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Mesenchymal stem cells: a new trend for cell therapy
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Mesenchymal stem cells (MSCs), the major stem cells for cell therapy, have been used in the clinic for approximately 10 years.  From 
animal models to clinical trials, MSCs have afforded promise in the treatment of numerous diseases, mainly tissue injury and immune 
disorders.  In this review, we summarize the recent opinions on methods, timing and cell sources for MSC administration in clinical 
applications, and provide an overview of mechanisms that are significant in MSC-mediated therapies.  Although MSCs for cell therapy 
have been shown to be safe and effective, there are still challenges that need to be tackled before their wide application in the clinic.
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Introduction
Stem cells are unspecialized cells with the ability to renew 
themselves for long periods without significant changes in 
their general proper ties.  They can differentiate into various 
specialized cell types under certain physiological or experi-
mental conditions.  Cell therapy is a sub-type of regenerative 
medicine.  Cell therapy based on stem cells describes the pro-
cess of introducing stem cells into tissue to treat a disease with 
or without the addition of gene therapy.  Hematopoietic stem 
cells (HSCs) have been widely used for allogeneic cell therapy.  
The successful isolation of pluripotent embryonic stem (ES) 
cells from the inner cell mass of early embryos has provided 
a powerful tool for biological research.  ES cells can give rise 
to almost all cell lineages and are the most promising cells for 
regenerative medicine.  The ethical issues related to their isola-
tion have promoted the development of induced pluripotent 
stem (iPS) cells, which share many properties with ES cells 
without ethical concerns.  However, one key property of ES 
cells and iPS cells that may seriously compromise their utility 
is their potential for teratoma formation.  

Due to the limitation of using ES and iPS cells in the clinic, 
great interest has developed in mesenchymal stem cells 
(MSCs), which are free of both ethical concerns and teratoma 
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formation.  These cells were first isolated and characterized 
by Friedenstein and his colleagues in 1974.  MSCs, also called 
mesenchymal stromal cells, are a subset of non-hematopoietic 
adult stem cells that originate from the mesoderm.  They pos-
sess self-renewal ability and multilineage differentiation into 
not only mesoderm lineages, such as chondrocytes, osteocytes 
and adipocytes, but also ectodermic cells and endodermic 
cells[1–5].  MSCs exist in almost all tissues.  They can be easily 
isolated from the bone marrow, adipose tissue, the umbili-
cal cord, fetal liver, muscle, and lung and can be successfully 
expanded in vitro[6–10].  The number of clinical trials on MSCs 
has been rising since 2004 (Figure 1).  Although the “gold 
rush” to use MSCs in clinical settings began with high enthu-
siasm in many countries, with China, Europe and US leading 
the way (http://clinicaltrial.cn), numerous scientific issues 
remain to be resolved before the establishment of clinical stan-
dards and governmental regulations.

What can MSCs do?
Currently, there are 344 registered clinical trials in different 
clinical trial phases (Figure 2) aimed at evaluating the poten-
tial of MSC-based cell therapy worldwide.  With the advance-
ment of preclinical studies, MSCs have been shown to be effec-
tive in the treat ment of many diseases, including both immune 
diseases and non-immune diseases (Figure 3).  

MSCs in tissue repair
The wide tissue distribution and multipotent differentiation of 
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MSCs together with the observed reparative effects of infused 
MSCs in many clinical and preclinical models[11–26] strongly 
suggest a critical role of MSCs in injury healing.  They are 
believed to be responsible for growth, wound healing, and 
replacing cells that are lost through daily wear and tear and 
pathological conditions.  Because of these functions, they have 
been shown to be effective in the treat ment of tissue injury and 
degenerative diseases.  In the digestive system, autologous 
bone marrow mesenchymal stem cells (BM-MSCs) improved 
the clinical indices of liver function in liver cirrhosis patients 
and liver failure patients caused by hepatitis B[27, 28].  BM-MSCs 

can also exert strong therapeutic effects in the musculoskeletal 
system.  They have been shown to be effective in the regenera-
tion of periodontal tissue defects, diabetic critical limb isch-
emia, bone damage caused by osteonecrosis and burn-induced 
skin defects[29–31].  In preclinical studies, investigations by the 
Prockop team have also shown that human MSCs are effec-
tive in treating myocardial infarction[32] and cornea damage[33] 
through the secretion of tumor necrosis factor-inducible gene 
6 protein (TSG-6), which reduces inflammation and pro-
motes tissue reconstruction.  A similar phenomenon has been 
reported for MSCs in treating other tissue injuries, such as the 
brain, spinal cord[34] and lung[35, 36], all target organs of MSCs 
in the future.  Additionally, co-transplantation of MSCs can 
enhance the effect of HSCs in treating radiation victims[37].

MSCs in immune disorder therapy
In addition to their property of treating tissue injury, MSCs 
are also applied to alleviate immune disorders because MSCs 
have a powerful capacity of regulating immune responses.  
Various studies have evaluated the therapeutic effect of MSCs 
in preclinical animal models and demonstrated great clinical 
potential.  For example, MSCs have been successfully applied 
to reverse graft-versus-host disease (GvHD) in patients receiv-
ing bone marrow transplantation[38, 39], especially in patients 
diagnosed with severe steroid resistance[40–42].  Similarly, in 
systemic lupus erythematosus (SLE) and Crohn’s disease 
patients, both autologous and allogeneic MSCs were able to 
suppress inflammation and reduce damage to the kidneys 
and bowel through the possible induction of regulatory T cells 
in patients[43–46].  It also has been reported that BM-MSCs can 
improve multiple system atrophy (MSA)[47], multiple sclero-
sis (MS), amyotrophic lateral sclerosis (ALS)[48–50], and stroke, 
likely through immediate immunomodulatory effects[51].  
Osiris’ Prochymal, the world’s first stem cell drug approved 
in Canada on May 12, 2012, was successful in phase III clinical 
trials in treating GvHD and Crohn’s disease and has become 
the only stem cell-based drug approved by FDA[40, 52].  

Methods and techniques of applying MSCs in the clinic
Engraftment of MSCs
In all of the preclinical and clinical studies, the engraftment of 
MSCs into damaged tissues via migration to enhance tissue 
repair/regeneration is a crucial process for clinical efficacy, 
regardless of the type of organ or specific disease.  As more 
and more clinical studies are performed, the engraftment 
properties of MSCs are gradually being evaluated in many 
models and clinical trials.  In 2000, a study of human MSC 
in utero transplantation in sheep demonstrated long-term 
engraftment as long as 13 months after transplantation, even 
when cells were transplanted after the expected development 
of immunocompetence, and the transplanted human MSCs 
could undergo site-specific differentiation into chondrocytes, 
adipocytes, myocytes and cardiomyocytes, bone marrow 
stromal cells and thymic stroma[53].  However, the overwhelm-
ing majority of MSCs were found in the lung after systemic 
administration in normal recipients, and these MSCs disap-

Figure 1.  Number of registered clinical trials of mesenchymal stem cells-
based therapy on ClinicalTrials.gov.

Figure 2.  Clinical phages of mesenchymal stem cells-based therapy.  Data 
from ClinicalTrials.gov.

Figure 3.  Percentages of the common diseases now treated with 
mesenchymal stem cells.  Data from ClinicalTrials.gov.
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peared gradually over time[54].  The mechanisms of these phe-
nomena are still unclear.  

The site of delivery most likely affects the trafficking of 
MSCs to target organs.  Generally, two approaches of systemic 
administration have been used for MSC applications.  One is 
intravenous injection, such as peripheral vein injection (tail 
vein in mice), utilizing the capabilities of MSCs to migrate 
to specific inflammatory tissues in vivo, including the carti-
lage, liver, and lung[55, 56].  Engraftment was demonstrated 
in animal models and was capable of persisting for as long 
as 13 months after transplantation[53].  The other approach is 
local intraarterial injection, which can enhance the accumu-
lation and increase the dose of MSCs in injured tissues.  In 
a phase I study of MSCs as a treatment for liver cirrhosis in 
2007, patients were injected with human MSCs through liver 
arteries[57].  Moreover, to increase the number of MSCs and 
the efficiency of differentiation at the damaged sites, stud-
ies on liver cirrhosis, osteonecrosis, skin defects, and spinal 
cord injury employed local injections instead of the systemic 
administration of MSCs[31].  However, which route of admin-
istration is best for a particular disease and the possible con-
traindication of such clinical usage are still unknown.

Time of MSC administration 
In addition to the different methods of administration, the 
timing of delivery and number of cells delivered are also very 
important.  Sudres et al found in their study that MSCs failed 
to prevent GvHD in mice, and the failure was not due to MSC 
rejection[58].  Meanwhile, our finding showed that MSCs could 
prolong survival in a GvHD mouse model[59].  One difference 
between these two studies was the infusion time of MSCs[60].  
Sudres et al injected MSCs 10–15 min before GvHD induction, 
whereas we injected MSCs 3 d and 7 d after bone marrow 
transplantation.  It is possible that the time of MSC administra-
tion is important for the therapeutic effect.  Based on the above 
discussion that the immunosuppressive ability of MSCs must 
be induced by inflammatory cytokines, it is conceivable that 
MSC administration at the peak of inflammation may improve 
the treatment effect.  However, this hypothesis needs to be 
further tested.  

Cell sources of MSCs
MSCs exist in almost all tissues.  They can be easily isolated 
from the bone marrow, adipose tissue, umbilical cord, fetal 
liver, muscle, and lung and can be successfully expanded in 
vitro[6–10].  Although the major source of MSCs in clinic trials 
is umbilical cord, recent studies have suggested that the allo-
genicity of MSCs have no significant adverse impact on the 
engraftment of MSCs in wound healing[61].  It is better to use 
freshly isolated MSCs because it has been shown that 5 major 
histocompatibility complex (MHC II) molecules could be 
increased during in vitro expansion[62, 63].

Therapeutic mechanisms of MSCs
As mentioned above, MSCs have displayed great potential in 
treating a large number of immune and non-immune diseases.  

However, there are still major questions concerning the opti-
mal dosage of MSCs, routes of administration, best engraft-
ment time and the fate of the cells after infusion[64].  Thus, it 
is critical to explore the mechanisms governing MSC-based 
therapies.  Although a uniform mechanism has not yet been 
discovered, the available data have revealed several working 
models for the beneficial effects of MSCs.  Based on the current 
understanding, we summarize some key mechanisms that are 
significant in MSC-mediated therapies.  It is noteworthy that 
for a given disease, multiple mechanisms are likely to contrib-
ute coordinately to the therapeutic effect of MSCs.  

Homing efficiency
MSCs have a tendency to home to damaged tissue sites.  
When MSCs are delivered exogenously and systemically 
administered to humans and animals, they are always 
found to migrate specifically to damaged tissue sites with 
inflammation[65, 66], although many of the intravenously admin-
istered MSCs are trapped in the lung[67, 68].  The inflammation-
directed MSC homing has been demonstrated to involve sev-
eral important cell trafficking-related molecules: chemokines, 
adhesion molecules, and matrix metalloproteinases (MMPs).  
Among these chemokines, the chemokine (C-X-C motif) ligand 
12- chemokine (C-X-C motif) receptor 4 and chemokine (C-C 
motif) ligand 2- chemokine (C-C motif) receptor 2 axes are 
most studied[69, 70].  Accordingly, CXCR4 was transduced into 
MSCs to improve their in vivo engraftment and therapeutic 
efficacy in a rat myocardial infarction model[71].  The adhesion 
molecule P-selectin and the VCAM-1 (vascular cell adhesion 
protein 1)-VLA-4 (very late antigen-4) interaction has been 
shown to be key mediators in MSC rolling and firm adher-
ence to endothelial cells in vitro and in vivo[72].  Interestingly, 
in a recent report, VCAM-1 antibody-coated MSCs exhibited 
a higher efficiency of engraftment into inflamed mesenteric 
lymph nodes and the colon than uncoated MSCs in a mouse 
inflammatory bowel disease (IBD) model[73], suggesting that 
modulations of the homing property of MSCs could be a 
viable approach in enhancing their therapeutic effectiveness.  
In addition to chemokines and adhesion molecules, several 
MMPs, such as MMP-2 and membrane type 1 MMP (MT1-
MMP), have been shown to be essential in the invasiveness of 
MSCs[74, 75].  It is worth noting that all the homing-related mol-
ecules can be up-regulated by inflammatory cytokines, such as 
TNF and IL-1[76, 77].  Therefore, different inflammation statuses 
(ie, different levels of inflammatory cytokines) might lead to 
distinct MSC engraftment and therapeutic efficiencies.  

Tumors can be regarded as wounds that never heal and 
continuously generate various inflammatory cytokines[78].  
Indeed, MSCs that are either de novo mobilized or exogenously 
administered have been found to migrate to tumors and adja-
cent tissue sites[79].  In view of this property, approaches have 
been developed to engineer several tumor-killing agents, such 
as IFNα, IFNβ, IL-12, and TNF-related apoptosis-inducing 
ligand (TRAIL), in MSCs for tumor-targeted therapy in animal 
models[80–84].  More recently, MSCs have also been undergoing 
development as vehicles for the delivery of nanoparticles to 
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enhance their tumoricidal effects[85, 86].  Further investigations 
in this direction may lead to novel therapeutic strategies for 
cancer.  

Differentiation potential and tissue engineering
As typical multipotent stem cells, MSCs have been shown 
to possess the capability to differentiate into a variety of cell 
types, including adipocytes, osteoblasts, chondrocytes, myo-
blasts and neuron-like cells.  Although it is currently believed 
that the therapeutic benefits of MSCs are due to more com-
plicated mechanisms, they have been indicated to be able to 
differentiate into osteoblasts, cardiomyocytes and other tissue-
specific cells after their in vivo systemic infusion in the treat-
ment of osteogenesis imperfecta and myocardial infarction in 
both animals and humans[53, 87, 88].  

In addition to systemic delivery, MSCs can be delivered 
together with various natural and synthetic biomaterial scaf-
folds.  Either undifferentiated or differentiated MSCs can be 
loaded onto scaffolds before their implantation into damaged 
tissue sites[89, 90].  Such technologies have been successfully 
applied in cartilage repair and long bone repair, with the gen-
eration of well-integrated and functional hard tissues[91, 92].  The 
advantage of a tissue-engineered MSC delivery system lies in 
the ease of controlling and manipulating the implanted cells 
and tissues, with reduced side effects impacting other organs 
and tissues.  Current improvements in delivery vehicles and 
compatibility between the scaffolds and MSCs will help to 
develop a mature technology for clinical applications.   

Production of trophic factors
Accumulating evidence has revealed that the therapeutic ben-
efits of MSCs are largely dependent on their capacity to act 
as a trophic factor pool.  After MSCs home to damaged tissue 
sites for repair, they interact closely with local stimuli, such as 
inflammatory cytokines, ligands of Toll-like receptors (TLRs) 
and hypoxia, which can stimulate MSCs to produce a large 
amount of growth factors that perform multiple functions 
for tissue regeneration[93–95].  Many of these factors are critical 
mediators in angiogenesis and the prevention of cell apoptosis, 
such as vascular endothelial growth factor (VEGF), insulin-like 
growth factor 1 (IGF-1), basic fibroblast growth factors (bFGF), 
hepatocyte growth factor (HGF), IL-6 and CCL-2[94, 96, 97].  Inter-
estingly, a recent study found that the therapeutic effect of 
neuronal progenitors on EAE was solely dependent on leuke-
mia inhibitory factor (LIF), revealing a similar trophic function 
as other tissue progenitors/stem cells[98].  Moreover, many 
reports have demonstrated that pre-treatment with growth 
factors or gene modification of MSCs can enhance the thera-
peutic efficacy for myocardial infarction and other wound-
healing processes[99, 100].  A further understanding of the molec-
ular pathways involved in growth factor production will be 
helpful to develop better strategies for MSC-based therapies.  

Immunomodulation
In the last few years, MSCs have been shown to be effective 
in treating various immune disorders in human and animal 

models.  In both in vitro and in vivo studies, MSCs have been 
shown to suppress the excessive immune responses of T 
cells, B cells, dendritic cells, macrophages, and natural killer 
cells[101, 102].  The underlying mechanisms are believed to be 
a combined effect of many immunosuppressive mediators.  
A majority of the mediators are inducible by inflammatory 
stimuli, such as nitric oxide (NO), indoleamine 2,3, dioxyge-
nase (IDO), prostaglandin E2 (PGE2), tumor necrosis factor-
inducible gene 6 protein (TSG6), CCL-2, and programmed 
death ligand 1 (PD-L1)[68, 103–108].  These factors are minimally 
expressed in unactivated MSCs unless they are stimulated 
by several inflammatory cytokines, such as IFNγ, TNFα, and 
IL-1[78, 103].  The neutralization of either immunosuppressive 
effectors or inflammatory cytokines could reverse MSC-me-
diated immunosuppression[79].  The concept of inflammation-
licensed immunosuppression favors a more rational design 
for the clinical use of MSCs.  First, an optimal administration 
time point should be carefully selected according to the levels 
and ratios of different cytokines in the body during disease 
progression.  Previous reports have demonstrated that MSC 
administration after disease onset may be better than at the 
same time of disease induction in a mouse GvHD model[71, 79].  
Second, cytokine priming should be attempted to improve the 
therapeutic effect of MSCs.  Cheng et al  reported that IFNγ-
pretreated MSCs protected 100% of mice from GvHD-induced 
death[71].  Third, the therapeutic efficacy of MSCs most likely 
depends on the nature of different diseases due to the distinct 
inflammatory environments.  Even for a specific disease, the 
diversity of microenvironments in different tissues may also 
produce different curative effects of MSCs.  Therefore, the pre-
cise in vivo mechanism of MSCs may be more complex than 
observed in vitro.  Further defining such mechanisms will help 
to develop better strategies for the clinical use of MSCs.  

Unsolved problems and challenges
Although significant progress has been made in stem cell 
research in recent years, cell therapy with stem cells is far from 
a mature clinical technology.  Because they are free of ethical 
concerns and have numerous sources, low immunogenicity 
and no teratoma risk, MSCs are the most commonly used stem 
cells in current clinical applications.  However, there are still 
several major hurdles to their widespread utility.  Further 
research is needed on interactions between MSCs and the 
inflammatory milieu in which they reside and the therapeu-
tic mechanisms of MSCs.  Furthermore, it is still not known 
which source should be used for which disease, which route 
of administration is best suited for a particular disease, and 
possible contraindications to their clinical use.  Once admin-
istered, the parameters for monitoring clinical effectiveness 
also need to be established and are likely to vary for different 
disorders.  Most importantly, established standards for cell 
expansion protocols, product quality, and safety controls are 
not available in most countries.  Government regulatory agen-
cies are eagerly waiting for detailed answers to these ques-
tions to establish regulatory polices to meet the challenges of 
this newly emerging and rapidly advancing field and benefit 
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patients suffering a wide array of diseases.  We look forward 
to using soluble products of MSCs instead of MSCs themselves 
in the future, which may simplify the administration of cells 
and make it safer.  
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