. In addition, epithelial cells have
presented higher viability with the centrifugal method than with static seeding [150].

The most widely used dynamic methods are stirring (Fig. 4a), agitation (Fig. 5c), and
perfusion (Fig. 4d) seeding. The first two have higher efficiency levels than static methods, but
the amount of adhered cells depends on the cell concentration in the seeding solution [151].
Perfusion systems have higher efficiency levels and lower standard deviations for the number
of cells adhered to scaffolds than static seeding methods [76]. When compared to droplet or
stirred seeding, perfusion presents higher cell viability and uniformity of cell distribution
[152]. A rotating bed scheme (Fig. 4e) can be used in perfusion bioreactors to increase the
homogeneity of the cell distribution inside 3D scaffolds [125]. Besides this, perfusion seeding
can be optimized, considering the inverse correlation between flow rate and cell seeding
efficiency. Due to these characteristics, perfusion bioreactors have been used for seeding in a
variety of systems, including ceramic scaffolds with goat MSCs [125], fibrous scaffolds with

Fig. 5 Seeding methods (cell suspension in gray): droplet (a), suspension (b), agitation (c), centrifugation (d),
and vacuum (e)
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human MSCs [153], electrospun scaffolds with human fibroblasts [76], and rat MSCs [154] for
subsequent cultivation.

The thickness of electrospun scaffolds is limited by the reduction of fiber deposition
efficiency caused by the insulating effect of deposited fibers and consequent reduction of
electrostatic force applied to the polymeric solution [155]. For applications that require a
high volume of tissue, thin scaffolds can be assembled in a multilayer form to obtain the
desired thickness [156–160]. According to Ardakani et al. [161], cells cannot detach from
one layer and adhere to an adjacent layer naturally, especially when there is liquid between
the surfaces. Thus, in multilayered configurations, the position and disposition of the
seeding surfaces can be important for the final cell distribution and the drag of cells with
the passage of the flow.

7 Modeling scaffold properties and impacts

Modeling methods are mainly used to determine 3D scaffold architectural properties or
analyze their impact on nutrient transport and cell growth, adhesion, deformation, and
detachment [162–170]. In addition, the process of scaffold degradation can also be studied
and modeled to evaluate tissue development [171–176].

Truscello et al. [169] used a computational fluid-dynamic (CFD) model to predict 3D
scaffold permeability with different pore sizes and resulting different porosities. Santamaría
et al. [168] also used a CFD model to determine permeability and wall shear stress under
diverse flow rates for heterogeneous 3D structures with different pore sizes and interconnec-
tivity. Mechanical and biological properties of electrospun nanofibrous scaffolds can also be
estimated with mathematical models. Gómez-Pachón et al. [164] predicted the effective
Young’s modulus of scaffolds with aligned or random fiber disposition, while Decuzzi and
Ferrari [163] estimated the cellular adhesion strength as a function of the scaffold roughness
and surface energy. These models can be helpful in the design of scaffolds and bioreactors and
in situations where experimental measurements of these parameters are not available.

Coletti et al. [162] evaluated the effect of scaffold porosity and permeability variation due to
cell density on cell growth and mass transport in 3D perfusion cultures. Simulation results
showed that nutrient availability and cell density decrease with time in deeper sections of the
scaffold as a result of the pore volume occupation by cells as they proliferate and the
consequent reduction of the scaffold porosity and permeability. This could indicate that initial
cell density and distribution must be optimized in accordance with the scaffold pore size in
order to generate homogeneous tissue. Figure 6 shows different pore obstruction and size
reduction as a result of cell adhesion and growth.

Jungreuthmayer et al. [165] used CFD modeling to study cell drag and shear stress through
scaffolds with different pore sizes under flow perfusion. It was observed that cells with bridged
morphology (adhered to more than one strut) were up to 500 times more deformed when
subjected to the same shear stress than cells with a flat morphology (adhered to only one strut).
Thus, cell morphology, when adhered on the scaffold pore, could determine its detachment
under perfusion. McCoy and O’Brien [167] studied the influence of scaffold pore size in cell
attachment and detachment under different perfusion flow rates, and correlated cell deforma-
tion with cell detachment through experimental and computational techniques. The proposed
model could predict cell loss under different flow perfusion as a function of the initial cell
number, mean pore size, and mean shear stress, and included a constant for cell growth in static
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cultures. Thus, their model could be used to determine the conditions that minimize the effect
of pore obstruction with cell proliferation.

Ma et al. [166] evaluated the effect of porosity in perfusion flow through scaffolds and
observed that smaller porosities and pore sizes presented higher velocities due to the restriction
of available space for fluid flow and consequent increase of pressure drop. In addition, low-
porosity scaffolds presented higher oxygen volume fraction, indicating reduced consumption
and thus smaller cell growth. Yan et al. [170] studied the effect of different initial porosities and
flow rates on glucose and oxygen transport and on cell growth within 3D scaffolds, taking into
consideration the increase of the scaffold porosity due to polymer degradation. It was observed
that high initial porosities can reduce nutrient-effective diffusivity and availability with time
due to the occupation of the void space by cells and, as a result, affect cell distribution inside
the scaffold. This model could be useful for scaffolds with rapid degradation times and
corroborates with the results of Coletti et al. [162] and McCoy and O’Brien [167].

Scaffold degradation has also been studied using complex models. Chen et al. [172]
developed a mathematical model of the hydrolysis reaction and autocatalysis and considered
the effect of mass transport to evaluate the polymeric degradation of microparticles and tissue
scaffolds. The stochastic hydrolysis process was described based on a pseudo first-order
kinetic equation. The probability of hydrolysis of a single element was modeled as a proba-
bility density function dependent on the structural porosity and on the average molecular
weight loss. The autocatalytic contribution was modeled as an exponential function of the acid
catalyst. The model was able to predict the experimental behavior of degradation and erosion
of bulk-erosive polymer structures and evaluated the impact of scaffold architecture and mass
transfer on the degradation of porous structures.

Heljak et al. [174] modeled the aliphatic polyester hydrolytic degradation of a 3D porous
scaffold using reaction-diffusion equations for the concentrations of ester bounds and mono-
mers, and also considered the autocatalytic effect of soluble monomers. The model could
predict the degradation time and changes in the molecular weight and mass of a bone scaffold.
At a later date, these authors used this model to study the effect of different porosities on the
degradation process of a poly(DL-lactide-co-glycolide) scaffold under dynamic or static
conditions. Simulation results indicated that high porosity, fluid flow, or periodic replacement
of the medium (in static conditions) could reduce polymeric scaffold degradation [175]. The
model could be used to optimize scaffold porosity and to determine when medium replacement
is necessary in static culture, based on the accumulation of degradation by-products.

Shazly et al. [176] developed a computational model of bulk hydrolysis of bioresorbable
vascular poly(L-lactide) scaffolds in a post-implantation in vivo environment. The authors
studied the degradation by-product transport via diffusion and convection by considering the

Fig. 6 Pore obstruction with cell growth: dashed circles represent the reduction of the pore size with cell
adhesion on the pore walls; the “x” symbol denotes the obstruction of superficial small pores with cell adhesion
on the scaffold surface and the “+” symbol indicates pore obstruction due to cell growth and full occupation of
the pore space
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blood flow (in the lumen and the porous arterial wall) when the erodible scaffold is implanted
within the arterial wall. The polymer degradation and autocatalysis was modeled as a first-
order reaction with a system of reaction-diffusion equations that considered the systematic
formation of four oligomer groups and lactic acid. The metabolism of lactic acid in a healing
zone with varying diffusivity (to account for tissue remodeling) and in the arterial wall was
described as a first-order reaction and incorporated in reaction-diffusion-convection equations.
The model could predict the levels of lactic acid that accumulate in local tissue by coupling its
production with convective and diffusive transport and metabolic elimination. It was observed
that the interplay between the tissue remodeling and the hydrolysis process regulates the levels
of degradation by-products within the tissue and that mass transport is a more effective by-
product clearance mechanism than metabolic elimination. This model was later used to
evaluate the effect of polydispersity, initial degree of crystallinity, and lactide doping in the
degradation, erosion, and by-product accumulation. It was observed that only the erosion
process was sensitive to crystallinity and that all processes were responsive to lactide doping
[173].

Akalp et al. [171] proposed a model of tissue growth, enzymatic degradation of an enzyme-
sensitive hydrogel, and ECM molecules transport within the hydrogel scaffold. Enzymes
released by the cells were considered to diffuse through the polymer network and degrade
the hydrogel through cross-link cleavage, following Michaelis–Menten kinectics. The trans-
port and deposition of ECM molecules secreted by the cells were modeled with a convection-
diffusion-reaction system, considering an inhibition term for ECM deposition. It was shown
that an appropriate relationship between scaffold degradation and ECM transport and deposi-
tion is necessary to maintain the mechanical properties of the structure. The discussed
degradation models could be used in scaffold design to optimize the relationship between
architectural and degradation properties.

8 Modeling for bioreactors, seeding methods, and culture conditions analysis

Modeling can also be used as a tool for bioreactor design [177–181], seeding process analysis
[157, 182–184], and culture condition analysis and optimization [22, 134, 162, 185–193].

Singh et al. [181] used CFD modeling to study the velocities and wall shear stress inside
and outside a scaffold under uni-axial and bi-axial flow schemes in a rotational bioreactor. It
was observed that bi-axial rotations were capable of increasing fluid velocities and shear stress
within the scaffolds by combining rotational velocity vectors. This model could be useful in
rotational bioreactor design and optimization in a simplified study as nutrient transport and cell
growth are not considered.

Pathi et al. [179] studied parallel perfusion bioreactors with different liquid layer thick-
nesses above a porous scaffold seeded with granulocyte progenitor cells. Oxygen supply was
increased with a larger liquid layer thickness due to the higher oxygen delivery through
hydrodynamic flow, with little contribution of the oxygen permeability of the outer membrane.
Through computational modeling, it was possible to verify that convective oxygen delivery
provided by culture medium perfusion could overcome diffusion limitations and enhance cell
growth.

Devarapalli et al. [177] used CFD modeling to simulate several perfusion bioreactor
designs with rectangular or circular shapes and different inlet and outlet flow configurations
in order to evaluate the resulting shear stress and pressure drop in porous scaffolds.
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Homogenous shear stress distribution could be achieved in circular bioreactors with semicir-
cular inlet and outlets. Hidalgo-Bastida et al. [178] also performed CFD simulations to
compare circular and rectangular shape perfusion bioreactors, but did not evaluate diverse
inlet and outlet shapes. On the other hand, a proposal was made for a mixed design with a
rectangular holder for circular scaffolds and a safe distance between the scaffold and the inlet
and output to guarantee uniform flow and shear stress through the scaffold.

Schirmaier et al. [180] used mathematical models to determine optimum values for impeller
speeds and local shear stress in stirred single-use bioreactors for human adipose tissue-derived
MSC expansion under low-serum conditions. With the help of simulation results, it was
possible to scale-up microcarrier-based cell cultures from spinner flasks to large-scale stirred
single-use bioreactors. Thus, CFD modeling could be used not only in the design step but also
in the scale-up of bioreactors to guarantee the required conditions for cell expansion and tissue
development.

The generation of homogeneous tissue can also be affected by the seeding process with an
initial homogeneous cell distribution not necessarily being the best alternative in tissue
engineering. Doagǎ et al. [194] proposed a non-linear kinetic model of cell adhesion in porous
scaffolds based on the Langmuir’s theory of adsorption to describe cell seeding in a stirred
bioreactor. Cell attachment was considered a two-step process with initial recovery of the cell
integrin function—inhibited after the trypsinization required for cell detachment from the
culture flask for cell counting before cell seeding—and further integrin binding with scaffold
sites available for cell attachment. The model was able to represent the experimental process of
cell adhesion and reinforced the higher cell seeding efficiencies obtained in protocols with
alternative cell detachment treatments other than trypsinization.

Dunn et al. [157] proposed an alternating cell-seeding strategy for multilayer matrices to
surpass oxygen depletion in the inner core of the scaffold, verified with computational
simulations. Modeling cell growth and nutrient transport in a homogeneously seeded scaffold
showed the formation of hypoxic regions with time as the cell consumption became higher
than oxygen delivery through diffusion. Chung et al. [182] compared the result of various
seeding modes in cell growth in scaffolds and proposed that cell seeding in only the middle
portion of the scaffold could increase nutrient availability and homogenize cell distribution and
growth in tissue-engineered constructs.

In addition, Jeong et al. [184] evaluated the effect of different seeding strategies on cell
growth, and identified an optimal set of parameters for obtaining a homogeneous cell
distribution in five stacked scaffolds through mathematical modeling. It was observed that
the interplay between cell growth and nutrient consumption could be optimized by alternating
seeding between unseeded and partially cell-seeded scaffolds (with cells seeded in concentric
annulus) (Fig. 7). These models could be used to develop new strategies for optimal cell
seeding based on specific cell proliferation, migration, and nutrient consumption.

Several modeling applications aim to evaluate and/or identify optimal culture conditions
(flow rate, shear stress, fluid velocity, oxygen tension, electrical potential) within scaffolds
cultivated in bioreactors. Raimondi et al. [192] used CFD modeling to predict shear stress and
fluid velocity in 3D fibrous structures under perfusion. Grayson et al. [134] optimized medium
perfusion rate for a direct perfusion bioreactor by predicting the shear stress inside the scaffold.
Through mathematical modeling, it was possible to evaluate the oxygen transport and verify if
the oxygen levels and cell viability were maintained in a range of flow rate values. These
models could be used to characterize the bioreactor conditions that cannot always be exper-
imentally measured, such as shear stress and oxygen concentration.
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Flaibani et al. [188] used mathematical modeling to identify an optimum flow rate for
reaching a maximum cell volume fraction inside 3D scaffolds under perfusion. To achieve this,
cell growth was modeled as a function of pore size distribution and oxygen concentration. It
was observed that low flow rates could inhibit cell growth by leading to very low oxygen
concentrations (hypoxia) inside pores with different diameters. On the other hand, high flow
rates resulted in elevated shear stress levels that could inhibit cell growth or induce cell
detachment. This model could be used to estimate cell growth and distribution inside
heterogeneous porous scaffolds.

Another option to account for scaffold microorganization was reported by Porter et al.
[191]. The authors used microcomputed tomography imaging to define scaffold
microarchitecture. Local shear stress was then estimated at various perfusion flow rates to
determine an optimal value through association with experimental data of cell growth in the
literature. A peak in shear stress of 57 mPa was observed and associated with cell death within
the constructs. This model could be used to define limiting and optimal values of local shear
stress for cell growth as a function of scaffold microarchitecture.

Chung et al. [187] predicted shear stress levels inside a scaffold under direct perfusion as a
function of pore size and its reduction with cell growth. It was observed that the macro average
stress could have a fivefold increase and that the overall permeability could be reduced
dramatically with a slight overall cell volume fraction increase. These changes were associated
with the reduction of the scaffold void space with pore occupation by cell and ECM volumes.
In the same context, Lesman et al. [189] developed a CFDmodel to predict the shear stress and
pressure drop with different flow rates in 3D cultures under direct perfusion. A cell-layer
thickness was considered to account for cell-growth impact on the pore space reduction and on
the scaffold mass transport. The simulations show that shear stress average values increased
with time due to cell growth and thickening of the cell layer inside the pores, which
corroborates with the time decrease of scaffold permeability constant obtained experimentally.
These models could be used to predict permeability and shear stress values for scaffolds with
high density of cells or small pore sizes.

Sacco et al. [195] proposed a model where the cells and the ECM compose a biomass phase
and the maximum biomass growth rate of the Monod kinetics is a function of shear stress.
However, nutrient concentration and shear stress variation in time and space were not
considered. Liu et al. [190] compared static and dynamic cultures under direct perfusion with
different flow rates using a CFDmodel that considers both nutrient availability and shear stress
stimulation on cell-growth kinetics. The cells and the ECM components secreted by the
cells were also considered as one single phase in a way whereby it is possible to use these
models to consider the shear stress effect on cell growth by stimulation of the ECM
synthesis under perfusion.

Fig. 7 Different cell-seeding strategies proposed by Jeong et al. [184]: seeded scaffold (gray) intercalated with
non-seeded scaffolds (black) (a) and scaffolds seeded in alternating concentric annulus regions (b)
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Zhao et al. [193] used a mathematical model to predict shear stress and oxygen levels inside
3D poly (ethylene terephthalate) (PET) scaffolds under perfusion; three matrices were assem-
bled in series in each perfusion chamber. The simulation results indicated that different flow
rates did not yield changes in oxygen levels that could affect cell growth and metabolism.
Furthermore, while increased human MSC growth and ECM deposition were observed at low
flow perfusion, higher flow rates could upregulate the osteogenic differentiation potential of
the cells. Thus, this model was helpful to indicate that shear stress levels could be an important
factor regulating human MSC development in 3D scaffolds.

Coletti et al. [162] simulated two flow conditions in a perfusion bioreactor—partial flow
(flow channelized through a gap between the scaffold and the bioreactor wall) and total flow
perfusion through the scaffold. They studied their impact on oxygen transport and cell growth.
The channeling of flow perfusion can occur experimentally as a result of the lack (when this
bypass is required and designed to reduce shear stress levels inside the scaffold) or insuffi-
ciency of the sealing system. Simulation results were compared and showed that partial
perfusion could affect oxygen delivery by reducing convection inside the scaffold and, as a
consequence, could reduce the construct cell density. Thus, this model could be used to
evaluate operational flaws and also to design bioreactor bypasses in order to optimize flow
conditions and cell growth inside 3D scaffolds.

One example of a partial perfusion bioreactor is given by Campolo et al. [185], where a gap
around the scaffold is designed to serve as a by-pass flow. The authors proposed a modeling
approach to determine an appropriate flow rate to obtain homogeneous cell distribution in 3D
scaffolds under indirect perfusion. Mass transport and reaction information was used in
association with flow regime characteristics to calculate the required perfusion flow to
maintain a target cell growth rate.

In addition to flow perfusion, electrical variables have also been modeled in bioreactors for
tissue engineering purposes. Maidhof et al. [22] characterized the electrical potential of a
perfusion bioreactor by modeling its generation and evaluating the electrical field where
cardiac constructs were placed. It was observed that the electric potential drop was quite linear
and constant through the scaffold length. This model was helpful in validating the generation
of scaffolds as functional cardiac constructs exposed to the same electrical field.

9 Conclusions

The main tissue-engineering challenges are related to scaffold design, mass transport, and cell
infiltration and colonization within the scaffolds. In addition, culture conditions affect cell
behavior and vary from one study to another, making the comparison of different experiments
difficult. In order to control and study these conditions, bioreactors and modeling techniques
can be applied. Regarding the dynamic culture of mesenchymal stem cells in electrospun
scaffolds, the cell proliferation and differentiation, and the secretion of growth factors and
extracellular matrix components have been studied in different systems and under several
culture conditions. Bioreactors with electrical and mechanical stimulation have also recently
been studied for the development of functional tissue responsive to these stimuli. However,
tissue vascularization, which is important for the maintenance of cell viability in vivo after
transplantation, is not always evaluated in bioreactor studies. In addition, the co-culture of stem
cells and other cell types in bioreactors could reveal important features of tissue function as
shear stress and other factors present in dynamic conditions could affect the development of
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multicellular 3D cultures. While the bioreactor design has to be optimized according to the
scaffold and cell characteristics, modeling has its own challenges. There are limitations in
measurement techniques, which make it difficult to validate the model with respect to variables
that cannot be measured directly. Thus, the combination of modeling and electrospun scaffolds
for stem cell culture still requires research and improvement to fulfill its potential for
optimizing tissue development.
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