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Abstract

Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of

stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders.

Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells

are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and

regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and

response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose

tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton’s jelly (WJ), and amniotic

fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro.

MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors,

and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of

repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs’ secretome

enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and

compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
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Introduction

Diseases of skeletal system are extensively widespread in

aged population and are considered to be one of the

main causes of disability and morbidity [1]. The most

common disorders of the skeletal system include inter-

vertebral discs (IVDs), osteoporosis, bone fractures,

osteogenesis imperfecta (OI), osteoarthritis (OA), and

rheumatoid arthritis (RA) [2] (Table 1). Among various

therapeutic approaches for the treatment of these dis-

eases, stem cell therapy seems to be more promising.

Stem cells are introduced into tissues to repair, replace,

and treat a defect with or without the addition of

external gene. The origin of the stem cells can be from

autologous or allogeneic sources. They can be used ei-

ther as naive or primed of the desired lineage [17].

Stem cells are undifferentiated biological entities with

the capacity to self-renew and differentiate into special-

ized cell types. Based on differentiation potential, they

are classified as totipotent, pluripotent, multipotent, oli-

gopotent, and finally, unipotent cells [18]. Mesenchymal

stem cells (MSCs) are multipotent stromal cells with

mesodermal and neural crest origin [19, 20]. They are

the most commonly used stem cells in the current pre-

clinical and clinical studies on skeletal diseases [21]

(Table 2) either through direct injection or along with

scaffolds (a range of natural gels and hydrogels based on

collagen, hyaluronic acid (HA), glycosaminoglycans

(GAGs), agarose, gelatin and alginate) [37–39] (Fig. 1).

These cells are isolated from a variety of tissues like

bone marrow (BM), adipose tissue, fetal liver, umbilical
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cord (UC), muscle, endometrial polyps, dental tissue,

synovial fluid, skin, foreskin, Wharton’s jelly (WJ), pla-

centa, dental pulp (DP), breast milk, gingiva, amnion,

and menstrual blood [40–54]. MSCs are characterized as

plastic adherent cells with fibroblastic morphology in

culture. These cells lack the expression of hematopoietic

markers such as CD45, CD34, and CD14, but express

mesenchymal specific markers including CD73, CD90,

and CD105 [55]. A list of positive and negative markers

on MSCs from various sources is presented in Table 3.

Human MSCs (hMSCs) usually express low levels of

MHC class I, with no expression of MHC class II [64].

These cells demonstrate three distinct biological charac-

teristics (potential of differentiation, secretion of trophic

factors and immunoregulatory properties) which make

them an excellent candidate for cell therapy [65]. MSCs

possess the capacity to differentiate into a wide variety

of cell types including adipocytes, osteoblasts, chondro-

cytes, and myocytes. Also, they are capable of trans-

differentiating into ectodermal lineages such as neuronal

cells and endodermal lineages such as hepatocytes and

pancreatic islet cells [39, 65, 66]. MSCs are of great

importance because of their paracrine effects through

secreting growth factors and cytokines, such as vascu-

lar endothelial growth factor (VEGF), transforming

growth factor beta (TGF-β), and interleukins (IL-1β,

IL-6, and IL-8) [67]. Moreover, MSCs have an add-

itional ability to modulate immune responses through

repressing T cell proliferation, dendritic cell (DC)

maturation, B cell activation, and cytotoxic activation

of resting NK cells [68–73].

Bone structure

As the main part of the skeletal system, the bone con-

tributes to the locomotion, soft tissue protection, har-

boring of BM, blood production, progenitor cell

(mesenchymal and hematopoietic) housing, regulation of

blood pH and maintenance of calcium, and phosphate

homeostasis [74, 75]. Macroscopic examinations show

that bone tissue is a heterogeneous and porous structure

comprising two bone types including cortical (compact)

and cancellous (spongy). Comparison of cortical and

cancellous bones reveals significant different masses, so

that the former has major mass-to-volume ratio [76, 77].

Owing to be a dynamic connective tissue, the bone has

cells and extracellular matrix (ECM) which consists of

organic and inorganic phases. Collagen fibers are the

main makeup in the organic phase while inorganic phase

is mainly composed of hydroxyapatite [76, 78, 79]. The

cellular components are osteoprogenitors, osteoblasts,

bone lining cells, osteocytes, and osteoclasts. Osteoblasts

are one of the most important differentiated cells in the

Table 1 List of the main skeletal diseases, their clinical description and molecular features

Bone diseases Clinical description Molecular features

Intervertebral disc (IVD)
degeneration

Increased extracellular matrix breakdown and abnormal
matrix synthesis leading to reduced hydration, loss of
disc height, and decreased ability to absorb load, disc
herniation, vertebral instability and spinal stenosis, back
and neck pain [3]

Collagen I (COL1A1/A2), Collagen IX (COL9A1/A2/A3),
CollagenXI (COL11A1/A2/A3),VDR genes (TaqI, ApaI),
Col I (COLIA1, Aggrecan (CS1), MMP-3(5A/6A) [4, 5]

Osteoporosis Acute back pain caused by a pathologic vertebral
compression fracture as the earliest symptom, decreased
density (mass/volume) of normally mineralized bone,
decreased mechanical strength, making the skeleton
more likely to fracture [6]

Col I (COL1A1/A2), PTH, PTHR, VDR, BMPs (BMP2,4,7,
OP1LRP5), LRP6, RANK, RANKL [7]

Osteogenesis imperfecta (OI) Progressive skeletal deformation, loss of BMD, frequent
fractures, short stature, joint hypermobility and pain [8, 9]

mutations in the type I collagen genes COL1A1/A2,
collagen modification (CRTAP, LEPRE1, PPIB), processing
(BMP1), or folding (SERPINH1, FKBP10 [8, 10]

Osteoarthritis (OA) Joint inflammation, joint pain, stiffness, swelling and
restriction of joint function [11]

COL2A1, COL9A3, COL11A1, CRTM, VDR, ESR1, BMP5,
ALDH1A2, MCF2L, CHADL, GDF5 and FILIP1, GLIS3,
TGFB1, TNC and WWP2 [12–14]

Rheumatoid arthritis (RA) Joint degeneration, loss of cartilage, and alterations of
subchondral bone, abnormalities of weight-bearing joints
and hands, including knees and hips, symptoms of OA
including pain, stiffness, and altered function in knee
and hips [15]

HLA-DR, PTPN22, IL6R, TRAF1/C5, STAT4, PADI4, FCGR,
CD40, CCL21, CCR6 [16]

COL collagen, VDR vitamin D receptor, MMP matrix metalloproteinase, PTH parathyroid hormone, PTHR parathyroid hormone receptor, BMP bone morphogenetic

protein, LPR low-density lipoprotein receptor-related protein, RANK receptor activator of nuclear factor kappa B, RANKL RANK ligand, BMD bone mineral density,

CRTM cartilage matrix protein, ESR estrogen receptor, CRTAP cartilage-associated protein, LEPRE1 leucine proline-enriched proteoglycan1, PPIB peptidyl-prolyl

isomerase 1 (cyclophylin B), SERPINH1 serpin peptidase inhibitor, clade H, FKBP10 Fk506-binding protein 10, ALDH aldehyde dehydrogenase, MCFL2 MCF.2 cell line

derived transforming sequence-like protein, CHADL chondroadherin like, GDF5 growth differentiation factor 5, FILIP1 filamin-A-interacting protein 1, GLIS3 GLI-

similar 3, TGFB1 transforming growth factor beta 1, TNC tenascin C, WWP2 WW domain containing E3 ubiquitin protein ligase 2, HLA-DR human leukocyte antigen

– DR isotype, PTPN22 protein tyrosine phosphatase, non-receptor type 22, IL6R interleukin-6 receptor, TRAF1/C5 tumor necrosis factor receptor-associated factor-1,

STAT4 signal transducer and activator of transcription 4, PADI4 peptidylarginine deiminase 4, FCGR Fc gamma receptor, CCL21 CC chemokine ligand 21, CCR6 CC

chemokine receptor 6
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bone originating from bone marrow mesenchymal stem

cells (BM-MSCs). Osteoblasts play critical roles in the

synthesis of ECM components including type I collagen,

proteoglycans, and non-collagenous proteins and also

participate in matrix mineralization and blood-calcium

homeostasis. Osteocytes, as the most abundant and

long-lived cells, are the mature trapped osteoblasts in

the lacunae. Osteoclasts are large multinucleated cells

that originate from mononuclear cells and participate in

the absorption of bone, calcium and phosphate excre-

tion, bone healing, and remodeling [78, 80–83].

Bone diseases are one of the most common body in-

juries, and are associated with high health expenses ex-

ceeding billions of dollars annually [84]. Prevalence of

such defects is increasing; thereby, they are considered

an epidemic health challenge [85]. The bone benefits

from the ability to repair itself throughout the life. Bone

regeneration is a process in which osteoclasts and osteo-

blasts are tightly involved [80]. Despite spontaneous

regeneration potential, there are several different reasons

such as bone defect size and infection that cause dam-

aged bone not to be able to restore itself [86]. In the fol-

lowing sections, common approaches and new therapies

in restoring and treating bone defects will be discussed.

Bone diseases and MSC therapy

Intervertebral disc (IVD) degeneration

Intervertebral discs (IVDs) are circular pieces of gelly

fibrocartilage tissue between vertebral of the spine func-

tioning for shock-absorption. They are the reason of

flexibility in the neck and lumbar regions and thus con-

tribute to motion. Anatomically, they have three import-

ant substructures: nucleus pulposus (NP), anulus

fibrosus (AF), and cartilaginous end plates (CEPs) [87–

89]. One of the highest risk factors for disc degeneration

is aging [90]. As age increases, cellular and structural

changes in NP, AF, and CEP lead to IVD [91]. Findings

showed that IVD alterations during aging start cleft

Table 2 Preclinical and clinical studies of MSCs for the treatment of skeletal diseases

Defect type Model MSC type Findings

IVD Porcine Autologous BM-MSCs Reduction in COL1 expression as a marker for fibrosis, reduction of inflammation
marker IL1β and elevation of trophic factor BMP2, reducing disc degeneration [22]

Rat Xenogeneic hAD-MSCs Viability and proliferative potentiate of AD-MSC transplanted within the rat IVD,
contribution in the maintenance of disc height after the operation [23]

Human (n = 5) Autologous BM-MSCs Improvement in strength and mobility post stem cell treatment [24]

Human (n = 10) Autologous BM-MSCs Feasible and safe, rapid improvement of pain and disability (85% of maximum in
3months) [25]

Osteoporosis Goat Autologous BM-MSCs Improvement of bone formation in the osteoporotic model in vivo [26]

Rat Xenogeneic hUCB-MSCs Enhancement of bone formation abilities in osteoporotic rat model similar to no
osteoporotic bone regeneration [27]

OI Mouse Human fetal e-CSCs Reduction of fractures, increasing bone ductility and BV by directly differentiating to
osteoblasts, stimulating host chondrogenesis and osteogenesis [28]

Human (n = 3) Allogeneic BM-MSCs Increase in total body bone mineral content and new dense bone formation [29]

Bone fractures Rabbit Autologous AD-MSCs Improvement of healing process in tibial defects compared to using hydroxyapatite
alone [30]

Rat Xenogeneic hDP-MSCs Increased callus homogeneity, decline callus earlier size, increased percentage of
lamellar in newly formed bone, lower incidence of fibrous tissue in the experimental
group, advanced and more efficient bone healing in the cell-treated group compared
to the control [31]

Human (n = 18) BMAC Faster healing in BMAC cancellous bone allograft transplanted group compared to an
autologous bone graft, efficacy of BMAC for treatment of nonunion [32]

OA Rat Allogeneic BM-MSCs Chondroprotection and reduced subchondral bone mineral density in the
transplantation [33]

Human (n = 4) Autologous BM-MSCs Positive changes in all patients, clear bone formation in osteonecrosis patients,
cartilage regeneration in the OA patients [34]

Human (n = 6) Autologous BM-MSCs Improvement of pain, functional status of the knee and walking distance, increase in
cartilage thickness, extension of the repair tissue and a considerable decrease in the
size of edematous subchondral patches [35]

Human (n = 18) Autologous AD-MSCs Reduced cartilage defects by regeneration of hyaline-like articular cartilage and
improvement of function and pain of the knee joint without causing adverse
events [36]

IVD intervertebral disc, BM-MSCs bone marrow-derived mesenchymal stem cells, COL1 collagen typ1, IL1β interleukin1 β, BMP2 bone morphogenetic protein, hAD-MSCs

human adipose-derived mesenchymal stem cells, hUCB-MSCs human umbilical cord blood-derived mesenchymal stem cells, OI osteogenesis imperfecta, e-CSCs human fetal

early chorionic stem cells, BV bone volume, BMAC bone marrow aspiration concentrate, OA osteoarthritis, hDP-MCs human dental pulp-derived mesenchymal stem cells
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formation in NP [92]. Meanwhile, AF becomes disorga-

nized, stiffer, and weaker [93].

One of the main symptoms of disk degeneration is

back and neck pain which can terminate into several dis-

abilities [93]. Treatment approaches for degenerative

disc disease (DDD) are physiotherapy, pharmacotherapy,

and surgery. However, they are only pain-relieving strat-

egies in most cases and do not eliminate the underlying

reason or restore the lost functions. Therefore,

researchers are looking for novel therapeutics in order

to regenerate DDD [88, 94, 95]. The best defining char-

acteristics of DDD are the accumulation of senescent

cells as well as reduction in the number of functional

cells [95]. Several in vitro and in vivo studies on the de-

generation of the IVD both in animal models and in

clinical trials indicated that NP, AF, and CEPs contain

cells with surface markers, morphology, proliferation

rate, and multilineage differentiation capability similar to

Fig. 1 Mesenchymal stem cell (MSC) sources and applications. MSCs are originated from various sources such as bone marrow, adipose tissue,

placenta, umbilical cord, Wharton’s jelly, muscle, and dental tissues. They may be used either by loading within scaffold or as cell suspensions for

regenerative purposes including cartilage and bone defects
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stem cells. This evidence suggests that IVDs possess

stem cells that may provide cell candidates for cell-based

regenerative medicine and tissue engineering [96–100].

On the other hand, studies on human degenerative IVD

tissue demonstrated the existence of progenitor cells

similar to BM-MSCs. As an endogenous source, they

can be activated in situ after exposure to some growth

factors involved in the repair of degenerative IVD [101,

102]. Regeneration is aimed to replace damaged with

new functional cells that can be supplied by resident

stem cells proliferation or division of differentiated cells.

Therefore, these cells should be infiltrated into the tissue

following by exposure to the growth factors until enab-

ling to reconstruct lost structures [103–105]. Despite

avascular nature of the IVD, it has been demonstrated

that stem cells are capable of migrating from their niche

throughout the body toward all three IVD constituent

layers and they have more tendency to home at the

vascular tissues such as CEPs and outer layer of AF

[106–108]. Due to the absence of the active cell popula-

tion in IVD, it needs to introduce stem cells in IVD for

tissue regeneration. Findings from several preclinical and

clinical studies demonstrated that MSCs are attractive

candidates for regeneration of diseased disk [25, 109–

111]. These cells should be isolated from an appropriate

tissue and expanded in vitro and then, either intact or

manipulated, implanted in the injured site [37, 112–

114]. Multiple factors should be considered for choosing

the appropriate cell source such as abundance, ease of

obtaining, the capacity to differentiate into NP and AF

cells, cell viability under hypoxic condition, cell viability

under hypoglycemic condition, and non-tumorigenicity

[109]. The investigations showed that scaffolds are cap-

able of inducing MSC differentiation into a chondro-

genic lineage such as NP-like cells under hypoxic or

physiological conditions [115–117]. In an ex vivo study

on degenerative IVD of bovine origin, it is demonstrated

that human BM-MSCs (hBM-MSC) have immunomodu-

latory and anti-inflammatory effects through reduction

of pro-inflammatory cytokines such as IL-6, IL-8, and

tumor necrosis factor alpha (TNF-α) [118]. Transplant-

ation of autologous BM-MSCs in a porcine model led to

the elevation of trophic factor, bone morphogenetic

protein-2 (BMP-2) in the NP, whereas the inflammation

marker, IL-1β, was reduced in the AF [22]. On the other

hand, Sun and co-workers, in an in vitro study first

showed the impact of adipose-derived mesenchymal

stem cells (AD-MSCs) for protecting human NP cells,

through inhibiting caspase-9 and caspase-3 activity. Also,

they revealed the suppression of pro-inflammatory fac-

tors, thereby preventing apoptosis and degeneration of

NP cells. It was concluded that AD-MSCs may be a

promising treatment strategy for DDD [119]. Recently,

numerous clinical trials on regeneration of disk disease

by MSC therapy are ongoing [25, 120, 121]. Yoshikawa

et al. explored the role of autologous BM-MSCs in 2 pa-

tients with low back pain, leg pain, and numbness. They

observed improvement of pain and disability during 3

months beside augmentation of hydration within one

year after MSCs injection [121]. In addition to BM-

MSCs and AD-MSCs [122–124], there are other major

cell sources used for DDD regeneration including

muscle-derived stem cells (MdSCs) [125], olfactory

membrane stem cells [126], and synovial stem cells

[127]. However, AD-MSCs and BM-MSCs are common

sources for IVD regenerative therapy and BM-MSCs are

widely applicable in human trials.

Osteoporosis

Osteoporosis, as a systematic skeletal disorder, is a com-

mon age-related bone defect which affects women more

than men. Osteoporosis cause bone mineral density

(BMD) loss and the degradation of the bone microstruc-

ture due to an abnormal imbalance between bone for-

mation by osteoblasts and bone resorption by osteoclasts

[128, 129]. Additionally, MSCs population in the BM are

declined with aging; thus, their function will be limited

and they cannot contribute to bone formation any lon-

ger [130]. Osteoporosis is of great importance mostly be-

cause of its effect on bone fragility. It also causes back

Table 3 Characterization of MSC from various tissues based on surface markers

Tissue Positive markers Negative markers

Bone marrow CD29, CD31, CD44, CD49a, CD49b, CD49c, CD49d, CD49e, CD51, CD54,
CD58, CD61, CD71, CD73, CD90, CD102, CD104, CD105, CD106, CD120a,
CD120b, CD121a, CD124, CD146, CD166, CD221, CD271, SSEA-4,
STRO-1 [56]

CD11a, CD11b, CD13, CD14, CD19,CD34, CD45,
CD133 [56]

Adipose tissue CD105, CD73, CD36, CD90, CD44, CD29, CD151, CD49d, CD44 [55, 57, 58] CD45, CD34, CD14, CD11b, CD19, HLA-DR, CD34,
CD38, CD31, CD106 [55, 57, 58]

Synovial fluid CD9, CD10, CD13, CD44, CD54, CD55, CD90, CD105, CD166, D7-FIB, CD49a,
CD147, CD73, PDGFRα (CD140a) [59]

CD14, CD45, CD34, CD117, CD62e, CD20, CD113,
HLA-DR, CD68, CD31, ALP [59]

Dental pulp CD29, CD44, CD105, CD146, CD117 and STRO-1 [60], SSEA-4, CD146, CD73,
CD44, CD10, CD123 [61]

HLA-DR, CD106, CD34,CD7,CD31 [61]

Amnion CD73, CD29, CD49f, Oct4, Nanog, Sox2, SSEA-3, SSEA-4, Rex1 [62] CD14, CD20, CD34, CD45 [63]
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pain and decreased quality of life which are collectively

associated to high economic burden. Accordingly, suit-

able treatment strategies are essential for preventing dis-

ease and improving quality of life [131, 132]. Current

osteoporosis treatments are principally using drug-based

agents that usually stimulate apoptosis in osteoclasts and

prevent the bone resorption [133]. However, they are as-

sociated with some side effects and therefore do not pro-

vide patient satisfaction [134–138].

During the last decade, stem cell therapy, as a new

technology, is widely developed for bone regeneration in

patients with osteoporosis. MSCs are the most exten-

sively used stem cell type for this disease [128]. Studies

in animal models have revealed that both allogeneic and

autologous BM-MSCs transplantation are applicable for

the treatment of osteoporosis [26, 139–142]. Allogeneic

BM-MSCs therapy in glucocorticoid-induced osteopor-

osis in mice models showed osteoblastogenesis and pro-

moted bone formation [143]. In a clinical trial by

Lozano-Rivas and co-workers on new osteoporotic frac-

tures, reduced pain was seen in patients with osteopor-

osis following autologous intravenous (IV) infusion of

fucosylated BM-MSCs [144]. MSCs from perinatal tis-

sues like human umbilical cord (hUC), human umbilical

cord blood (hUCB), amnion, and chorion, have attracted

special attention for osteoporosis improvement and pre-

venting bone loss [145–147]. Recently, ovariectomy-

induced osteoporosis was established in the rats along

with reduction in estradiol level, bone mass, and colla-

gen content. These rats received definitive number of

human umbilical cord-derived mesenchymal stem cells

(hUC-MSCs) and showed higher bone mass, collagen

content, and osteoblasts number, while the number of

osteoclasts decreased in the hUC-MSCs implantation

site. Also, an in vitro study confirmed that hUC-MSCs

promote osteoblasts formation while preventing the cel-

lular activity of osteoclasts. This research showed that

transplanted hUC-MSCs in the injured site in ovariecto-

mized rats are capable of differentiating to osteoblasts

and elevating collagen and osteocalcin levels as the main

bone markers [148]. Hendrijantini and co-workers ob-

served increase in the number of osteoblasts and overex-

pression of both TGF-β1 and runt-related transcription

factor 2 (Runx2) after injection of hUC-MSCs in osteo-

porotic rat models [149]. Increased expression of TGF-

β1 contributes to MSCs mobilization to the defect site,

osteoblast differentiation, and ultimately bone formation

[150, 151]. The osteogenic transcription factor, Runx2,

prevents MSC differentiation into the other lineages ex-

cept osteoblasts and enhances osteocalcin expression as

a bone formation marker [151, 152]. These findings pro-

vide a new therapeutic strategy and demonstrate that

hUC-MSCs can clinically resolve bone-related medical

conditions such as osteoporosis.

AD-MSCs are more abundant and easily available in

comparison with BM-MSCs. Indeed, their number is not

affected by age making them more applicable in cell

based therapeutics and tissue repair like osteoporotic

bone regeneration [153, 154]. Comparing systemic

injection of osteoporotic donor-derived AD-MSCs and

BM-MSCs to ovariectomized mice indicated that AD-

MSCs retained their anti-inflammatory potential and

caused the maintenance of bone homeostasis in recipi-

ents with osteoporosis. AD-MSCs but not BM-MSCs

showed the ability to resist in damaged microenviron-

ment and maintain many properties including stemness

and regulation of T cell viability. These results may show

the priority of AD-MSCs over BM-MSCs for osteopor-

otic cytotherapy [155]. Oommen and co-workers

suggested that AD-MSCs are useful treatment options

for osteoporosis since these cells caused osteogenic in-

duction by osteoblast differentiation and osteoid forma-

tion in ovariectomized rats [156]. In another study, Saito

and his colleagues observed that autologous transplant-

ation of BM-MSCs derived from osteoporotic rat models

was associated with decreased osteoclast proliferation

and mobilization, while adding UC extract improved the

functionality of BM-MSCs regarding excessive osteolytic

properties of osteoclasts [146]. Although BM-MSCs play

key roles in maintaining bone metabolism, homeostasis,

bone repair, and homing after systemic injection, their

regenerative ability may be weak in the case of patients

with postmenopausal osteoporosis [146, 157, 158].

Comparative study between different hMSCs sources

including BM, AT, WJ, and placenta (PL) indicated that

WJ-MSCs are the strongest inhibitors of T cell prolif-

eration with less immunogenic effects compared with

AD-MSCs, BM-MSCs, and PL-MSCs. Nevertheless,

hWJ-MSCs had the lowest potential in osteogenesis

than that of the PL-MSCs, AD-MSCs and BM-MSCs

[159]. Due to the similar features to BM-MSCs including

phenotypic characteristics, growth properties, differenti-

ation capacities, secretory protein profiles, and low

immunogenicity, perinatal derived MSCs are known as

appropriate alternative sources for bone defect repair in

patients with osteoporosis [160]. Overall, much more

work seems to be needed to identify the appropriate stem

cell source for clinical applications in osteoporosis.

Osteogenesis imperfecta (OI)

Osteogenesis imperfecta (OI) is a heterogeneous pre-

natal genetic disorder due to mutations in procollagen

type I genes (COL1A1/A2) encoding the alpha1 and

alpha2 chains of collagen type I which deteriorate the

synthesis of this protein by osteoblasts. OI is character-

ized by progressive skeletal deformation, loss of BMD,

frequent fractures, short stature, joint hypermobility, and

pain [8, 9]. There is no definitive cure for OI at present,
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and current therapies are most effective in reducing dis-

ease severity. A favorable therapeutic method should re-

place dysfunctional cells with normal osteoblasts along

with prohibition of osteoclast activity for the healthy

bone formation [9]. Recently, the preclinical and clinical

studies have indicated the successful intrauterine or

multi-local engraftment of human fetal (HF) and adult

MSCs in both mouse and human model of OI and

successful differentiation of transplanted cells into func-

tional osteoblasts [161–163]. Jones et al. suggested the

PL as a practical source of stem cells for the treatment

of OI based on their study showing that intraperitoneal

(IP) injection of human fetal early chorionic stem cells

(e-CSCs) in mice models caused the creation of osteo-

blasts and production of main proteins such as collagen

as well as an increase in bone thickness and bone

strength [28]. In a mouse model of OI, intrauterine

transplantation of human fetal blood MSCs led to an en-

hancement of osteogenic genes expression such as

osteocalcin, osteoprotegerins (OPG), osterix (OSX), and

BMP2. The majority of donor cells have tended to mi-

grate to the damaged area in bone and differentiate into

collagen type Iα2 producing mature osteoblasts [164]. Le

Blanc et al. used allogeneic male human fetal mesenchy-

mal stem cells (hf-MSCs) to treat severe OI through

intrauterine (IA) MSCs transplantation in female fetus

in the 32nd week of gestation. Based on the results,

engrafted hf-MSCs were able to differentiate into bone

in a human fetus [163]. Transplantation of allogeneic

BM-MSCs to children with OI demonstrated retention

in one or more sites, including bone, skin, and marrow

stroma, and acceleration of growth velocity during the

first 6 months after transplantation [162]. Recent re-

search showed that the clinical application of fetal MSCs

is constrained due to their limited number and low

availability. In contrast, e-CSCs are isolated in high

numbers from the placenta during ongoing pregnancy

without ethical restrictions [28]. Therefore, adult stem

cells are safe for using in clinical trials without inherent

limitations pertinent to embryonic stem cells.

Bone fractures

A bone fracture or an osteotomy is one of the most

common injuries among all people particularly elders

and children. Every fracture in each site causes individ-

ual physical disability, low social efficiency, and imposing

financial pressure [165, 166]. Bone fracture occurs under

the circumstances of continuous mechanical stress,

trauma, and some diseases such as osteoporosis and

cancer [74]. Healing of this type of injury is a complex

regenerative process with the involvement of numerous

cell types including progenitor, inflammatory, endothe-

lial, and hematopoietic cells as well as growth factors

such as TGF-β [166, 167]. An effective treatment

method for bone repair requires three biological proper-

ties: osteoinduction, osteoconduction, and osteointegra-

tion [168]. There are numerous therapeutic strategies

such as natural bone grafts, using synthetic inorganic

substitutes like calcium sulfate, calcium phosphate

cements (CPCs), β-tri-calcium phosphate (β-TCP), and

polymer-based bone substitutes (e.g., polylactic acid

(PLA), poly(ε-caprolactone) (PCL)) for bone fracture

repair. These methods are associated with some limita-

tions like invasive surgical procedures, pain, and subse-

quent complications [169–172]. Researchers investigated

new therapeutic approaches for overcoming these chal-

lenges and providing higher osteoconductivity. They

suggested cell therapy as the best alternative for healing

of fractured bone. In this regard, MSCs are one of the

most available stem cell sources in bone repair [173,

174]. Generally, safety and efficacy of MSCs from differ-

ent tissue sources including adipose tissue [30, 175], BM

[176, 177], UCB [178], DP [31], and periosteum [179]

for fracture regeneration were investigated in animal

models. These studies reinforced the beneficial

contribution of MSCs from different sources in the bone

fracture repair either by differentiation into osteoblasts

or through inhibition of inflammatory mediators. Accel-

eration of bone repair has initially been observed after

IV injection of BM stem cells in a mouse model [180]. It

is indicated that the controlled delivery of MSCs through

biodegradable scaffolds can increase and accelerate the

formation of functional new bone [181]. The scaffolds

are 3D structures that promote cell adhesion, survival,

migration and proliferation, accelerate bone remodeling,

provide osteoconductive structural guidance, and in

some cases act as the carrier [182]. Marcacci and co-

workers were the first to report promising results using

autologous in vitro expanded MSCs seeded onto a por-

ous ceramic scaffold of hydroxyapatite (HA), which per-

fectly fitted the bone injured areas of four patients

suffering from large bone diaphysis defects [183].

In addition, several clinical trials at different phases (I,

II, or III) have been registered for bone fracture repair

using BM-MSCs, AD-MSCs, hUC-MSCs, and human

amniotic epithelial cells (ClinicalTrials.gov) which were

implanted either via direct injection or after seeding

them onto an osteogenic matrix. The required number

of cells needed for fracture repair depends on the spe-

cific fracture characteristics, cell source, stimulation

method, differentiation state, and using biomaterials. A

comparison between three main sources of stem cells

used to repair bone fractures suggested that isolation ef-

ficiency was higher from adipose tissue compared to

other sources with respect to cell yield and feasibility.

Although the ability for osteogenic differentiation seems

to be higher in periosteum-derived mesenchymal stem

cells (PD-MSCs), the most widely used cell source is yet
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allocated to BM for bone fracture repair strategies in re-

cent clinical trials [166].

Cartilage disorders and cell therapy

Cartilage as a strong supportive connective tissue is

found in many areas of the human body including ribs,

nose, ear, trachea, and IVD and is an important compo-

nent of the joints [184–186]. It has dense and highly

organized ECM embedding chondrocytes. Collagen type

II is the main structural protein in cartilage and forms a

meshwork for entrapping proteoglycans such as aggre-

can, decorin, and sendycan [187, 188]. Aggrecan and

other proteoglycans cause this framework to bound to

the water and provide cartilage with tensile strength and

flexible construct through which it can act as a support-

ive structure, maintain the shape, or absorb shock dur-

ing physical exercise [189]. Three types of cartilages are

hyaline (articular), elastic, and fibrocartilage that possess

an avascular structure leading to a hypoxic environment

with little capacity for self-repair, especially in the case

of severe damage due to trauma or age-related degener-

ation [138, 142]. Hyaline cartilage is the most abundant

type present on the articular surfaces of synovial joints

providing a smooth, lubricated surface for articulation

and facilitating the transmission of loads with a low fric-

tional coefficient [136, 139]. Chondrocytes are spherical

cells in a lacuna within matrix that produce and main-

tain cartilage architecture and remodel biochemical

composition in response to changes in their chemical

and mechanical environment in order to regulate cartil-

age homeostasis [140]. With age, chondrocytes naturally

undergo senescent phenotypes and their responsiveness

to growth factors reduces which results in accelerating

cartilage disruption, cartilage matrix damage, and corre-

sponding diseases [190]. Also, trauma, some diseases,

and continual mechanical loading are other important

factors for cartilage damage [142]. Due to the limited

self-healing capacity of human cartilage, the repair of

cartilage defects gives rise to a challenging clinical prob-

lem and cartilage regeneration has always been a key

therapeutic target for treating articular cartilage damage

in particular [139]. In the following sections, common

approaches and new therapeutic strategies will be dis-

cussed in restoring and treating cartilage defects.

Osteoarthritis (OA)

Osteoarthritis (OA) is one of the most common

arthritis-related chronic disorders characterized by ar-

ticular cartilage degeneration, thickening of subchondral

bone, and osteophyte formation [191–193]. Disability of

chondrocytes to produce sufficient functional matrix in

order to repair damaged matrix is one of the prominent

features of osteoarthritis [194]. OA can be established by

activation of matrix proteases which affect joints in the

knees and elbow, leading to joint pain, stiffness, swelling,

and limitation of joint function [11, 189]. Studies have

shown that aging, female gender, obesity, and osteopor-

osis are significant risk factors associated with OA [195].

Because of the limitation of self-healing capacity of ar-

ticular cartilage, OA is one of the most challenging joint

diseases. Most conventional treatments for OA such as

physical therapy, drug therapy, and surgery are essential

to manage the pain, stiffness, and swelling but are not

effective to prevent the OA progression [196, 197].

Modern advances in regenerative medicine offer novel

methods to treat OA. In recent years, cell therapy, espe-

cially with stem cells, is applied for the regeneration of

OA damages [198]. By virtue of high proliferative cap-

acity, chondrogenic differentiation capability, and im-

munosuppressive activities of stem cells, MSC-based

therapies have demonstrated acceptable efficacy in cartil-

age repair in animal and clinical studies [199]. MSCs

from various tissues such as adipose tissue [200], BM

[201], synovial membrane [202], hUCB [203], and WJ

[204] have been considered in different animal models.

Overall, the results of investigations demonstrated that

MSC-based therapy encourages pain reduction and OA

improvement [194] mostly due to the differentiation

capability of MSCs. It is demonstrated that both TGF-β1

and insulin-like growth factor 1 (IGF-1) act synergistic-

ally to stimulate MSCs’ chondrogenic differentiation

[205].

BM and adipose tissue are common sources of multi-

potent cells for regenerating and repairing of an injured

tissue. In order to evaluate the repair potential of BM-

MSCs in OA, researchers showed that intra-articular

(IA) injection of BM-MSCs in focal cartilage defects in

immunocompetent transgenic rat can lead to collagen

and matrix formation [206]. A phase I/II trial indicated

that BM-MSCs injection in patients with knee osteoarth-

ritis was associated with cartilage biomarker expression,

reducing synovial inflammation, pain, and symptom

mitigation, along with no serious adverse events [207].

Also, BM-MSCs exposed to bioactive factors loaded into

a sponge composed of a hyaluronan derivative showed

chondrogenic differentiation [208]. On the other hand,

AD-MSC transplantation in the knee increased the syn-

thesis of glycosaminoglycan, endogenous chondrogenesis

supplemented by inflammation reduction, improvement

in pain, function, and cartilage volume [209, 210]. MSCs

from WJ and hUCB compared to AD-MSCs and BM-

MSCs have many advantages such as higher proliferation

rates, greater expansion ability, higher purity, abundant

supply, and inexhaustibility for therapy [211–213]. ECM

components in WJ are very similar to those of cartilage

ECM. hWJ-MSCs express aggrecan, type II collagen, and

SOX-9 as chondrocytes do [213]. Also, hWJ-MSCs

express cell growth factors, chemokines, and cytokines
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at similar levels to those of cartilage. These results suggest

hWJ-MSCs as appropriate cell candidates for OA’s cell

therapy [214]. Moreover, the results of xeno-

transplantation studies showed that human umbilical cord

blood-derived mesenchymal stem cells (hUCB-MSCs) are

less immunogenic and have higher chondrogenic differen-

tiation potential, therefore promoting cartilage repair

without bone formation for a long time [81, 84, 203, 215].

Rheumatoid arthritis (RA)

Rheumatoid arthritis (RA) is one of the autoimmune in-

flammatory diseases of the joints presented with an im-

balance of both the innate and adaptive immune

systems. This disease leads to cartilage and bone degra-

dations, causing pain and stiffness and may occur in

other sites including tendon sheaths and bursae. The

prevalence of this disease is approximately 0.5–1% in

adults aged 40–50 years and is more common among

women than men [216, 217]. Recently, MSC-based ther-

apies have been suggested as favorable therapeutic

approaches for inflammatory cartilage injuries such as

RA. MSCs participate in cartilage regeneration after im-

plantation into the injury site and differentiate into

chondrocytes [218]. Moreover, MSC therapy reduces

pathogenic T cell subsets such as Th1/Th17 cells in the

collagen-induced arthritis (CIA) model [219, 220]. Stud-

ies showed that MSCs play an important role in indu-

cing apoptosis of activated T cells via the Fas ligand

(FasL)/Fas signaling pathway in arthritis disease [221].

Also, these cells promote immune modulation in RA

by suppressing the expression of pro-inflammatory cy-

tokines such as interferon gamma (IFN-γ), TNF-α,

and matrix-degrading enzymes such as collagenase

and gelatinase [222]. Evaluation of BM-MSC therapy

on the healing of joints in animals with induced RA

demonstrated that inflammation, joint swelling, and

destruction of cartilage reduced significantly com-

pared with an arthritic non-treated group [223]. Park

and coworkers in the first human trial of hUCB-

MSCs in patients with RA observed no major toxicity,

serious adverse event, or major abnormalities in

serum chemicals or hematologic profiles, both during

and after the treatment [224]. Allogenic UC-MSCs

transplantation in mice model of RA prevented arth-

ritis progression by suppressing T follicular helper

(Tfh) cells proliferation [220].

The investigations showed increased osteoclastic bone

resorption as an important factor in the pathogenesis of

RA [225]. An experimental study indicated that human

gingival tissue-derived MSCs (G-MSCs) inhibit osteo-

clastogenesis in vitro and in vivo partially via CD39-

CD73-adenosine signals and have therapeutic effects on

bone erosion during CIA in vivo [226]. IV injection of

hAD-MSCs in mice with RA reduced the level of pro-

inflammatory cytokines while increased the level of anti-

inflammatory cytokines with an induction in the number

and function of regulatory T cells (Tregs) both in the

peripheral blood and in the spleen [227]. Recently, a

meta-analysis study compared the effects of MSCs de-

rived from different tissue sources showing that hUC-

MSCs, hAD-MSCs, and G-MSCs have better treatment

effects on RA compared with stem cells from other ori-

gins, such as BM [228].

Regeneration mechanisms of mesenchymal stem cells in

defected bone and cartilage

Several in vitro and in vivo studies indicated that MSCs,

as the most commonly used stem cells in regenerative

medicine, involve in the bone healing process because of

their potential to increase osteoinduction and osteogen-

esis [229, 230]. These cells can play crucial roles in bone

repair and regeneration by several mechanisms (Fig. 2)

including facilitating cell migration, homing, angiogen-

esis, response to inflammation, and differentiation [231].

MSCs have the migration and homing ability into in-

jured sites that are considered as the primary steps for

bone formation and defect repair in MSC-based therapy.

The recruitment of MSCs is initiated by the response of

MSCs to inflammatory factors released from the bone

fracture site. These processes are affected by intracellular

signaling and interaction between chemokines, chemo-

kine receptors, adhesion molecules, and proteases [232,

233]. Platelet-derived growth factors (PDGFs) and bone

morphogenetic proteins (BMPs) play critical roles in

bone development and bone fracture healing [234].

PDGF-AA is able to activate BMP-Smad1/5/8 signaling

through downregulating platelet-derived growth factor

receptor-alpha (PDGFRα) and promotes MSC migration

via BMP-Smad1/5/8-Twist1/Atf4 [235]. Due to vascular

damage and hypoxic condition in the injured site, ex-

pression of some growth factors such as hypoxia-

inducible factor 1-α (HIF-1α) increases the production

of the stromal cell-derived factor-1 (SDF-1) in the cells

of damaged bone. Also, it mediates the expression of its

receptor CXC chemokine receptor 4 (CXCR4) in MSCs

[236–239]. Therefore, SDF-1/CXCR4 axis promotes the

mobilization of MSCs to the defect site and enhances

bone regeneration [240]. Expression of CXCR4 and

Cbfa1 (core binding factor alpha 1, also called Runx2)

increased MSC homing and promoted bone formation

after four weeks of transplantation [158]. In vitro and

in vivo studies showed that TNF-α, as one of the

main proinflammatory cytokines, induces the expres-

sion of LRG1 through p38 and nuclear factor kappa-B

(NF-κB) signaling to promote angiogenesis and MSC

migration [241].

Transplanted MSCs can contribute to bone regener-

ation through angiogenesis stimulation [242]. hMSCs
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reside in hypoxic perivascular niches [243], express HIF-

1α in response to hypoxic condition in defect site [244–

247], and induce the expression of angiogenic factors

such as VEGF, TGF-β, SDF-1, and stem cell factor (SCF)

[248]. The studies showed that VEGF plays an important

role in neovascularization and angiogenesis during the

development of most tissues including bone [249, 250].

Inflammation in damaged tissue stimulates macro-

phages and T lymphocytes for necrotic tissue

phagocytosis and also induces inflammatory cytokines

such as IL-1, IL-6, TNF-α, IFN-γ, monocyte chemo-

attractant proteins-1 (MCP-1), macrophage inflamma-

tory protein-1 (MIP-1), and IL-17 [251, 252]. Although

the inflammatory responses contribute substantially to

bone regeneration, prolonged inflammation is harmful

and retards the bone healing process [181]. BM, adipose

tissue, CB, and WJ-derived MSCs cause reduction in

IFN-γ and/or TNF-α secretion from T cells and suppress

T cell proliferation [253]. In addition, MSCs significantly

suppress the production of the inflammatory cytokines

IL-6, IL-12p70, and IFN-γ while increase the production

of anti-inflammatory cytokines IL-10 and IL-12p40

[254]. In response to inflammation and high levels of

pro-inflammatory factors such as IFN-γ, TNF-α, and IL-

1β, MSCs are stimulated to start producing anti-

inflammatory factors such as nitric oxide (NO), indolea-

mine 2,3-dioxygenase (IDO), and anti-inflammatory cy-

tokines and chemokines, which is followed by

immunosuppression [255]. Three days after bone frac-

ture, transplanted MSCs are capable of limiting tissue

injury by significant reduction in IL-6, TNF-α, and IL-1β

levels and preventing the progression of fibrosis and thus

improve bone regeneration [256].

Another immunomodulatory mechanism of MSCs is

inducing the polarization of monocytes into anti-

inflammatory M2 macrophages through signal trans-

ducer and activator of transcription 3 (STAT-3), and

NF-κB leading to indirectly suppression of T cell prolif-

eration [257–259].

Toll-like receptors (TLRs) are highly expressed on

MSCs and have profound effects on proliferation, migra-

tion, immunomodulatory functions, and survival of

MSCs [229, 231, 260, 261]. TLR4 polarizes MSCs toward

a pro-inflammatory phenotype (MSC1) which has

Fig. 2 Schematic summarizing the mechanisms of repairing bone by MSCs. The figure was designed using the web-based tool BioRender.

Mesenchymal stem cells (MSCs) contribute to bone regeneration by several mechanisms including migration, angiogenesis, response to

inflammation condition, and differentiation through production of a variety of mediators. Hypoxia-inducible factor 1-α (HIF-1α), stem cell factor

(SCF), transforming growth factor-beta (TGF-β), vascular endothelial growth factor(VEGF), stromal cell-derived factor (SDF)-1, and CXC chemokine

receptor (CXCR) 4, platelet-derived growth factor (PDGF-AA), platelet-derived growth factor receptor-alpha (PDGFRα), Toll-like receptors (TLRs),

nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), regulatory T cell (T reg), nuclear factor kappa-B (NF-κB), signal transducer and activator of

transcription 3 (STAT-3), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant proteins-1 (MCP-1),

macrophage inflammatory protein-1(MIP-1), Dickkopf 1(DKK1), runt-related transcription factor 2 (RUNX2), M2 type of macrophage (M2MQ)
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critical role in early injury responses and lead to collagen

deposition, expression of pro-inflammatory mediators,

and reversal of the T cell suppressive mechanism [262].

In contrast, TLR3 supports the immune suppression and

anti-inflammatory phenotype in MSCs, named MSC2

[263], which can suppress the T lymphocyte prolifera-

tion and induce regulatory T cell (Treg) generation by

secreting soluble factors such as IDO, TGF-β1, and IL-6

[264]. In hAD-MSCs, activation of TLR2, TLR3, TLR4,

and TLR9 leads to manganese superoxide dismutase

(MnSOD) expression with an eminent impact on en-

graftment and survival of AD-MSCs in inflammatory

conditions or injured tissues [265].

The most common therapeutic effects of MSCs are

their incorporation into the host tissue and osteogenesis

differentiation ability which are influenced by numerous

cytokines and growth factors such as TGFβ-1 and WNT

[266, 267]. Also, matrix metalloproteinases (MMPs) have

critical role in the differentiation of MSCs to adipocytes,

osteocytes, and chondrocytes. The MMP-1, MMP-13

(collagenase), and MMP-3 (Stromelysin-1) cleave ECM

proteins [268]. The lowest production of MMP-1 and

MMP-3 and no secretion of MMP-13 by BM-MSCs

make them as suitable candidates for bone, cartilage,

and tendon regeneration [269].

TNF-α, as a pro-inflammatory cytokine, is highly

expressed in inflammatory sites of bone and causes

tumor necrosis factor receptor1 (TNFR1) activation

[270, 271] and receptor activator of nuclear factor

kappa-Β ligand (RANKL) upregulation in osteoblasts

[271]. Subsequently, NF-κB pathway is activated by re-

ceptor activator of nuclear factor kappa-Β (RANK)/

RANKL signaling [272] which activates apoptotic factors

including p21 and p53 [273, 274] and, as a result, in-

hibits MSC differentiation and increases apoptosis of os-

teoblasts and their progenitors [273]. Another important

effect of TNF-α in inflammatory conditions is inhibition

of two essential osteogenic differentiation factors includ-

ing RUNX2 and osterix, leading to the suppression of

MSC differentiation [275, 276]. It has been indicated

that commitment of MSCs into the osteoblast lineage is

regulated by Wnt/β-catenin signaling pathway [277]. β-

catenin serves a notable role in the progression of MSC

precursors differentiation into mature osteoblasts by up-

regulating the osteogenic regulators Runx2, Dlx5, and

Osterix [278–280]. During inflammation, TNF-α sup-

presses Wnt/β-catenin signaling by inducing Wnt-

signaling inhibitor, Dickkopf 1 (DKK1), and finally in-

hibits bone formation [281]. TNF-α which is released by

activated immune cells such as T cells interacts with the

TNF receptors on MSCs and leads to the production of

prostaglandin E2 (PGE2), which then is the underlying

reason of the suppression of T lymphocyte proliferation

and consequently prevention of TNF-α expression [282,

283]. Also, IL-1RA released by MSCs induces IL-10 in

stimulated DCs and inhibits TNF-α production by acti-

vated macrophages which results in accelerating bone

healing [245].

Also, MSCs can express BMP-2 in defect site, which

induces the differentiation of these cells into osteoblasts

in an autocrine manner [177, 284]. BMP-2 plays an im-

portant role in bone healing due to the involvement in

new bone tissue formation, increasing osteoblast func-

tion and the maintenance of the dynamic balance of the

newly formed bone tissue [285, 286]. Through interact-

ing with expressed BMP receptors, BMPs trigger two

signal pathways including Smad-dependent pathways

and the mitogen-activated protein kinase (MAPK) path-

way, thereby involving in osteogenesis [287, 288].

The extracellular vesicles (EVs) produced by MSCs

have been indicated as a novel therapeutic method for

bone diseases such as osteoporosis. Exosomes are one of

the most important EVs released by MSCs that can be

directly used as therapeutic agents for various bone dis-

eases [289]. The investigations indicated that exosomes

secreted by MSCs promote osteoblast proliferation, dif-

ferentiation, and bone formation, which improve bone

regeneration in osteoporotic rats [290]. Through increas-

ing the osteogenesis and angiogenesis-related genes ex-

pression, such as COL I, alkaline phosphatase (ALP),

and VEGF, MSC-derived exosomes can promote bone

formation [291]. In addition, exosomes contribute to

bone repair and accelerate fracture healing through their

cytokine content such as MCP-1, MCP-3, and SDF-1

[292].

Numerous studies have demonstrated the successful

MSC transplantation for healing of chondral lesions

and repairing the damaged cartilage (Fig. 3). There are

two main concepts for MSCs contribution to cartilage

disease improvement: first, preventing the degradation

of cartilage through the secretion of bioactive factors,

and second, differentiating potential of MSCs to be-

come chondrocytes [293, 294]. Pro-inflammatory cyto-

kines including TNF-α, IL-6, IL-1β, and IL-17 play

important roles in the development of pathological

conditions in cartilage diseases [295]. MSCs modulate

host immune responses by inhibiting the proliferation

of T lymphocytes and pro-inflammatory cytokine secre-

tion by prostaglandin E2 (PGE2) [296, 297].

MMP-2, MMP-9, and MMP-13 were detected at

higher levels in human OA cartilage [298]. MSCs secrete

high levels of tissue inhibitor of metalloproteinases 2

(TIMP2) and TIMP-1 inhibitors, which inhibit MMP-2

and MMP-9, respectively, and suppress cartilage ECM

destruction [298]. MSCs secret hepatocyte growth factor

(HGF) through which inhibit the fibrosis and apoptosis

of chondrocytes, but stimulate the proliferation of these

cells, and increase ECM synthesis [299]. The EVs

Kangari et al. Stem Cell Research & Therapy          (2020) 11:492 Page 11 of 21



produced by MSCs can reduce arthritis scores and

pathological changes in inflamed cartilage by decreasing

plasma blast population and increasing IL-10 secretion

of regulatory B cells [300]. MSC’s exosomes can cause

an early suppression of local inflammation in OA

through a significantly reduced expression of inflamma-

tory genes especially IL-1β [301, 302]. In vitro studies

demonstrated that exosomes derived from BM-MSCs

are able to stimulate the expression of chondrocyte

markers such as type II collagen and aggrecan while in-

hibit MMP-13 and ADAMTS5 as catabolic markers in

OA-like chondrocytes [303].

Different growth factors, cytokines, and signaling

molecules including TGF-β superfamily regulate

chondrogenic induction and differentiation of MSCs.

TGF-β2, TGF-β1, and TGF-β3 stimulate the synthesis of

collagen type II and proteoglycans and contribute to the

MSC differentiation to chondrocytes [304, 305]. TGF-β

signaling mediates chondrogenesis by activating and

phosphorylating Smad2/3. Phosphorylated Smad translo-

cates into the nucleus and binds to the master chondro-

genic transcription factors such as SOX9 and collagen

type II (COL II) which are expressed in all chondrocyte

progenitors and chondrocytes [306, 307]. Other factors

that influence MSC differentiation and chondrogenesis

are Wnt/β-catenin signaling pathway family and MAP

kinases [308, 309]. Thrombospondin (TSP2), as a regula-

tor of cartilage and bone differentiation, is secreted by

MSCs and promotes chondrogenic differentiation of

progenitor cells by protein kinase C alpha (PKCα), extra-

cellular signal-regulated kinase (ERK), p38/MAPK, and

Notch signaling pathways [310, 311]. Moreover, some

trophic factors such as VEGF, epidermal growth factor

(EGF), and an array of bioactive molecules also affect

chondrogenic differentiation from MSCs and cartilage

matrix formation [312].

Selection of appropriate source of stem cell based on their

protein expression profile

MSC therapy has been used for repairing both the struc-

ture and function of injured bone and cartilage tissues

[158, 313]. In addition to differentiation capacity to the

different cell types, MSCs obtained from various sources

have diverse capabilities of secreting many different cy-

tokines, growth factors, and chemokines and thus differ-

entially influence angiogenesis, inflammation, apoptosis,

stem cell homing, stem cell survival, proliferation poten-

tial, and migration to the damaged areas [314–317].

Amable et al. showed that WJ-MSCs have a higher

proliferation potential, higher production of pro-

Fig. 3 Mechanisms of MSC-mediated cartilage repair. The figure was designed using the web-based tool BioRender. Mesenchymal stem cells

(MSCs) contribute to cartilage regeneration by several mechanisms including response to inflammation condition and differentiation through

production of a variety of mediators. Matrix metalloproteinase (MMP), tissue inhibitors of metalloproteinases (TIMP), tumor necrosis factor alpha

(TNF-α), prostaglandin E2 (PGE2), interleukin (IL), hepatocyte growth factor (HGF), thrombospondin (TSP2)
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inflammatory cytokines such as IL-6, and higher expres-

sion of some growth factors such as PDGF, HGF, and

TGF-β compared with AD-MSCs and BM-MSCs. WJ-

MSCs also produce a higher concentration of some pro-

angiogenic proteins such as VEGF, ECM components

such as collagen, and MMPs such as MMP1 and MMP3

in AD-MSC supernatants. In contrast, BM-MSCs secrete

the lowest amount of all chemokines in comparison with

stem cells from other sources [269]. Comparison of

cytokine expression profile including macrophage migra-

tion inhibitory factor (MIF), IL-8, Serpin E1, growth-

regulated oncogene α (GROα) and IL-6 in MSCs from

human PL (amnion, decidua), cord blood (CB), and BM

by Hwang et al. represented similar expression pattern

in all three cell types. However, BM-MSCs express

higher MCP-1 and are the only MSC type that produces

SDF-1, but the expression of IL-6 by the CB-MSCs was

comparatively lower [318].

hAD-MSCs, BM-MSCs, and UCB-MSCs express high

levels of TLRs [319–321] compared with WJ-MSCs

[228, 322]. One of the studies reported that human ol-

factory ecto MSCs (OE-MSCs) express high levels of

TLR3 and TLR4 genes, as well as higher levels of cyto-

kines and chemokines including CCL5, IL-8, and TGF-β

in comparison with AD-MSCs [323]. In another study,

perivascular stem cells derived from umbilical arteries

(UCA-PSCs) and PSCs derived from umbilical vein

(UCV-PSCs) showed higher expression of angiogenesis-

related genes, such as CXCL12(SDF-1), HIF-1α, and

ERAP1 in comparison with WJ-MSCs. In addition,

higher expression of angiogenesis related genes such as

CD146 and Jagged1 was detected in UCA-PSCs. Conse-

quently, UCA-PSCs and UCV-PSCs, especially UCA-

PSCs, demonstrated better angiogenic capability than

WJ-MSCs [260].

Based on these investigations, identification of MSCs

in terms of proteins expression and secretory factors has

been of great benefit to appropriate cell source selection

for each disease.

Conclusion

Osteochondral complications promise as significant

cause of disability and pain. Although the degenerative

conditions are progressive, there has been no definitive

therapy and almost all currently therapies try to control

the symptoms. MSC-based therapy is introduced as a

promising treatment strategy with potential ameliorating

effects on disease progression. Despite using various

sources of MSCs for bone defect therapy, BM-MSCs and

AD-MSCs are widely applicable in human trials. Com-

parison of main sources of cellular tissue revealed that

BM remains the most widely used source for bone frac-

ture repair strategies as 14 of the 17 registered clinical

trials have used BM-MSCs. However, both adipose tissue

and bone marrow seem to be promising stem cell

sources for osteoarthritis therapy. In addition, WJ-MSCs

possess similar ECM components with cartilage and ex-

press cell growth factors, chemokines, and cytokines at

levels similar to those of cartilage. Thus, they are appro-

priate cell candidates for osteoarthritis cell therapy.

HUCB-MSCs are less immunogenic and have the chon-

drogenic differentiation potential, therefore promoting

cartilage repair without bone formation in a long period

of time. All in all, clinical trials have confirmed a relative

safety of using MSCs in the treatment of osteochondral

defects with both reparative and preventative effects ra-

ther than generally accepted pain managements. How-

ever, culturing and expanding these cells should be

carried out with further caution and in controlled

ex vivo preparation conditions.
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