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Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to

differentiate into multiple specialized cell types including osteocytes, adipocytes, and

chondrocytes. MSCs exert different functions in the body and have recently been

predicted to have a major clinical/therapeutic potential. However, the mechanisms of

self-renewal and tissue regeneration are not completely understood. It has been shown

that the biological effect depends mainly on its paracrine action. Furthermore, it has

been reported that the secretion of soluble factors and the release of extracellular

vesicles, such as exosomes, could mediate the cellular communication to induce cell-

differentiation/self-renewal. This review provides an overview of MSC-derived exosomes

in promoting angiogenicity and of the clinical relevance in a therapeutic approach.
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INTRODUCTION

Stem cells are defined by their ability to self-renew through replication, resulting in two identical
stem cells, and to differentiate into more specialized cells under appropriate conditions (Singer
and Caplan, 2011; Mimeault and Batra, 2012). Depending on their origin, they can be classified as
embryonic or postnatal/adult stem cells.

Adult stem cells have generated great expectations in the context of regenerative medicine,
especially mesenchymal stem cells (MSCs), due to their multi-lineage differentiation potential and
their straightforward in vitro expansion (Zomer et al., 2015). In particular, MSC transplantation has
been suggested as a new promising therapeutic approach for heart, kidney, lung, and liver diseases.
Recent studies have however suggested that the beneficial effect of MSCs in cells of injured tissues
is not attributed to their differentiation, but rather to their paracrine signaling actions (Caplan and
Dennis, 2006).

It has recently been demonstrated that extracellular vesicles or microvesicles (MVs) released
from cells are involved in tissue regeneration, and therefore may contribute to the paracrine action
of MSCs (Deregibus et al., 2007; Camussi et al., 2010; Mathivanan et al., 2010).
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This minireview aims to provide an overview of the role of
MSC-derived exosomes in promoting angiogenicity and their
therapeutic properties.

ADULT/POSTNATAL STEM CELLS

The bone marrow (BM) is the most extensively investigated
source of adult stem cells. The hematopoietic stem cells (HSCs)
and the MSCs (or stromal cells) are responsible for the
production of blood cells and they are currently the only cell
type routinely used for treating patients with hematologic and
non-hematologic malignancies (Copelan, 2006). Accumulating
evidence has revealed that certain adult stem cells; possess a
more broad plasticity and differentiation potential, can circulate
in peripheral blood and migrate to tissues/organs and contribute
to the promotion of tissue repair at injured sites.

MESENCHYMAL STEM CELLS (MSCS)

MSCs were identified for the first time in 1974 by Friedenstein
et al. (1974). They described a new cell type, isolated from
the bone marrow, with plastic adherent properties and colony
forming unit-fibroblasts (CFU-f) capability. Due to their capacity
to differentiate into mesenchymal cells such as osteoblasts,
adipocytes, and chondroblasts they were denominated MSCs
(Caplan, 1991). Recently, the Society for Cellular Therapy
proposed theminimum criteria to defineMSCs.MSCs: (a) should
exhibits plastic adherence (b) possess specific set of cell surface
markers, i.e., CD73, CD90, CD105, and (c) ability to differentiate
in vitro into adipocytes, chondrocytes, and osteoblasts (Dominici
et al., 2006).

MSCs have been suggested as promising candidates for a
variety of therapeutic applications, such as treatment of immune
disorders including; systemic lupus erythematosus, bone and
cartilage regeneration, neurological diseases, hepatic injury, acute
renal failure, and myocardial infarction (Yan et al., 2009; Cao
et al., 2010; Xin et al., 2012; Laroni et al., 2013; Wang et al.,
2013). MSCs reside in diverse host tissues and organs, such as
circulating blood, adult and fetal BM, spleen, amniotic fluid,
cartilage, muscle tendons, placenta, adipose tissues, fetal tissues,
periosteum, synovial fluid, thymus, trabecular bone, dermis,
dental pulp, and lung (Alviano et al., 2007; Battula et al., 2007;
Parolini et al., 2008; Mitrano et al., 2010; Salvolini et al., 2010;
Figure 1A).

Although several regenerative properties have been ascribed
to MSCs, their mechanisms of actions are only partially
understood. MSCs synthesize and secrete bioactive factors that
modulate the action of adjacent cells. It has been shown
that MSCs can have paracrine functions. For example the
molecules secreted by MSCs may act as immunomodulators
(Carceller et al., 2015), angiogenic factors, (Kinnaird et al.,
2004b), anti-apoptotic factors (Khubutiya et al., 2014; Yang
et al., 2015) antioxidants molecules (Yang et al., 2015),
and/or cellular chemotaxis-inducers (Walter et al., 2015). In
addition, MSCs directly or via paracrine action induce fibroblast
proliferation, migration, and reduced tissue damage (Liang
et al., 2014; Li et al., 2015). Furthermore, these cells exert

anti-immflamatory properties, which include the regulation
of the innate and the adaptive immune responses (English,
2013; Molina et al., 2015; Figure 1B). Despite the fact that
MSCs can modulate molecular and cellular responses directly
via cell-cell contact (i.e., cellular differentiation), most studies
including ours (Aguilera et al., 2014) indicate that their
paracrine effects seems to be also important in relation to tissue
repair.

EXTRACELLULAR VESICLES AND
EXOSOMES

Cell secretes a wide range of extracellular vesicles (EVs) of
different size, morphology, content and function that interact
with target cells and modify their phenotype and function
(Colombo et al., 2014; Figure 2A). EVs can be classified
according their size, origin, and isolation methods, in to three
main classes: (i) Microvesicles or shedding vesicles: size between
50 and 1000 nm, budding from the plasma membrane, isolated
by differential centrifugation 10,000–100,000 g, and enriched in
CD40; (ii) Apoptotic bodies: size between 800 and 5000 nm,
derived from fragments of dying cells, isolated by differential
centrifugation 1500–100,000 g, and enriched in histones and
DNA; and (iii) Exosomes: which are small (∼30–120 nm)
membrane vesicles from endocytic origin (therefore, they are
enriched in late endosomal membrane markers, including
Tsg101, CD63, CD9, and CD81) and formed through the
inward budding of multivesicular bodies (MVBs) that traffic and
transfect molecules into target cells (Figure 2A).

Although little is known about the mechanism of packaging,
exosomes contain a diverse array of signaling molecules (e.g.,
cell adhesion molecules, growth factor receptors, annexins, Heat-
shock proteins). Recent reports have recognized exosomes as
cell-derived specific “couriers,” carrying signals and relocating
packages of information to modify the biology of target cells
(Kastelowitz and Yin, 2014). Exosomes are actively released by
a wide range of cells into the local and systemic circulation,
playing roles in both physiological and pathological conditions
(Colombo et al., 2014).

Progenitor cells release exosomes, which are cardioprotective
in ischemia/reperfusion injury (Lai et al., 2010) and can
stimulate endothelial cell migration (Vrijsen et al., 2010), cell
proliferation (Zhu et al., 2012), tissue vascularization and
angiogenesis (Cantaluppi et al., 2012). Exosomes-derived from
MSCs promote allograft survival and induce donor-specific
allograft tolerance (Plock et al., 2015). Also, exosomes derived
from placental MSCs and trophoblast cells promote endothelial
cell migration, endothelial tube formation, and extravillous
trophoblast migration, respectively (see details in Salomon et al.,
2013).

Exosomes may influence the behavior of recipient cells
by several different mechanisms, they may act as signaling
complexes by direct stimulation of target cells (Kastelowitz and
Yin, 2014). Exosomes may interact with target cells by specific
receptor ligand interactions and transfer receptors and biological
active molecules to these target cells following internalization
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FIGURE 1 | Phenotype, tissue origin, and immune system regulation of MSC. (A) In embryonic tissues, MSCs can be identified in the amniotic fluid, the

wharton’s jelly from the umbilical cord, the umbilical cord blood, and in the placenta. In adults MSCs are present in the bone marrow and can migrate to peripheral

blood, propagating to several tissues including gingival tissue, adipose tissue, and dermis. Surface markers used to identify MSCs in different locations are indicated;

positively expressed markers are shown in blue, negative markers are shown in red. (B) MSCs can be differentiated depending on the microenvironment. Initially,

MSCs are induced to proliferate and migrate by: molecular patterns associated with pathogens (PAMPs) and LPS (TLR4), dsRNA (TLR3) or PGN (TLR2), activating

Toll-like receptors, present on the cell surface of MSCs; secretion of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) by macrophages M1; activation of the

complement system (C3, C5 convertase). Factors expressed and secreted by MSCs, such as factor H, regulate the complement system, and prevent cell lysis. If

MSC activation occurs early in infection a pro-inflammatory phenotype prevails, promoting the recruitment and activation of neutrophils and monocytes, the latter

differentiating to pro-inflammatory macrophages (M1). In advanced stages, MSC take on an anti-inflammatory phenotype, promoting anti-inflammatory macrophage

differentiation (M2), tolerogenic dendritic cells (DC) and regulatory T lymphocyte proliferation.
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FIGURE 2 | Types and composition of vesicles secreted by Mesenchymal cells. (A) Microvesicle formed directly from the plasma membrane; secretory

vesicles, formed in internal compartments; exosomes, generated from intraluminal vesicles from early endosomes. (B) Vesicles from MSCs contain a variety of

bioactive components (see text).

(Colombo et al., 2014). Additionally exosomes could play a role
in the exchange of genetic material between cells. Exosomes are
suggested as central mediators of intercellular communication

by transferring proteins, mRNAs and miRNAs to adjacent
cells leading to coordinative function in organisms. Thus, the
microenvironment affecting the releases of exosomes, is critical
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in influencing the behavior of recipient cells (Valadi et al., 2007;
Yuan et al., 2009; Wang et al., 2014).

EXTRACELLULAR VESICLES AND MSC

As described in other cells, vesicles from MSCs contain various
exosomal and trophic factors, including growth factors and
cytokines (Majore et al., 2011; Patel et al., 2013). They also
contain lipids, protein, mRNAs, precursor microRNAs (pre-
miRNAs), microRNAs (miRNAs), and transfer RNA (tRNA;
Lakkaraju and Rodriguez-Boulan, 2008; Vlassov et al., 2012).
Lai et al. (2012), identified 857 proteins inside exosomes
released by MSCs-derived embryonic stem cell lines (Lai et al.,
2012). In another study, Kim et al. (2011), characterized the
protein composition of bone marrowMSC-derived microvesicles
(MVs), identifying 730 proteins, including several self-renewal
and differentiation mediators. They showed that MSCs vesicles
contain platelet-derived growth factor receptor beta (PDGFRB),
epidermal growth factor receptor (EGFR), and urokinase-type
plasminogen activator receptor (uPAR/PLAUR), which are key
factors for promoting cellular changes. The vesicles also contain
molecules from the RAS-MAPK, RHO, and CDC42 signaling
pathways, suggesting a possible role for these vesicles in tissue
repair (Kim et al., 2011; Lai et al., 2015). Other studies found that
extracellular vesicles from porcine adipose tissue-derived MSCs
contain multiple transcription factors targeting the expression
of regulatory genes involved in stem cell survival and function
(Dariolli et al., 2013). Other transcription factors linked with
development and function of stem cells such as POU class 3
homeobox-1 and POU3F1 (TST-1, OCT6; Wu et al., 2010),
along with Jumonji, AT Rich Interactive Domain-2 (JARID2), a
transcriptional repressor that plays an essential role in stem cell
self-renewal (Hunkapiller et al., 2012), had also been found in
extracellular vesicles.

Furthermore, extracellular vesicles also contain mRNAs that
regulate apoptosis via the p53 pathway, such as mRNA for
Mdm4 p53 binding protein homolog (MDM4; Li and Lozano,
2013) and Paternally Expressed Gene-3 protein (PEG3; Da Silva
Meirelles et al., 2009). In addition, multiple miRNAs present in
adult MSC-derived exosomes can regulate cell cycle progression
and proliferation (miR-191, miR-222, miR-21, let-7a), modulate
angiogenesis (miR-222, miR-21, let-7f) and induce endothelial
cell differentiation (miR-6087; Yoo et al., 2011). Furthermore,
MSCs exosomes are highly enriched in tRNAs, and recent
findings showed that tRNA pools from exosomes derived from
proliferating cells and differentiating cells were different from
each other (Baglio et al., 2015).

Despite growing number of report related with exosomes
biology, the entire contents of exosomes are still far from being
completely characterized; therefore further studies are required
to elucidate the biological function of exosomes in orchestrating
tissue repair (Figure 2B).

EXOSOMES AND ANGIOGENESIS

Angiogenesis refers to the formation of new capillaries from
existing blood vessels mediated by a complexmultistep process of

cellular events (Adams and Alitalo, 2007; Bazigou and Makinen,
2013). Several studies focused on identifying angiogenesis
stimulators have described: (1) soluble growth factors such
as Fibroblast Growth Factor (FGF) and Vascular Endothelial
Growth Factor (VEGF), both associated with endothelial cell
growth and differentiation (Hoeben et al., 2004); (2) inhibiting
factors for proliferation and stimulating differentiation of
endothelial cell such as angiogenin (Sovak et al., 1999); and (3)
extracellular cytokines, such as angiostatin and endostatin (Shih
and Lindley, 2006).

Proteomic analysis showed that exosomes derived from
MSCs contain growth factors such as VEGF, TGFB1, and
interleukin-8 (IL-8), which have been shown to contribute in
their pro-angiogenic activity (Coultas et al., 2005; Olsson et al.,
2006). In addition, is known that MSC-derived extracellular
vesicles are also rich in transcription factors involved in pro-
angiogenic pathways, such as Hepatocyte Growth Factor (HGF)
that stimulates proliferation and migration of endothelial and
vascular smooth muscle cells (Morishita et al., 1999; Chade and
Stewart, 2013; Tan et al., 2014). HES Family BHLH Transcription
Factor 1 (HES1) is a critical downstream effector of the Notch
signaling pathway that regulates vascular remodeling and arterial
fate of endothelial cells (Kitagawa et al., 2013). Similarly, Human
T-cell factor 4 (TCF4) is a key downstream effector of Wnt
signaling, a canonical pathway that plays a central role in vascular
development (Maruotti et al., 2013) and in determining and
maintaining the phenotype and functional properties of human
stem cells (Lu et al., 2012). Therefore, intercellular transmission
of EVs containing HGF, HES1, and TCF4 may have both pro-
angiogenic and pro-survival effects.

In addition, recent studies have reported that exosomes and
extracellular vesicles could carry Wnt on their surface to induce
Wnt signaling activity in target cells (Gross et al., 2012; Reis and
Liebner, 2013; Pate et al., 2014). Results from Zhang et al. (2015)
demonstrated that exosomes derived from human umbilical cord
mesenchymal stem cells (hucMSC-Ex) enhance angiogenesis in
the repair of skin second-degree burn injury. Additionally, they
found that knockdown of Wnt4 in hucMSC-Ex delays tube
formation of endothelial cells in vitro and the expression of CD31
in vivo (Zhang et al., 2015). These results confirm participation
of the Wnt-pathway in a pro-angiogenic and tissue repair role,
mediated by MSC-derived exosomes.

Extracellular vesicles derived from adipose mesenchymal stem
cells (ASC-EV) contain a set of angiogenic factors such as MFG-
E8, ANGPTL1, thrombopoietin (Lopatina et al., 2014).Moreover,
ASC-EV were found to carry matrix metalloproteinases (MMPs)
that play an important role in angiogenesis by facilitating
endothelial cell migration and by promoting activation of
angiogenic growth factors and other signaling molecules (Lee
et al., 2013).

In migrations assay using Human Umbilical Vein Endothelial
Cells (HUVECs), the numbers of migrated cells and the tube
length in matrigel analysis increased significantly after treatment
with conditioned medium harvested fromMSCs primary culture
(MSC-CM) or MSC-exosomes, compared with the control
(Kinnaird et al., 2004a). In addition, in vitro experiments
from the same study showed that the MSC-derived exosomes
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significantly promoted myogenesis and angiogenesis compared
to MSC-conditioned media (MSC-CM) (Nakamura et al., 2015).
However, MSCs-derived exosomes exhibit significantly lower
levels of VEGF and IL-6 than MSC-CM. This confirms that the
paracrine effects of MSCs are not only attributable to cytokines
and growth factors, but also to other factors, including specific
exosome factors (Nakamura et al., 2015).

One group of molecules with “paracrine” signaling capacity
identified inside exosomes are miRNAs. Exosomes derived from
MSCs contain several miRNAs, including miR210, miR126,
miR132, and miR21, which have all been shown to play central
roles in angiogenesis (Chen et al., 2010). In addition, multiple
miRNAs in adult MSC-derived exosomes regulate cell cycle
progression and proliferation (miR-191, miR-222, miR-21, let-
7a), and promote angiogenesis (miR-222, miR-21, let-7f) and
endothelial cell differentiation (miR- 6087; Yoo et al., 2011;
Nagpal and Kulshreshtha, 2014). So far, at least 20 miRNAs have
been found in human bone-marrow-derived MSCs exosomes.
Other miRNAs such as miR-1, miR-133, and miR-206 have been
also detected in human bone-marrow-derived MSCs exosomes
(Nakamura et al., 2015).

Angiogenesis is only one of multiple effects of exosomes
which have been associated with; proliferation and migration of
endothelial cells and vascular smoothmuscle cells, differentiation
into endothelial cells and vascular smooth muscle cells,
and formation of endothelial cells from formerly existing
vessels, enhanced blood flow restoration, and capillary network
formation. Suggesting that Exosomes may be a novel therapeutic
approach in the treatment of ischemic diseases.

POTENTIAL CLINICAL USE OF EXOSOMES
DERIVED FROM MSCs

The paracrine effects of MSCs therapy have been previously
reported in a wide range of disease (Galderisi and Giordano,
2014; Rani et al., 2015). For instance, Kang et al. (2015)
examined the role of exosomes derived from rat bone marrow
MSCs on cardiac functions in a rat model of myocardial
infarction (Kang et al., 2015). They observed that exosomes
protect cardiomyocytes from ischemic injury both in vitro and
in vivo by acting on hearts and vessels, promoting cardiac
regeneration mediated by neovascularization and anti-vascular
remodeling (Huang et al., 2015). This study also showed that
exosomes secreted by MSCs were able to reduce myocardial
ischemia/reperfusion injury (Huang et al., 2015). Moreover,
exosomes from MSCs overexpressing CXCR4 showed better
efficiency for reducing left ventricular remodeling and promoting
restoration of heart function (Kang et al., 2015).

Other studies have reported that intact exosomes secreted
by MSCs reduced oxidative stress, increased ATP and NADH
production, controlled inflammatory activities and activated the
PI3K/Akt pathway, which in turn leads to protective influences
on cardiomyocytes as well as survival and retention of left
ventricular function after ischemia-reperfusion injury (Khan
et al., 2013; Huang et al., 2015). Similarly, MSC-derived EV
reduced the infarct size in a pig model of ischemia/reperfusion

injury (Timmers et al., 2008). In another study, in vivo
analysis of a mouse model of muscle injury showed that
injection of MSC-exosomes accelerated muscular regeneration,
enhanced angiogenesis, and reduced fibrosis (Nakamura et al.,
2015).

In the lung, MSCs-derived exosomes suppress the activation
of the hypoxic signal pathway, activated alveolar macrophages,
mediated by down-regulation of proliferative miR-17 (Lee
et al., 2012). Moreover, MSC-derived exosomes might also
disturb STAT3-miR-204-STAT3 feedback to ameliorate vascular
remodeling (Huang et al., 2015). The findings above suggest that
MSC-derived exosomes induce lung protection via preventing
early pulmonary inflammation and vascular remodeling.

In addition, in the kidney, MSC-derived extracellular vesicles
exert pro-survival effect on renal cells by inducing the expression
of anti-apoptotic genes and down-regulating the expression of
pro-apoptotic genes (Bruno et al., 2012; Zhou et al., 2013).
Furthermore, other studies suggested that exosomes from MSCs
could protects against liver fibrosis (Li et al., 2012), and acute
kidney injury (Bruno et al., 2012; He et al., 2012), and enhance
cutaneous wound closure. Therefore, is possible that MSCs-
exosomes promote cell proliferation and subsequently, injury
repair, and wound healing.

Nevertheless in cancer, exosomes released and/or delivered
into tumor microenvironment can modulate epithelial to
mesenchymal transition, cancer stemess, angiogenesis, and
metastasis (Higginbotham et al., 2011; Alderton, 2012; Lee
et al., 2013; Yu et al., 2015). Recent studies have shown that
chemotherapy enhanced the secretion of exosomes in tumor
cells, leading to the transfer of chemoresistance related miRNAs
and mRNAs to neighboring cells to alter their sensitivity to
chemotherapy, suggesting a critical role of exosomes in the
cellular response to chemotherapy (Yang et al., 2011; Kahlert and
Kalluri, 2013).

Thus, several studies have reported that MSC-derived
exosomes have functions similar to those of MSCs, such as
repairing tissue damage, suppressing inflammatory responses,
and modulating the immune system. This paracrine action of
MSCs has changed the perspective of their use in regenerative
medicine. The use of MSCs may attenuate many of the safety
concerns related to the use of living cells.

CONCLUDING REMARKS

Cell-based therapies have been used with high efficacy in clinical
trials for stroke, neurological disorders and other diseases.
However, several studies have shown multiple benefits of using
exosomes rather than cells. For example, MSC-derived MVs
could reduce potential risks associated with cellular therapies,
including ectopic tissue formation, infusion toxicities due to
cells lodging and cellular rejection or unwanted engraftment.
It is known that exosomes carry and transfer their cargo to
parenchymal cells, where they mediate cellular plasticity and
functional recovery in pathological conditions via paracrine
signaling. However, the detailed mechanisms underlying the
benefits of exosomes in MSCs transplantation in these diseases
requires further investigations. Thus, exosomes derived from
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MSCs represents a promising approach for the treatment of
human disease.

In conclusion, this report offers a comprehensive analysis
of extracellular vesicular cargo that sheds light on the cellular
communication. In this review, we highlight that exosomes
from stressed MSCs act as rafts to carry supportive proteins,
miRNA, lipids and metabolites. Further studies are required to
determine which of these components trigger the right molecular
mechanisms in the tissue of interest.
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