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Abstract

Novel therapies are urgently needed to address the rising incidence and prevalence of acute kidney injury (AKI) and

chronic kidney disease (CKD). Mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental

AKI and CKD, and have been used in the clinic for more than a decade with an excellent safety profile. The

regenerative effects of MSCs do not rely on their differentiation and ability to replace damaged tissues, but

are primarily mediated by the paracrine release of factors, including extracellular vesicles (EVs), composed of

microvesicles and exosomes. MSC-derived EVs contain genetic and protein material that upon transferring to

recipient cells can activate several repair mechanisms to ameliorate renal injury. Recent studies have shown

that MSC-derived EV therapy improved renal outcomes in several animal models of AKI and CKD, including

ischemia-reperfusion injury, drug/toxin-induced nephropathy, renovascular disease, ureteral obstruction, and

subtotal nephrectomy. However, data about the renoprotective effects of EV therapy in patients with renal

failure are scarce. This review summarizes current knowledge of MSC-derived EV therapy in experimental AKI

and CKD, and discusses the challenges that need to be addressed in order to consider MSC-derived EVs as a

realistic clinical tool to treat patients with these conditions.
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Background
Kidney disease is a prominent challenge for health care

systems. Incidence and mortality rates of both acute

kidney injury (AKI) and chronic kidney disease (CKD)

have increased in recent decades [1]. It is estimated that

during a hospital admission one in five adults and one in

three children experience AKI, a sudden episode of

kidney failure or kidney damage [2]. CKD, a condition

characterized by a gradual loss of kidney function, is es-

timated to be quite prevalent. In the US alone, its pre-

dicted prevalence rate is 13.6%, with more than 670,000

patients in end-stage renal disease (ESRD) [3, 4], the

final stage of CKD when irreversible loss of renal func-

tion mandates dialysis or kidney transplantation. Both

AKI and CKD consume considerable healthcare resources

and are associated with significant economic costs. AKI is

responsible for more than 5% of overall hospital expenses

[5], and more than $80 billion of the Medicare budget is

spent to care for CKD and ESRD patients, accounting for

over 18% of its total expenditure [4, 6]. AKI can cause

ESRD directly, and increase the risk of developing CKD

and worsening of underlying CKD [7]. Importantly, AKI

and CKD are risk factors for developing cardiovascular

disease and mortality [8]. Therefore, the rising incidence

and prevalence of AKI and CKD and their deleterious

complications underscore the need to identify more effect-

ive therapeutic strategies to attenuate renal injury and pre-

vent its progression to ESRD.

Mesenchymal stem/stromal cells (MSCs) are multipo-

tent cells with robust self-renewal, regenerative, prolifer-

ative, and multi-lineage differentiation potential [9]. By

definition, MSCs are characterized by the expression of

MSC markers and the ability to differentiate into adipo-

cytes, chondrocytes, and osteocytes [10]. Emerging

evidence supports the existence of kidney-resident

MSCs, which originate from renal pericytes that form an
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extensive network around the microvasculature [11].

Although the entire spectrum of their function still re-

mains to be elucidated, they play key roles in regulation

of renal blood flow, capillary permeability, endothelial

survival, and immunologic surveillance [12]. In addition,

MSCs with potent proangiogenic and immunomodula-

tory properties can also be isolated from various extrare-

nal sources, including adipose tissue, making them ideal

candidates for renal regenerative therapy [13, 14].

According to ClinicalTrials.gov there are currently 46

ongoing or completed clinical trials using MSC therapy

for AKI and CKD, including diabetic nephropathy, focal

segmental glomerulosclerosis, systemic lupus erythema-

tous, and kidney transplantation [15–17] (Table 1). In an

ongoing phase I clinical trial, patients with cisplatin-

induced AKI and solid organ cancer are followed for

1 month after a single systemic infusion of allogeneic

bone marrow-derived MSCs (NCT01275612). Primary

and secondary end points include the rate of decline in

renal function and urinary injury markers, respectively.

Cardiac surgery patients at high risk of postoperative

AKI were treated safely with allogeneic MSCs [18, 19].

Systemic administration of autologous bone marrow-

derived MSCs in patients with autosomal dominant

polycystic kidney disease did not cause any serious ad-

verse events and decreased serum creatinine levels after

12 months of follow-up [20]. Preliminary results of a

randomized clinical trial in patients with diabetic ne-

phropathy also showed stabilized or improved glomeru-

lar filtration rate (GFR) after 3 months of treatment with

allogenic MSCs [21]. Likewise, intra-arterial infusion of

autologous MSCs in patients with renovascular disease

(RVD) increased cortical perfusion and renal blood flow

(RBF), and reduced renal tissue hypoxia in the post-

stenotic kidney [22]. Clinical trials are also testing the

immunomodulatory and renoprotective properties of

MSCs after renal transplantation (NCT02409940).

Autologous MSCs were found to be superior to conven-

tional immunosuppressive therapy in preventing acute

rejection, decreasing opportunistic infections, and pre-

serving renal function in patients undergoing renal

transplant [23]. Taken together, these studies indicate

that MSC therapy is safe, feasible, well tolerated, and

effectively ameliorates renal pathology in a wide range of

diseases.

Mounting evidence supports the notion that MSCs

exert their reparative effects by releasing extracellular

vesicles (EVs), including exosomes with a diameter of

30–120 nm, and micro-vesicles ranging from 100 nm to

1 μm in size [24]. Exosomes arise form endocytic

compartments, known as microvesicular bodies, and are

released into extracellular space through fusion with

plasma membrane [25]. In contrast, microvesicles origin-

ate from outward buddings of cell membrane and their

release is controlled by calcium influx and cytoskeletal

reorganization, among several other factors [25]. We

have previously shown that porcine MSCs release EVs

(Fig. 1) that are selectively packed with proteins,

mRNAs, and microRNAs [26–28]. Furthermore, we

recently proposed that genes, proteins, and microRNAs

enriched in EVs have the potential to modulate selective

cellular pathways in recipient cells [29]. Therefore,

MSC-derived EVs may exert trophic and reparative ef-

fects, representing an attractive non-cellular approach

for treating renal disease. Indeed, recent studies have

shown that delivery of MSC-derived EVs is safe and can

improve kidney function in several models of AKI and

CKD. The purpose of this review is to summarize the

current knowledge of MSC-derived EV therapy in ex-

perimental AKI and CKD, and discusses the challenges

Table 1 Clinical studies testing the efficacy of MSCs in AKI and CKD

Condition ID Title Link Status

AKI NCT01275612 Mesenchymal stem cells in cisplatin-induced acute renal failure in patients
with solid organ cancers

https://clinicaltrials.gov/ct2/
show/NCT01275612

Recruiting

NCT00733876 Allogeneic multipotent stromal cell treatment for acute kidney injury
following cardiac surgery

https://clinicaltrials.gov/ct2/
show/NCT00733876

Completed

NCT01602328 A study to evaluate the safety and efficacy of AC607 for the treatment of
kidney injury in cardiac surgery subjects

https://clinicaltrials.gov/ct2/
show/NCT01602328

Terminated

CKD NCT02166489 Mesenchymal stem cells transplantation in patients with chronic renal
failure due to polycystic kidney disease

https://clinicaltrials.gov/ct2/
show/NCT02166489

Completed

NCT01843387 Safety and efficacy of mesenchymal precursor cells in diabetic nephropathy https://clinicaltrials.gov/ct2/
show/NCT01843387

Completed

NCT02266394 Hypoxia and inflammatory injury in human renovascular hypertension https://clinicaltrials.gov/ct2/
show/NCT02266394

Recruiting

NCT02409940 To elucidate the effect of mesenchymal stem cells on the T-cell repertoire
of the kidney transplant patients

https://clinicaltrials.gov/ct2/
show/NCT02409940

Ongoing

NCT00658073 Induction therapy with autologous mesenchymal stem cells for kidney
allografts

https://clinicaltrials.gov/ct2/
show/NCT00658073

Completed

AKI acute kidney injury, CKD chronic kidney disease
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that need to be addressed in order to consider MSC-der-

ived EVs as a realistic clinical tool to treat patients with

these conditions.

MSC-derived EVs in experimental AKI
Ischemia-reperfusion injury

Renal ischemia-reperfusion injury (IRI), a condition

caused by initial sudden cessation of blood flow to the

kidney followed by restoration of blood flow and re-

oxygenation, is one of the primary causes of AKI associ-

ated with significant morbidity and mortality [30].

Although the pathophysiology of renal IRI remains ob-

scure, both hypoxia at ischemic phase and subsequent

generation of reactive oxygen species at reperfusion ini-

tiate a cascade of deleterious responses characterized by

inflammation and cell death that subsequently leads to

AKI [31]. A number of studies have recently tested the

efficacy of MSC-derived EVs to blunt experimental

IRI-induced AKI (Table 2). Lindoso et al. [32] tested the

biological effect of EVs in an in vitro model of renal IRI

induced by ATP depletion of tubular cells, which were

subsequently co-incubated with MSC-derived EVs. EVs

progressively incorporated into damaged tubular cells,

suggesting higher uptake under stressful conditions. EVs

decreased cell death and restored proliferation of ATP--

depleted tubular cells. This was paralleled with downreg-

ulated expression of a specific set of microRNAs

involved in apoptosis, hypoxia, and cytoskeletal

reorganization, suggesting that EVs can protect tubular

cells against metabolic stress by mechanisms involving

post-transcriptional regulation.

The renoprotective effects of MSC-derived EVs have

also been investigated in several in vivo models of renal

IRI. In rats subjected to unilateral nephrectomy and

renal artery occlusion for 45 min, intravenous MSC-der-

ived EVs immediately after ischemia significantly re-

duced epithelial tubular cell damage and apoptosis and

enhanced their proliferation, improving renal function

[33]. Interestingly, the beneficial effect of EVs was medi-

ated in part by the transfer of RNA-based information to

recipient cells. Similarly, in rats with renal IRI systemic

administration of autologous bone marrow MSC-derived

EVs decreased renal injury and improved function, ex-

tending the benefits of EVs to ameliorate IRI-induced

renal damage and contribute to cellular repair in vivo

[34].

EVs harvested from human umbilical cord MSCs have

also shown renoprotective benefits in rats with IRI.

Intravenous delivery of EVs immediately after the ische-

mic phase of IRI mitigated renal oxidative damage by

decreasing the expression of the pro-oxidant NADPH

oxidase-2 [35]. MSC-derived EV-induced attenuation of

renal oxidative stress was associated with enhanced renal

cell proliferation, decreased apoptosis, and normalized

serum creatinine levels 2 weeks after the ischemic insult.

Consistent with these findings, intravenous injection of

EVs isolated from the conditioned medium of human

umbilical cord MSCs after unilateral renal ischemia pre-

served kidney function and decreased serum levels of

Fig. 1 Scanning electron microscopy image showing a cultured porcine adipose tissue mesenchymal stem cell releasing extracellular vesicles. This

figure is original for this article

Aghajani Nargesi et al. Stem Cell Research & Therapy  (2017) 8:273 Page 3 of 12



the AKI marker neutrophil gelatinase-associated lipoca-

lin [36]. EVs also decreased renal expression of nuclear

factor E2-related factor-2, a transcription factor that

modulates cellular oxidative stress, which in turn

resulted in decreased tubular damage.

Studies in experimental renal IRI have also shown that

MSC-derived EVs exert renoprotection by modulating

renal angiogenesis. Systemic administration of MSC-der-

ived EVs in rats with renal IRI increased renal capillary

density and reduced fibrosis by direct transfer of the

proangiogenic factor vascular endothelial growth factor

(VEGF) and mRNAs involved in this process [37]. In a

similar study, delivery of EVs in rats with IRI increased

gene and protein expression of the proangiogenic hep-

atocyte growth factor, associated with decreased tubular

fibrosis [38]. Interestingly, the renoprotective effects of

EVs were abolished when EVs were pretreated with

RNase, implying that mRNA transfer of proangiogenic

Table 2 Experimental studies testing the efficacy of MSC-derived EVs in IRI-AKI

Type of model Species Intervention Administration methods Main findings Reference

In vitro, tubular
epithelial cells

- Human bone
marrow MSC-derived
EVs

Incubation in culture
media

• EVs incorporated into injured cells
• Downregulated miRNAs associated with
apoptosis, cytoskeleton and hypoxia
• Downregulated microRNAs involved in apoptosis,
fibrosis, hypoxia, and cytoskeletal reorganization

Lindoso
et al.
2014 [32]

In vivo Rat Human bone
marrow MSC-derived
EVs

Intravenous • EVs decreased tubular injury and apoptosis
• Improved cell proliferation and renal function
• Transferred RNA-based information to recipient
cells

Gatti
et al.
2011 [33]

In vivo Rat Autologous bone
marrow MSC-derived
EVs

Intravenous • EVs decreased tubular injury, apoptosis,
and inflammation
• Improved renal function

Wang
et al.
2014 [34]

In vivo Rat Human umbilical cord
MSC-derived EVs

Intravenous • EVs decreased renal oxidative stress
• Increased renal cell proliferation, attenuated
apoptosis and fibrosis, and normalized renal
function

Zhang
et al.
2014 [35]

In vivo; in vitro,
tubular epithelial cells

Rat Human umbilical cord
MSC-derived EVs

Intravenous; incubation
in culture media

• EVs improved renal function
• Decreased tubular injury, oxidative stress,
apoptosis, and necrosis

Zhang
et al.
2016 [36]

In vivo Rat Human umbilical cord
MSC-derived EVs

Intravenous • EVs reduced apoptosis and enhanced tubular
cell proliferation
• Improved renal function and ameliorated tubular
injury and fibrosis
• Increased renal angiogenesis
• Transferred proangiogenic-related VEGF
and mRNAs to recipient cells

Zou et al.
2016 [37]

In vivo; in vitro,
tubular epithelial cells

Rat Human umbilical cord
MSC-derived EVs

Intravenous; incubation
in culture media

• EVs upregulated proangiogenic factors
• Decreased tubular cell apoptosis, collagen
deposition, and fibrosis

Ju et al.
2015 [38]

In vivo; in vitro,
umbilical vein
endothelial cells

Mouse Allogenic kidney
resident MSC-derived
EVs

Intravenous; incubation
in culture media

• EVs incorporated into endothelial cells, decreased
apoptosis, and increased proliferation and tube
formation
• Selectively engrafted into injured cells
and improved renal function
• Ameliorated peritubular capillary rarefaction
and improved endothelial cell proliferation

Choi
et al.
2014 [39]

In vivo Rat Human umbilical cord
MSC-derived EVs

Intravenous • EVs increased renal proliferation
• Decreased renal inflammation, tubular
and glomerular injury, vascular damage, apoptosis,
and fibrosis
• Preserved renal function

Zou et al.
2014 [40]

In vivo Rat Allogenic adipose tissue
MSC-derived EVs

Intravenous • EVs increased renal angiogenesis and decreased
inflammation, oxidative stress, apoptosis, fibrosis
• Improved renal function

Lin et al.
2016 [41]

Ex vivo model of
renal ischemia,
post-circulatory death
and pre-transplant

Rat Allogenic bone marrow
MSC-derived EVs

Incubation in buffering
solution of donated kidney

• EVs decreased global ischemic damage
• Preserved cellular metabolism and viability

Gregorini
et al.
2017 [42]

AKI acute kidney injury, EV extracellular vesicle, IRI ischemia-reperfusion injury, MSC mesenchymal stem cell, VEGF vascular endothelial growth factor
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factors mediated EV-induced renal repair. The proangio-

genic effects of EVs were not limited to those isolated

from umbilical cord MSCs. EVs isolated from kidney

resident MSCs have been shown to contain several

proangiogenic genes, including VEGF, basic fibroblast

growth factor, and insulin-like growth factor (IGF)-1

[39]. Systemic administration of allogeneic kidney-

resident MSC-derived EVs into mice with renal IRI was

followed by engraftment in ischemic kidneys and im-

provement in renal function, suggesting that delivery of

proangiogenic transcripts may contribute to EV-induced

renal repair.

Furthermore, administration of MSC-derived EVs has

been proved to ameliorate the inflammation that follows

IRI. Intravenous delivery of EVs following unilateral

renal ischemia in rats decreased the number of kidney

macrophages and the expression of the macrophage

chemo-attractant factor chemokine C-X-C motif ligand-

1 (CXCL1), possibly by transferring into recipient cells

microRNAs capable of modulating CXCL1 expression

[40]. This treatment boosted tubular proliferation, atten-

uated fibrosis, and preserved kidney function. Likewise,

in rats with IRI induced by bilateral renal artery occlu-

sion and reperfusion, treatment with intravenous MSCs

or their EV progeny decreased expression of inflamma-

tory cytokines, including tumor necrosis factor-alpha

(TNF-α) and interleukin (IL)-1-β [41]. Combined MSC

and MSC-derived EV therapy resulted in an additive ef-

fect on amelioration of tubular injury, extending their

value to preserve the kidney when delivered in conjunc-

tion with MSCs.

MSC-derived EVs may also confer protection against

IRI that occurs in kidney donation after circulatory

death, preserving renal function prior to kidney trans-

plantation. In a recent study, incubation of donated kid-

neys with EVs in buffering solution after harvest and

prior to transplant decreased ischemic damage by alter-

ing the expression of genes encoding enzymes known to

improve cell energy metabolism and ion transport [42].

However, it remains to be determined whether the reno-

protective effect of MSC-derived EVs is confined to a

specific cell type or may prolong graft survival after kid-

ney transplantation. Therefore, these studies suggest that

the beneficial effect of MSC-derived EVs in renal IRI is

attributable to their antioxidant, immunomodulatory,

and proangiogenic properties, and their ability to modu-

late cell metabolism and several cellular pathways.

Drug-induced nephropathy

Drug-induced nephropathy (DIN) is a common etiology

of AKI that accounts for as high as 60% of both com-

munity- and hospital-acquired episodes [43]. Non-ste-

roidal anti-inflammatory drugs, antibiotics, angiotensin

converting enzyme inhibitors, and contrast agents have

been associated with renal cell toxicity, and may com-

promise renal function by promoting tubulo-interstitial

nephritis and altering intra-glomerular hemodynamics

[44]. Recently, the efficacy of MSC-derived EVs has

been tested in models of DIN (Table 3). Co-incubation

of cisplatin-damaged tubular cells with MSC-derived

EVs increased cell proliferation, partly by transferring

IGF-1 and IGF receptor-1 [45]. These observations

were supported by in vivo studies in animal models of

DIN, in which delivery of MSC-derived EVs prevented

tubular cell death and enhanced proliferation. For ex-

ample, administration of MSC-derived EVs into the

renal capsule of rats with cisplatin-induced AKI attenu-

ated renal injury and dysfunction partly by reducing

formation of pro-oxidants and suppressing activation of

pro-apoptotic pathways [46]. Likewise, in mice after

cisplatin-induced [47] and glycerol-induced AKI [48,

49] single and multiple intravenous administration of

MSC-derived EVs ameliorated tubular injury and im-

proved kidney function. Modulation of apoptosis was

implicated in EV-induced renoprotection, which was

abolished after degradation of EV mRNA content, sug-

gesting that anti-apoptotic genes shuttled by EVs are

the final effectors of their biologic actions.

Modulation of renal inflammation is an important

mechanism by which MSC-derived EVs protect the kid-

ney from toxic drug injury. In rats with gentamycin-

induced AKI, EV delivery preserved renal function by

preventing the rise in several pro-inflammatory cyto-

kines, including IL-6 and TNF-α, whereas levels of the

anti-inflammatory cytokine IL-10 were restored in

EV-treated animals [50]. In line with this observation, in

mice with glycerol-induced AKI, EV delivery was associ-

ated with downregulation of pro-inflammatory genes

[51]. However, these studies did not explore whether

renal parenchymal or infiltrating inflammatory cells were

direct targets of the immunomodulatory effects of EVs.

Interestingly, both studies reported that renoprotective

effects of MSC-derived EVs were blunted in mice treated

with RNA depleted EVs, suggesting an important role

for mRNA and/or microRNA shuttling in mediating

EV-induced renal recovery after AKI. In line with this

notion, a recent study suggested that the anti-apoptotic

and immunomodulatory effects of MSC-derived EVs in

DIN-AKI are partly mediated by their ability to transfer

genes that activate autophagy [52]. Authors found that

administration of MSC-derived EVs in the renal capsule

of rats with cisplatin-induced AKI increased renal ex-

pression of several autophagy-related genes and

improved renal function. Taken together, these results

indicate that EVs are capable of modulating several path-

ways involved in the pathogenesis of DIN, and may serve

as a novel therapeutic approach in these patients.
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MSC-derived EVs in experimental CKD
Renovascular disease

Renovascular disease (RVD) is an important cause of sec-

ondary hypertension and ESRD in the elderly population

[53]. RVD frequently coexists with metabolic syndrome

(MetS), a constellation of cardiovascular risk factors that

accentuates renal injury and is associated with poor renal

outcomes [54]. Recently, our group took advantage of a

novel porcine model of coexisting MetS and RVD (MetS

+ RVD) to test whether intrarenal delivery of autologous

MSC-derived EVs would ameliorate structural and func-

tional decline in MetS + RVD kidney [55]. MetS was in-

duced by feeding pigs a high fat/high fructose diet for

16 weeks, whereas RVD was achieved by placing an irri-

tant coil in the main renal artery. We found that a single

intrarenal administration of MSC-derived EVs in these

pigs attenuated renal inflammation, disclosed by decreased

renal vein levels of several pro-inflammatory cytokines, in-

cluding TNF-α, IL-6, and IL-1-β. Contrarily, renal vein

levels of IL-10 increased in EV-treated pigs, associated

with a shift from pro-inflammatory to reparative macro-

phages populating the stenotic kidney, underscoring the

immunomodulatory potential of EVs. EVs also improved

medullary oxygenation and fibrosis, and restored RBF and

GFR, yet animals treated with IL-10 knock-down EVs

showed limited renal recovery, implying that this cytokine

mediates at least part of their protective effects (Table 4).

Unilateral ureteral obstruction

Although complete ureteral obstruction is not a common

cause of human renal disease, the unilateral ureteral ob-

struction (UUO) model, which promotes renal

Table 3 Experimental studies testing the efficacy of MSC-derived EVs in DIN-AKI

Type of model Species Intervention Administration
method

Main findings Reference

In vitro, tubular epithelial
cells

Mouse Human bone
marrow MSC-
derived EVs

Incubation in
culture media

•EVs increased cell proliferation
•Transferred IGF-1 and IGF-1 receptor

Tomasoni et al.
2013 [45]

In vivo model of cisplatin-
induced AKI; in vitro, tubular
epithelial cells

Rat Human umbilical
cord MSC-derived
EVs

Intra-capsular;
incubation in
culture media

•EVs attenuated tubular injury, apoptosis,
oxidative stress, and necrosis
•Improved renal function

Zhou et al.
2013 [46]

In vivo model of cisplatin-
induced AKI; in vitro, tubular
epithelial cells

Mouse Human bone
marrow MSC-
derived EVs

Intravenous;
incubation in
culture media

•EVs preserved renal structure and function
•Decreased renal cell apoptosis

Bruno et al.
2012 [47]

In vivo model of glycerol-
induced AKI; in vitro, tubular
epithelial cells

Mouse Human bone
marrow MSC-
derived EVs

Intravenous;
incubation in
culture media

•EVs improved renal function
•Stimulated tubular cell proliferation
and resistance to tubular cell apoptosis
•Transferred mRNAs that control transcription,
proliferation, and immunoregulation

Bruno et al.
2009 [48]

In vivo model of glycerol-
induced AKI; in vitro, tubular
epithelial cells

Mouse Human bone
marrow MSC-
derived EVs

Intravenous;
incubation in
culture media

•EVs increased tubular proliferation, prevented
necrosis, and preserved renal function
• Exosomes and microvesicles with different
molecular composition exhibited distinct
renoprotective effects

Bruno et al.
2017 [49]

In vivo model of
gentamycin-induced AKI

Rat Autologous bone
marrow MSC-
derived EVs

Intravenous •EVs prevented renal dysfunction, necrosis, apoptosis,
and inflammation, and increased cell proliferation

Reis et al.
2012 [50]

In vivo model of
glycerol-induced AKI

Rat Human bone
marrow MSC-
derived EVs

Intravenous •EVs downregulated genes involved in inflammation,
matrix receptor interaction, and cell adhesion molecules
•EVs with downregulated miRNAs were ineffective

Collino et al.
2015 [51]

In vivo model of cisplatin-
induced AKI; in vitro, tubular
epithelial cells

Rat Human umbilical
cord MSC-derived
EVs

Intra-capsular • EVs inhibited apoptosis and inflammation
• Activated autophagy, which partly mediated EV
renoprotective effects

Wang et al.
2017 [52]

AKI acute kidney injury, DIN drug-induced nephropathy, EV extracellular vesicle, IGF insulin growth factor, MSC mesenchymal stem cells

Table 4 Experimental studies testing the efficacy of MSC-derived EVs RVD-CKD

Type of model Species Intervention Administration method Main findings Reference

In vivo model of coexisting
metabolic syndrome and RVD

Pig Autologous adipose
tissue MSC-derived EVs

Intrarenal • EVs decreased renal inflammation
• Improved medullary oxygenation and fibrosis,
and restored renal blood flow and glomerular
filtration rate
• Renoprotective effects were partly mediated
by IL-10

Eirin et al.
2017 [55]

CKD chronic kidney disease, EV extracellular vesicle, MSC mesenchymal stem cell, RVD renovascular disease
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parenchymal inflammation, apoptosis, and fibrosis, offers

a unique opportunity to study mechanisms responsible for

kidney injury [56]. Lately, studies in mouse models of

UUO achieved by unilateral ureteral ligation have tested

the efficacy of MSC-derived EVs in preventing renal injury

(Table 5). Intravenous administration of MSC-derived EVs

mitigated tubular injury and fibrosis and improved renal

function 2 weeks after UUO [57]. EVs transferred micro-

RNAs capable of modulating fibrosis and epithelial to

mesenchymal transition (EMT). In agreement, in vitro ex-

periments in tubular cells treated with the pro-fibrotic

transforming growth factor (TGF)-β1 showed that co-

incubation with kidney-resident MSC-derived EVs

reversed EMT and TGF-β1-induced morphological

changes. This mechanism was also confirmed by another

study on TGF-β1-treated endothelial cells, in which MSC-

derived EVs ameliorated endothelial to mesenchymal

transformation and improved cell proliferation 7 days after

UUO [58]. Therefore, these studies underscore important

anti-fibrotic and renoprotective properties of MSC-

derived EVs in experimental UUO.

Subtotal nephrectomy

The renoprotective effects of MSC-derived EVs were

also studied in a mouse model of subtotal nephrectomy

(STN; Table 6), one of the most widely used experimen-

tal models of CKD which is characterized by progressive

loss of renal mass and deteriorating renal function [59].

STN was induced by removing one kidney and resecting

5/6 of upper and lower poles of the remaining kidney.

Delivery of EVs into the mouse caudal vein 2 days after

STN mitigated lymphocyte infiltration and prevented

tubular atrophy and fibrosis within 1 week after treat-

ment [60]. Decreased proteinuria, serum creatinine,

blood urea nitrogen (BUN), and uric acid levels under-

scored the potential of MSC-derived EV delivery in pre-

serving the remaining renal function.

Challenges of MSC-derived EV delivery in human
CKD
As discussed above, several studies in animal models of

AKI and CKD suggest that MSC-derived EVs can

effectively preserve renal structure and function. So far,

however, only one clinical trial has tested the renopro-

tective effects of MSC-derived EVs on the progression of

CKD [61]. In this phase II/III pilot study, 40 patients

with estimated GFR (eGFR) between 15 and 60 ml/min

were randomized to receive either placebo or EVs de-

rived from allogenic cord blood MSCs. Patients were

treated with two doses of EVs and followed for

12 months. EV therapy improved eGFR, serum creatin-

ine, and BUN levels, as well as urinary albumin/creatin-

ine ratio. Plasma levels of TNF-α decreased, whereas

levels of IL-10 increased in EV-treated patients. Renal

biopsy findings 3 months after intervention revealed that

EV-treated kidneys showed upregulated expression of

cell regeneration and differentiation markers. Import-

antly, participants did not experience any significant ad-

verse events during or after EV therapy throughout the

study period. Therefore, this study suggests that MSC-

derived EV therapy is safe and can ameliorate renal in-

flammation and improve function in patients with CKD.

Nevertheless, future long-term follow-up clinical studies

need to confirm the persistence of the beneficial effects

of this approach in patients with CKD.

Furthermore, significant translational challenges need

to be faced before adopting MSC-derived EVs as a useful

therapy for AKI and CKD (Table 7). Theoretically, cell-

free therapies such as EVs might offer superior advan-

tages over delivery of their parent MSCs in terms of

safety. EVs are small particles with no proliferative cap-

acity. Being acellular, EVs should be exempted from

adverse effects. Unlike MSCs, EVs can be stored for a

long time, allowing their use as “off the shelf” products.

Nevertheless, long-term follow-up studies for closely

monitoring EVs are needed to determine their safety.

According to recent methodological guidelines [62],

several methods could be used to isolate EVs which

may impact on EV purity, concentration, morphology,

size range, and functional activity [63]. EV handling

and storage may also affect their concentration, com-

position, and function [64]. Therefore, additional

studies are needed to test whether renal outcomes

vary as a function of EV collection, storage, and

Table 5 Experimental studies testing the efficacy of MSC-derived EVs in UUO-CKD

Type of model Species Intervention Administration
methods

Main findings Reference

In vivo; in vitro,
tubular epithelial cells

Mouse Allogenic bone
marrow MSC-
derived EVs

Intravenous • EVs preserved renal function
• Decreased tubular injury and epithelial to
mesenchymal transition

He et al. 2015 [57]

In vivo; in vitro;
human umbilical vein
endothelial cells

Mouse Allogenic kidney
MSC-derived EVs

Intravenous • EVs ameliorated endothelial to mesenchymal
transition and improved proliferation
• Prevented inflammatory cell infiltration,
enhanced proliferation of tubular cells, and decreased
apoptosis and microvascular rarefaction

Choi et al. 2015 [58]

CKD chronic kidney disease, EV extracellular vesicle, MSC mesenchymal stem cell, UUO unilateral ureteral obstruction
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isolation methods, and optimize standard protocols

for clinical studies.

Few studies have tracked the fate of EVs after sys-

temic in vivo administration, but data from IRI [39]

and UUO [58] animal models showed that 24 h after

infusion EVs primarily engrafted into the damaged

kidney and to a lesser extent in the non-affected kid-

ney [40]. The majority of EVs were taken up by renal

tubular epithelial cells (RTECs) and peritubular capil-

laries [39, 58], but some were identified in glomeruli

[33]. In our MetS + RVD model, EV retention was

higher in post-stenotic kidney than contralateral

kidneys, and EVs engrafted tubular cells and macro-

phages 4 weeks after administration [55]. This sug-

gests enhanced tissue uptake of EVs under stressful

conditions, which may be mediated by infiltrated im-

mune cells or altered expression of surface markers

on parenchymal cells. EVs were also observed in the

heart, and in large quantities in the lungs, liver, and

spleen. Development of kidney-targeted EVs can

facilitate their systemic delivery and enhance their

regenerative benefits.

The duration and long-term term effects of MSC-

derived EVs are important to consider before moving to-

wards their clinical application. In most experimental

studies, follow-up ranged from 1 day to 2 weeks post-

injection, and only one study in rats with renal IRI found

a lower incidence of CKD 6 months after EV therapy

[33]. It is clear that EVs can alter transcription profiles

in recipient cells, and modulate tissue metabolism and

several cellular pathways. Thus, the long-term implica-

tions of these post-transcriptional modifications, espe-

cially with continuous or repetitive administration of

EVs, need to be elucidated. In this respect, their lack of

cellular machinery and inability to proliferate in the

recipient tissue might limit the duration of their effects

and necessitate repeated administration.

There is also uncertainty regarding the optimal dose

regimen of MSC-derived EVs, which might influence

their capacity to home and engraft damaged cells, and

thereby their efficacy for renal repair. Macrophages may

promptly target and remove exogenously administered

EVs [65], so multiple doses may be needed to achieve

and sustain EV-induced renoprotection. A single study

Table 6 Experimental studies testing the efficacy of MSC-derived EVs in STN-CKD

Type of model Species Intervention Administration method Main findings Reference

In vivo Mouse Allogenic bone marrow
MSC-derived EVs

Intravenous • EVs improved renal function
• Decreased renal fibrosis, inflammation,
and tubular atrophy

He et al. 2012 [60]

CKD chronic kidney disease, EV extracellular vesicle, MSC mesenchymal stem cell, STN subtotal nephrectomy

Table 7 Challenges for clinical application of MSC-derived EV therapy for renal disease

Challenges Explanation Future directions

EV source, isolation,
and storage

• MSCs derived from different sources may release EVs with distinct
content and regenerative effects
• EV isolation and storage methods may potentially affect EV
characteristics

• Compare the renoprotective properties of EVs
released from different MSC sources
• Methods for EV isolation and storage for future
clinical studies

Heterogeneity of EV
subpopulations

• Exosomes and microvesicles may exert distinct renoprotective
properties

• Determine which EV subpopulations show superior
regenerative potential in patients with renal disease

Plasticity of EV
cargo

• Modulation of ex vivo culture conditions might alter the transcriptional
and protein signatures of EVs and potentiate their renoprotective effects

• Identify optimal preconditioning maneuvers

Effect of
cardiovascular risk
factors on EVs

• Cardiovascular comorbidities are common among patients with renal
disease and may limit their regenerative potential
• May limit autologous use

• Determine the efficacy of MSC-derived EVs in
patients with comorbidities

Fate and
engraftment

• Relatively small amounts of EVs are detected in the kidneys after
systemic administration
• Current detection methods often fail to identify engraftment into renal
cell types and monitor the fate of MSC-derived EVs, possibly due to their
small size

• Unlike MSCs, EVs cannot proliferate
• Might be promptly removed by immune cells
• Need to develop tools to target EVs to the kidneys
• Need methods to better assess engraftment,
survival, and function of MSC-derived EVs

Safety and
long-term effects

• EVs modulate the transcriptional and translational machinery
of recipient cells
• Although MSCs are generally safe, long-term benefits and side effects
of exogenous EVs have not been adequately explored

• Explore MSC-derived EVs long-term benefits and
potential side effects in patients with renal disease

Delivery regimens • Dose–response relation and optimal intervals between multiple doses
of EVs have not been studied in treatment of renal diseases
• The best route of delivery might be invasive (intrarenal)

• Future preclinical and clinical studies are needed to
define optimal dose regimen in these patients
• Development of kidney-targeted EVs may facilitate
systemic delivery
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found that a multiple dose regimen was superior in de-

creasing mortality and improving renal function [47].

Administration of larger doses of MSCs was not neces-

sarily associated with better outcomes, and even an in-

verse dose–response relationship may occur following a

high MSC dose [66, 67]. Administration of both low

(1 × 105 cells/kg) and high (2.5 × 105 cells/kg) dose of au-

tologous MSCs improved renal blood flow and kidney

perfusion to the same magnitude in patients with RVD

[22]. However, no study has reported the in vivo effi-

cacy of escalating doses of EVs or determined a thresh-

old dose in experimental renal disease. Therefore, a

standard regimen of EV delivery needs to be established

in order to test their efficacy in randomized clinical tri-

als. Furthermore, the adequate number of EV injections

and the interval between them need to be determined

in future studies.

Cardiovascular risk factors may impair the functional-

ity of MSCs and diminish the regenerative benefits of

autologous MSC implantation [68]. However, whether

EVs isolated from MSCs are also susceptible remains un-

known. We have recently found that MetS interferes

with the packaging of cargo of porcine adipose tissue

MSC-derived EVs, altering the expression of microRNAs

that control genes implicated in the development of

MetS and its complications [28]. These observations

suggest that cardiovascular risk factors may limit the

therapeutic efficacy of autologous MSCs and EVs in sub-

jects with coexisting MetS and renal disease. Further

preclinical studies and thoughtfully designed and

sufficiently powered clinical trials are urgently

needed to clarify these uncertainties and overcome

the challenges associated with EV therapy in pa-

tients with AKI and CKD.

Lastly, emerging evidence suggests that renal cell-

derived EVs might also exert tissue protective proper-

ties in experimental renal disease. RTECs that line

the renal tubules play a crucial role in renal function.

Similar to MSCs, RTECs release EVs that serve as

intercellular communication messengers and may ac-

celerate renal recovery by eliciting tissue regenerative

responses. RTEC-derived EVs similarly contain a rich

cargo of mRNAs, microRNAs, and proteins that

transmit regenerative signals. TGF-β1-treated RTECs

release multiple EVs containing microRNA-21 that

enhance PTEN-Akt signaling, which modulates several

important biological processes [69]. However, EVs re-

leased by injured RTECs also contain TGF-β1 mRNA

and microRNAs that activate fibroblasts, and their co-

incubation with them promoted collagen production

[70]. Speculatively, this function might be related to

the injury resolution phase. Unfortunately, none of

these studies tested the in vivo protective effects of

RTEC-derived EVs.

Fig. 2 Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are taken up by renal proximal and distal tubular cells, macrophages, and

endothelial cells. MSC-derived EVs transfer their protein, mRNA, and microRNA content into recipient cells. This in turn modulates several pathways

involved in the pathophysiology of renal disease, including vascular rarefaction, inflammation, oxidative stress, fibrosis, extracellular matrix remodeling,

apoptosis, and cell proliferation. This figure is original for this article
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More recently, intravenous administration of EVs

derived from RTECs in rats with renal IRI improved the

renal microvasculature and decreased tubular damage

and fibrosis [71]. EVs from hypoxia preconditioned

RTECs were more effective compared to those obtained

from normoxic cells, possibly due to their inhibitory ef-

fects on apoptosis following ATP depletion [72].

Fibroblast-derived EVs failed to ameliorate kidney dam-

age in glycerol-induced AKI [48], suggesting that EV-in-

duced renoprotection depends on their cellular source.

Therefore, in vitro modifications of RTECs may enhance

the protective properties of their daughter EVs. Future

studies are needed to confirm these findings and com-

pare the renoprotective potential of MSC- with non-

MSC-derived EVs.

Conclusions
AKI and CKD remain global public health challenges,

associated with an increased risk for progression to

ESRD and cardiovascular complications. Several charac-

teristics of MSCs tested pre-clinically make them attract-

ive to preserve the kidney suffering from AKI and CKD.

There are currently several ongoing or completed clin-

ical trials using MSCs for a wide range of renal diseases

and preliminary results suggest that MSCs are safe, well

tolerated, and effectively ameliorate renal pathology.

MSCs exert their reparative effects by releasing EVs, and

recent studies in experimental models of AKI and CKD

have shown that MSC-derived EVs offer an effective

modern treatment option for these patients. MSC-

derived EVs contain genetic and protein material that

upon transferring to recipient cells can activate several

repair mechanisms to ameliorate renal injury (Fig. 2).

Furthermore, these particles offer some exciting advan-

tages over MSCs. However, clinical data are limited and

several challenges need to be addressed as we move to-

wards clinical translation. To date, the primary uncer-

tainties for MSC-derived EV therapy for renal disease

include insufficient scientific data to support their safety,

and the need to identify the most appropriate EV cellular

source, isolation method, and dose regimen, and to as-

sess the impact of co-morbidities on their cargo and

renoprotective effect. Alternatively, RTEC-derived EVs

may also contribute to cellular repair in AKI and CKD,

but the beneficial effects of this approach in patients

with CKD remain unknown. Therefore, further basic

and translational studies need to continue exploring the

potential therapeutic applications of MSC-derived and

renal cell-derived EVs for AKI and CKD.
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