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MESH ADAPTIVE DIRECT SEARCH ALGORITHMS
FOR CONSTRAINED OPTIMIZATION *

CHARLES AUDET ' AND J.E. DENNIS JR¥

Abstract. This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS
extends the Generalized Pattern Search (GPS) class by allowing local explorationpodife in an asymptotically dense set of
directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification
due to Rockafellar, MADS can treat constraints by the extrbarger approach of setting the objective to infinity for infeasible points
and treating the problem as unconstrained.

The main GPS convergence result is to identify limit poigte/fiere the Clarke generalized derivatives are nonnegative in a finite
set of directions, callecefining directions. Although in the unconstrained case, nonnegative combinations of these directions span the
whole space, the fact that there can only be finitely many GPS refining directions limits rigorous justification of the barrier approach
to finitely many linear constraints for GPS. The main result of this paper is that the MADS algorithms can generate an asymptotically
dense set of refining directions.

For LTMADS, an implementable instance of MADS, the refining directions are dense in the hypertangenixasitie ptobability
1. This result holds if the iterates associated with the refining directions converge to axsikiggecompare LTMADS to versions of
GPS on some test problems. We also illustrate the limitation of our results with examples.

Key words. Mesh adaptive direct search algorithms (MADS), convergence analysis, constrained optimization, nonsmooth analysis,
Clarke derivatives, hypertangent, contingent cone.

1. Introduction. We present and analyze a n&esh Adaptive Direct SeardMADS) class of algo-
rithms for minimizing a nonsmooth functioh: R" — RU {4} under general constraimss Q # 0 C R".

For the form of the algorithm given here, the feasible regomay be defined through blackbox constraints
given by an oracle, such as a computer code that returns a yes or no indicating whether or not a specified
trial point is feasible.

In the unconstrained case, whéke= R", this new class of algorithms occupies a position somewhere
between the Generalized Pattern Search (GPS) ¢lass [22], as organized in [6], and the Coope and Price
frame-based methods [10]. A key advantage of MADS over GPS is that local exploration of the space
of variables is not restricted to a finite number of directions (cgtlelll directions). This is the primary
drawback of GPS algorithms in our opinion, and our main motivation in defining MADS was to overcome
this restriction. MADS algorithms are frame-based methods. We propose a less general choice of frames
than the choices allowed by Coope and Price. Our MADS frames are easy to implement, and they are
specifically aimed at ensuring an asymptotically dense set of polling directions. We illustrate our ideas with
an example algorithm that we call LTMADS because it is based on a random lower triangular matrix.

The convergence analysis here is based on Clarke’s calCulus [8] for nonsmooth functions. The analysis
evolved from our previous work on GPS [3] where we gave a hierarchy of convergence results for GPS that
show the limitations inherent in the restriction to finitely many directions. Specifically, we showed that for
unconstrained optimization, GPS produces a limit point at which the gradient is zero if the function at that
point is strictly differentiable [17]. Strict differentiability is just the requirement that the generalized gradient
is a singleton, i.e., thaf (X) = {0Of(X)} in addition to the requirement thétis Lipschitz neax.”But if the
function f is only Lipschitz near such a limit point then Clarke’s generalized directional derivatives [8]
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are provably nonnegative only for a finite set of directifns R" whose nonnegative linear combinations
span the whole space:
. f —f
f°(X;d) :=lim sup—(y+td) ¥)

>0 foralldeD. (1.1)
y—X, t]0 t

D is called the set akfining directions This resul for GPS is not as strong as stating that the generalized
derivative is nonnegative for every directionli#f, i.e., that the limit point is a Clarke stationary point, or
equivalently that G= 0f (X), the generalized gradient éfat X defined by

fo(xv)>0 forallveR" < 0ecdf(R):={seR": f°(xv)>V'sforallveR"}. (1.2

Example F in[[2] shows that indeed the GPS algorithm does not necessarily produce a Clarke stationary
point for Lipschitz functions because of the restriction to finitely many poll directions. This is so even if the
gradient exists at the limit point For the unconstrained case, this restriction can be overcome by assuming
more smoothness fd, e.g., strict differentiability ax [3] as mentioned above.

However, the directional dependence of GPS in the presence of even bound constraints cannot be over-
come by any amount of smoothness, by using penalty functions, or by the use of the filter approach for
handling constraint$ [4]. In contrast, MADS produces unconstrained limit points at which the Clarke deriva-
tives are nonnegative for every directionRA.

Besides the advantages for the unconstrained case of an asymptotically dense set of refining directions,
MADS can also treat a wide class of nonlinear constraints by the “barrier” approach. By this we mean that
the algorithm is not applied directly tb but to the barrier functiorfg, defined to be equal tb on Q and
~+00 outsideQ. This way of rejecting infeasible points was shown to be effective for GPS with finitely many
linear constraints by Lewis and Torczdn [18]. However, their proof requires that the tangent cone generators
of the feasible region at boundary points near an iterate be known at each iteration. For LTMADS, no special
effort is needed for the barrier approach to be provably effective with probability 1 on nonlinear constraints
satisfying a reasonable constraint qualification due to Rockaféllar [21] — that there exists a hypertangent
vector at the limit point. A key advantage of the barrier approach is that one can avoid expensive function
calls to f whenever a constraint is violated. Indeed, the question of feasibility of a trial point needs only a
yes or no answer - the constraints do not need to be given by a known algebraic condition.

The class of algorithms presented here differs significantly from previous GPS extensions [4, 19] to
nonlinear constraints. Treating constraints as we do motivates us to use the generalization of the Clarke
derivative presented in Jahn [15]. Jahn’s approach is aimed at a case like ours where the evalfiason of
restricted to points in the feasible dom&n Thus we use the following definition of the Clarke generalized
derivative atxe Q in the directionv € R":

fy+tv)— f(y)

fe(Xv):=  limsup i

y—XyeQ
t10,y+tveQ

(1.3)

Both definitions[(1.]1) and (T].3) coincide whén= R" or whenx'e int(Q).

The main theoretical objective of this paper is to show that under appropriate assumptions, any MADS
algorithm produces a constrained Clarke stationary pogt,a limit point X € Q satisfying the following
necessary optimality condition

f°(X;v) > Oforallve Tg' (X), (1.4)
WhereTgI (X) is the Clarke tangent cone f»atX (seel[8] or Definitio).
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The paper is organized into two main parts. First, Sec{ipns Z and 3 present the abstract MADS algo-
rithm class and its convergence analysis. The analysis revolves around three types of tangent cones. This
allows us to tie some convergence results to local differentiability of the fundtianlimit points satisfy-
ing certain constraint qualifications. We present sufficient conditions under Whi¢h (1.4) holds. We discuss
the consequences of this when the algorithm is applied to an unconstrained problem, or whe@®the set
regular in the sense of Definitign 3.7 o1 [8]. We also give a stronger contraint qualification ensuring that
MADS produces a contingent KKT stationary poinfifs strictly differentiable. The reader will find a quite
different algorithm analyzed using the same concepts.in [12].

Then in Sectiong]4 ar[d 5, we give an implementable instance of MADS along with numerical experi-
ments to compare MADS with standard GPS. On an artificial example where GPS and Nelder-Mead are well
known to stagnate, we show that MADS reaches the global optimum. We give a comparison on a parameter
fitting problem in catalytic combustion kinetics on which we know that GPS performsiwell [14]. We also
give an example illustrating the power of being able to handle even simple nonlinear constraints by the bar-
rier approach. We also use this example to illustrate that MADS can cope surprisingly well as the dimension
of the problem increases. The final example shows the value of randomly generated polling directions for a
problem with a narrowing feasible region.

Notation. R,Z andN respectively denote the sets of real numbers, integers, and nonnegative integers.
Forx e R" andd € R, Bs(x) denotes the open ball of radidsentered ak. For a matrixD, the notation
d € D indicates thatl is a column ofD. The iteration numbers are denoted by the inkiex

2. Mesh Adaptive Direct Search algorithms. Given an initial iteratexy € Q, a MADS algorithm
attempts to locate a minimizer of the functibroverQ by evaluatingfg at some trial points. The algorithm
does not require any derivative information far This is useful when there are several local optima. But it
is essential whenlf is unavailable, either because it does not exist, or it cannot be accurately estimated due
to noise inf or other reasons.

MADS is an iterative algorithm where at each iteration a finite number of trial points are generated,
and the infeasible trial points are discarded. The objective function values at the feasible trial points are
compared with the current incumbent valfigxy), i.e., the best feasible objective function value found so
far. Each of these trial points lies on therrent meshconstructed from a finite set af, directionsD c R"
scaled by anesh size paramet&' € R .

There are two restrictions on the &t First,D must be a positive spanning set|[1il¢., nonnegative
linear combinations of its elements must sfigh Second, each directia) € D (for j = 1,2,...,np) must
be the producGz; of some fixed non-singular generating matéix R"*" by an integer vectar; € Z". For
convenience, the sétis also viewed as a realx np matrix.

DEFINITION 2.1. At iteration Kk, the current mesh is defined to be the following union:

M= | J {x+ADz: ze N} |
xe&

where g is the set of points where the objective function f had been evaluated by the start of iteration k.

In the definition above, the mesh is defined to be the union of setsSpvBrefining the mesh this way
ensures that all previously visited points lie on the mesh, and that new trial points can be selected around any
of them using the directions iD. This definition of the mesh is identical to the onelih [4] and generalizes
the one in([3].

The mesh is conceptual in the sense that it is never actually constructed. In practice, one can easily make
sure that the strategy for generating trial points is such that they all belong to the mesh. One simply has to
verify in Definition[2.] thai belongs tdS, and thatzis an integer vector. The objective of the iteration is to
find a trial mesh point with a lower objective function value than the current incumbent fega(xg. Such
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a trial point is called aimproved mesh point, and the iteration is callexlacessful iteration. There are no
sufficient decrease requirements on the objective function value.

The evaluation offg at a trial pointx is done as follows. First, the constraints defin@gre tested
to determine ifx is feasible or not. Indeed, since some of the constraints deftdimgght be expensive or
inconvenient to test, one would order the constraints to test the easiest onesXiggsQ|fthen fq(X) is set
to +oo without evaluatingf (x), and perhaps without evaluation all the constraints defifintn effect, this
means we discard the infeasible trial points. On the other hard; @, thenf(x) is evaluated. This remark
may seem obvious, but it saves computation, and it is needed in the proof of Tieorgm 3.12.

Each iteration is divided into two steps. The first, calledtE@RCH step, has the same flexibility as in
GPS. It allows evaluation df, at any finite number of mesh points. Any strategy can be used 2heCH
step to generate a finite number of trial mesh points. Restrictinggh&CH points to lie on the mesh is a
way in which MADS is less general than the frame methods of Coope and Price [10ERRecHis said
to be empty when no trial points are considered. The drawback t®ehrcHflexibility is that it cannot be
used in the convergence analysis — except to provide counterexamplesl|as in [2]. More discussiarosf
steps is given in 1, 20, 6].

When an improved mesh point is generated, then the iteration may stop, or it may continue if the user
hopes to find a better improved mesh point. In either case, the next iteration will be initiated with a new
incumbent solutiony.1 € Q with fo(X1) < fo(X) and with a mesh size paramem{f+1 equal to or
larger than\}! (the exact rules for updating this parameter are presented below). Coarsening the mesh when
improvements irfg are obtained can speed convergence.

Whenever theseARCH step fails to generate an improved mesh point, then the second step, called
the POLL, is invoked before terminating the iteration. The difference between the MADS and the GPS
algorithms lies exactly in thigoLL step. For this reason, our numerical comparisons in the sequel use
empty, or very simpleSEARCHSsteps in order to isolate the value of the MABSLL step.

When the iteration fails in generating an improved mesh point, then the next iteration is initiated from
any pointxg.1 € Sc1 with fo(Xkr1) = fo(X); though there is usually a single such incumbent solution,
and thenx 1 is set toxx. The mesh size parametAE}rl is reduced to increase the mesh resolution, and
therefore to allow the evaluation dfat trial points closer to the incumbent solution. More precisely, given
a fixed rational number > 1, and two integersr~ < —1 andw™ > 0, the mesh size parameter is updated as
follows:

{0,1,...,w"} if an improved mesh point is found

{w-,w +1,...,—1} otherwise. (2.1)

oY), = AR for somewy € {
Everything up to this point in the section applies to both GPS and MADS. We now present the key
difference between both classes of algorithms. For MADS, we introducedihsize parametef\! € R,
for iterationk. This new parameter dictates the magnitude of the distance from the trial points generated by
the POLL step to the current incumbent solutign In GPS, there is a single parameter to represent these
quantities:&, = AP = AT In MADS, the strategy for updatingy} must be such tha" < Af for all k, and
moreover, it must satisfy

II(m& A7 =0 if and only if I!irerE =0 for any infinite subset of indicds. (2.2)
(S S

An implementable updating strategy satisfying these requirements is presented in[Section 4.

We now move away from the GPS terminology, and toward that of Coope and Price. The set of trial
points considered during tlroLL step is called &ame. The frames of Coope and Price can be more general
than MADS frames in a way not important to the present discussion. For this reason, we do not digress to
discuss their general definition heré [9].
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The MADS frame is constructed using a current incumbent solxiid¢oalled theframe center) and the
poll and mesh size parametdkg andA}" to obtain a positive spanning set of directidiia Unlike GPS,
generally the MADS set of directiori3y is not a subset db.

DEFINITION 2.2. At iteration k, the MADS frame is defined to be the set:

Pc={x+Ad:de D¢} C My,

where 0 is a positive spanning set such tita¢ Dy and for each d= Dy,
e d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector & N" that may depend on the iteration number k
o the distance from the frame centgrtr a frame point k+ Ay'd € B is bounded by a constant times
the poll size parameter:
AP|d]| < APmax{||d|| : ' € D}
¢ limits (as defined in Coope and Pride [9]) of the normalized setsife positive spanning sets.
In GPS, the seDy is a subset of the finite SBt There is more flexibility in MADS. We will present an
instance of MADS where the closure of the cone generated by the set

*( d
U {— :de Dk}
Ll
equalsR" with probability 1. We will say that the set of poll directions is asymptotically dense with proba-
bility 1.

If the POLL step fails to generate an improved mesh point then the frame is catdéuirmal frame, and
the frame centex, is said to be aninimal frame center. This leads to mesh refinement. At each iteration,
the columns oDy are called the poll directions.

The algorithm is stated formally below. Itis very similar to GPS, with differences irthe. step, and
in the new poll size parameter.

A GENERAL MADS ALGORITHM

o INITIALIZATION : Letxg € Q, Af' < AP, D, G,1,w andw satisfy the requirements given above.
Set the iteration countér— O.
e SEARCH AND POLL STER Perform theseaArRCcHand possibly theoLL steps (or only part of them) until gan
improved mesh point1 is found on the mesh (see Definitiof Z]1).
— OPTIONAL SEARCH Evaluatefq on a finite subset of trial points on the medh.
— LocaL poLL: Evaluatefg on the frameR (see Definitio 22).

e PARAMETER UPDATE UpdateAl ; according to Equatior (2.1), arz\ka according to[(Z2).
Setk — k+ 1 and go back to theeEARCHandPOLL step.

The crucial distinction and advantage of MADS over GPS is that the MADS mesh size paraffieter
may go to zero more rapidly thakf. Consequently, the directions By used to define the frame may be
selected in a way so that asymptotically they are not confined to a finite set. Note that in GBJ ammlf
are equal: a single parameter plays the role of the mesh and poll size parameters, and therefore, the number
of positive spanning sets that can be formed by subsddsi®tonstant over all iterations.

For example, suppose that R? the setD is composed of the eight directiod$d;,d,)™ # (0,0) :
di,d2 € {—1,0,1}}. There are a total of eight distinct positive bases containing three directions that can be
constructed fronD. Figure an.2 illustrate some possible framé®?iffior three values of. The
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A=A =1 AN =NAP =7 AN =NAR =
pl

Xk Xy Xk

p3

Fic. 2.1. Example of GPS frames P {x+AQd : d € D} = {p*, p?, p°} for different values ofA]' = AP. In all three figures,
the mesh Mis the intersection of all lines.

frames in Figurl are generated by a GPS instance, and are su&sﬁ thaf". Regardless df and of the
mesh or poll size parameters, each directiobjns confined to be selected i

The frames in Figur.2 are generated by an instance of MADSA@H& n\/Z'k“. One can see that
the new MADS algorithm may select the directionsiaf from a larger set. With the new algorithm, the
frame may be chosen among the mesh points lying inside the square with the dark contour. We will present
in Sectior] 4 an implementation of MADS ensuring that given any directiof®®jthe algorithm generates
arbitrarily close poll directions, i.e., that the set of poll directions is asymptotically der&& in

m__ p_ m_ 1 AP _ m_ 1 p_1
AN =1,00=2 AP=31np=1 A= EAP=1
p3
p3
T
X X omme
pl k K ,1 H
pt .
p2
p2

Fic. 2.2. Example of MADS framesP= {xc+Afd : d € Dy} = {p*, p?, p°} for different values ohAT and AL. In all three
figures, the mesh Ms the intersection of all lines.

We have presented above a general framework for MADS algorithms. The next section contains a de-
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tailed convergence analysis for that general framework. It presents sufficient conditions to ensure a hierarchy
of convergence results based on the local differentiabilit§ @ising the Clarke non-smooth calculus) and

on the local properties d2 (using three types of tangent cones). The results rely on the assumption that

a specific set of directions (called the refining directions — see Defifjitign 3.2) be dense in a tangent cone.
Then, in Sectiof]4 we propose a specific implementation called LTMADS, and give sufficient conditions to
satisfy this assumption.

3. Convergence analysis of MADS.The convergence analysis below relies on the assumptions that
Xo € Q, that f (xo) is finite, and that all iteratef } produced by the MADS algorithm lie in a compact set.
Future work will relax the first assumption by incorporating the filter approach givén in [4].

The section is divided into three subsections. The first recalls Torczon’s [22] analysis of the behavior
of the mesh size parameter and defines refining sequences|as in [3]. It also defines the idea of a refining
subsequence and a refining direction. The second subsection recalls the definitions of the hypertangent,
Clarke, and contingent cones in addition to some results on generalized derivatives. The third contains a
hierarchy of convergence results based on local properties of the feasible @egion

3.1. Preliminaries. Torczon [22] first showed the following result for unconstrained pattern search
algorithms. Then Audet and Dennis [3] used the same technique for a description of GPS that is much closer
to our description of MADS. The proof of this result for MADS is identical to that of GPS. The element
necessary to the proof is that for any intefyer 1, the iteratexy may be written agy = Xp + zE:‘()lNk“Dzk
for some vectorg, € N, This is still true with our new way of defining the mesh and the frame (see
Definitiong 2.1 anfl 2]2).

PropPosITION3.1. The poll and mesh size parameters produced by a MADS instance satisfy

liminfAf = liminf AR' = 0.

— 400 K— 00

Since the mesh size parameter shrinks only at minimal frames, Propgsifion 3.1 guarantees that there are
infinitely many minimal frame centers. The following definition specifies the subsequences of iterates and
limit directions we use.

DEFINITION 3.2. A subsequence of the MADS iterates consisting of minimal frame cefstgfg:x
for some subset of indices K, is said to beefining subsequencié{AE}keK converges to zero.

Let X be the limit of a convergent refining subsequence. If the limit. ﬂgﬁ exists for some subset
L € K with poll direction @ € Dy, and if % + A'dy € Q for infinitely many ke L, then this limit is said to be
a refining direction forx.

It is shown in [3], that there exists at least one convergent refining subsequence. We now present some
definitions that will be used later to guarantee the existence of refining directions.

3.2. Three types of tangent conesThree different types of tangent cones play a central role in our
analysis. Their definition, and equivalent ones, may be found in[[21,18, 15]. After presenting them, we
supply an example where the three cones differ to illustrate some of our results. The first cone that we
present is the hypertangent cone.

DEFINITION 3.3 (Hypertangent cone)A vector ve R" is said to be a hypertangent vector to the set
Q C R" at the point xc Q if there exists a scalag > 0 such that

y+twe Q forally e QNBg(x), weBg(v) and 0<t <e. (3.1)

The set of hypertangent vectorsQaat x is called théhypertangent cone 1@ atx and is denoted byg'zT(x).
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The hypertangent cone is a useful concept for understanding the behavior of the MADS algorithm.
When analysing MADS, we will be concerned with specific subsequences:
e minimal frame centers, — X;
e mesh size parameted§y’ \, 0 and step sizAy||dk|| \, 0;

e normalized refining directionﬁgﬁ —Vv#0.

These subsequences will be chosen in a way so¢h@af) andxy + (Nkn||dk||)ﬂ%ﬁ € Q. The connection with
the the hypertangent definition is obvious by noticing that the rolgs @ihdw are played by, AY'||dk|| and
ﬂgfﬂ‘ respectively. The connection with the Clarke deriva (1.3) will be made explicit in Th 3.12.
Since the definition of a hypertangent is rather technical and crucial to our results, we will pause for
a short discussion. The reader could easily show thatig a full dimensional polytope defined by linear
constraints, then every direction from a poik Q into the interior ofQ is a hypertangent. That follows
immediately from the following result relating hypertangents to the constraint qualification suggested by
Gould and Tolle[[1B]. See alspl[5] for a discussion of the Gould and Tolle constraint qualification and the
closely related one of Mangasarian and Fromovitz.
THEOREM3.4. LetC: R" — R™ be continuously differentiable at a poitie Q = {x € R" : C(x) <0},
and let4(X) = {i € {1,2,...,m}: ¢i(X) = 0} be the active set & Then « R" is a hypertangent vector to
Q atx if and only if0c; (%) Tv < 0 for each i€ 4(X) with (i (X) # 0.
Proof. Let v be a hypertangent vector @ at X. Then, there exists an> 0 such thak3tv € Q for any
0<t<e. Leti € 4(X). Continuous differentiability o€; atXimplies that

O (%) Tv = lim GRAV)—GK® 4
t—0 t
It only remains to show thalflci(X)Tv # 0 when[g;(R) # 0. Suppose by way of contradiction that
Oci(%)Tv = 0 andci(X) # 0. Since the hypertangent cone is an open(seét [21], for any nonnegatie
sufficiently smallyv+ 80c; (X) is a hypertangent vector £ atX. It follows that

0 > Oci(®) (v+80ci(%) = 3l|0c(R)3 > O,

which is a contradiction. Thug]c; ()”()Tv < 0 whenOc;(X) # 0.

To prove the converse, léte 4(X) be such thatdci(X) # 0 andv € R" be such that|v| = 1 and
Oci(%)Tv < 0. The productici(y)Twis a continuous function dy; w) = (%; v), and so there is songg > 0
such that

Oci(y)'w < 0 forall y € Bg, (R) andw € B, (V). (3.2)

Takee = min{1,%} and lety,w be inB¢(X) andBe(v) respectively withy € Q, and let 0< t < &. We will
show thaty+tw € Q. Our construction ensures thaty) < 0 ande < €1, and so by the mean value theorem,
we have

Gi(y+tw) < ci(y+tw)—ci(y) = Oci(y+6tw)" (tw) for somed € [0,1]. (3.3)

But, |ly+6tw—X|| < [ly—X||+6t(||lw—v|+|Vv]) < e+&(e+ 1) < 3e < g4, thusy+ 6Btw € Bg, (X), and
W € Bg(V) C Bg, (V). It follows that equation[(3]2) applies and therefate (y + 6tw)"w < 0. Combining
this with (3.3) and with the fact that> 0 implies thatc;(y +tw) < 0. Butc; was any active component
function, and s&€(y+tw) < 0 and thug/+tw € Q. ]

We would like to culminate our hierarchy of convergence results by providing necessary conditions to
ensure contingent stationarity. In order to do so, we present two other types of tangent cones.
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DEFINITION 3.5 (Clarke tangent conej vector ve R" is said to be a Clarke tangent vector to the set
Q C R" at the point x in the closure @ if for every sequencgyi} of elements of2 that converges to x and
for every sequence of positive real numbgg converging to zero, there exists a sequence of ve¢tars
converging to v such thaiytywk € Q. The set g' (x) of all Clarke tangent vectors t@ at x is called the
Clarke tangent cone tQ at x.

DEFINITION 3.6 (Contingent cone)A vector ve R" is said to be a tangent vector to the $&iC R"
at the point x in the closure @ if there exists a sequendgy} of elements of2 that converges to x and a
sequence of positive real numbég} for which v= limiAx(yk — X). The set £°(x) of all tangent vectors
to Q at x is called the contingent cone (or sequential Bouligand tangent co@)atm

DEFINITION 3.7. The setQ is said to be regular at x prowdedQT Tgo( X). Any convex set
is regular at each of its pomts [8]. Boﬁff’ anch'( x) are closed cones, and boTﬁ' andT, ?
are convex cones. Moreovai! (x) C TS (x) C TCO( x). Rockafellar[21] showed that (x) = int(T§' (x
wheneveiT/! (x) is nonempty.

3.3. Generalized derivatives.Recall that we are using Jahn’s definitipn {1.3) of the Clarke derivative

instead of[(L1.]1), and therefore we cannot directly use the calculus theory developed in [8]. The next lemma

and proposition extend previously known calculus results in the unconstrained case.
LEmMMA 3.8.Let f be Lipschitz neak € Q with Lipschitz constant. If u and v belong to}{'(f(), then

feRu) > feXv)—=Alju—v||.

Proof. Let f be Lipschitz neax & Q with Lipschitz constank and letu andv belong tng'j (X). Lete > 0 be
such thaty+tw € Q whenevery € QN B (X), w € B¢(u)UBg(v) and 0< t < €. This can be done by taking

€ to be the smaller of the values farandv guaranteed by the definition of a hypertangent. In particular, if
y € QNBg(X) and if 0< t < g, then bothy+tu andy+tv belong toQ. This allows us to go from the first to
the second equality of the following chain:

fo(ku) = limsup YTV jimgyp  fHWTY)
y—R%yeQ y—R%yeQ
t]0,y+tueQ t10,y+tveQ
_ limsup f(y+t\;)—f(y) + f(y+tu);f(y+tv)
y—XyeQ
t10,y+tveQ
=fo(xv) + limsup W TV > fo(gy) — Allu—v]).
y—X yeQ
t]0,y+tveQ

Based on the previous lemma, the next proposition shows that the Clarke generalized derivative is con-
tinuous with respect te on the Clarke tangent cone. The result is necessary to the proofs of Th¢oremns 3.12

and3.18.
PROPOSITION3.9. Let f be Lipschitz neak € Q. If T} (%) # 0 and if ve T§'(R) then
fexv) = lim o fe(Rw).
W—V,

we TH(R)
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Proof. Let A be a Lipschitz constant fof nearx'e Q and let{wy} C T} (%) be a sequence of directions
converging to a vector € Tg' (X). By definition of the hypertangent cone, letCe, < % be such that

y+twe Q whenevely € QN Bg, (X),w € B, (W) and 0< t < . (3.4)

We first show the inequality® (X;v) < limy f°(%;wy). Equation[(3.4) implies that

fo(kv) = limsup UMY jimeyp [T
y—XyeQ y—RXyeQ
t10,y+tveQ t10,y+tveQ
y+twe € Q
i flyHwi)—fy) _ fly+twi)—fly+tv)
< limsup : — :
y—=X yeQ

t]0, y+tw eQ

f(y-+twy) — f (y+tv)
.

feKwk) +  limsup
y—XyeQ
t]0, y+tweeQ

As k goes to infinity,‘ HystwgTyHY) | < A |lwy — v|| goes to zero. Sincgwi} was arbitrary in the hypertan-

gent cone, it follows that

fev) < lim fe(Rw).
W—V,
we T ()

Second, we show the reverse inequalit§(X;v) > limy f°(X;wy). Let us definey = %WkJr (1- %)v:
Wi + (1— 1%)(v—wk). Since the hypertangent cone is a convex set, and sities in the closure of the
hypertangent cone, then it follows thate Tg'; (X) for everyk=1,2,...

We now consider the generalized directional derivative

fo(ku) = limsup ~IWHUI-TO),
y—X yeQ
t10,y+tuceQ

The fact thaty € TS (R) implies that there existg € Q N Bg, (X) and 0< % < g such thaty +teu, € Q and

f (i +tuk) — (k)

> £°(%; Ux) — &, (3.5)
tk

wheregy is the constant from equatidn (8.4). We now define the sequanresy + %('iwk € Q converging to
X, and the sequence of scal&gs= (1— 1%)tk > 0 converging to zero. Notice that

1 1
Z+ hev = Y+t (Ewk+(l_E)v) = Y+t € Q,
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and therefore

f°(xv) = limsup ~ TEVTE > i 1A TE)
z—X z2€Q k
h]0,z+hve Q

(Yt ) — f (Yie) f()’k)*f(YH’E;LSWk)
(1-§)k (1-§)k
f(Yk)*f(Ythka)

by equation[(3]5): > lim f°(X; ux) — & + ——T5—
k (1—R)tk

— lim 1
k

A
by Lemmg 3.8: > lim ° (% wi) —Afuk —wid| — &+ —l—(ﬁlnfvj)‘
:Iirkn £ (R W) — AV —Wi| + £[|V]| = F°(Rwk).

|
Unfortunately, the above Proposition is not necessarily true when the hypertangent cone is empty:
f°(X;v) may differ from limy_y f°(X;w). The above proof breaks as we cannot show in Equafion (3.4)
thaty +tw belongs taQ wheny € Q is close toxand whert > 0 is small. The following example iR?
illustrates that in this case, the Clarke generalized derivative is not necessarily upper semi-continuous on the
contingent cone.
ExAMPLE 3.10.Consider a feasible regiofd c R? that is the union of

Q;={(ab)":a>0,b>0} with Q, ={(-a,b)" : b= —a? a>0}.
One can verify that at the origin
TH0) =0, T5'(0)={(a,0)":a>0} cQ; and T§°(0)=Qi1U{(—a,0):a> 0},

and thereforeQ is not regular at the origin.

Consider the continuous concave functionRifc f(a,b) = —max{0a}. Notice that {a,b) =0 for
(a,b)T € Qy, and f(a,b) = —a < 00onQ;. We will show that f(0;w) is nonnegative for w in the interior of
the contingent cone but (0;e;) = —1 with & = (1,0)T in the Clarke tangent cone.

Let w= (w1, Ww2)T be any direction in infT§°(0)) = int(Q1). We will construct appropriate subse-
guences in order to compute a valid lower bound 6(0fw). For every positive integer k, define

T
. —W1 —W% . 1
Y = (T’ 7) and = 0

One can easily check that ¥ Q» C Q, and hence fyy) = O for every k. Also, for every k Wf; we have

T
Vi + tw = (0, 2 (kwp —Wf)) € Q; C Qs on the nonnegative b axis. It follows thatyg + tew) = 0 for
every such k, and so

f°(0w) > lim Tt tad — lim k- (0-0) = 0.
In particular, taking w= (1,€), we have that (0;(1,&)") is nonnegative for ang > 0.

However, let us compute the Clarke generalized directional derivative;d;) at the origin in the
direction @ = (1,0)" € T§'(0). The origin cannot be approached by poinis=y (a, k)" € Q with the
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properties that p < 0, and y +tke; € Q with t, > 0. This is easy to see from a picture becausaguld
have to be iMQ,, and then y+tke; cannot possibly be i®. A necessary condition for both sequences to
be inQ is that y belongs taQ,, where fla,b) = —a. But then every difference quotient in the definition of
f°(0;e1) is —1, and therefore ¥(0;e;) = —1.

This example shows that when the hypertangent coRésampty, but the Clarke tangent cone is not, it
is possible that f(X;w) is nonnegative for every w in the interior of the contingent cone and drops discon-
tinuously to a negative value on the boundary of the contingent coti&ef) < limsup,_¢ f°(Xw).

3.4. A hierarchy of convergence results for MADS.We now present different necessary optimality
conditions based on the tangent cone definitions.

DEFINITION 3.11. Let f be Lipschitz neak € Q. Then,X is said to be a Clarke, or contingent,
stationary point of f ovef, if f°(X;v) > O for every direction v in the Clarke, or contingent, conebét
X, respectively.

In addition, X is said to be a Clarke, or contingent KKT stationary point of f ofeif —[f(X) exists
and belongs to the polar of the Clarke, or contingent con@ et X, respectively.

This leads to our basic result on refining directions from which all our hierarchy of results are derived.
The proof of this results also illustrates the close connection between the MADS framework, the Clarke
calculus and the definition of a hypertangent vector.

THEOREM3.12.Let f be Lipschitz near a limit € Q of a refining subsequence, and let T} (%) be a
refining direction forX. Then the generalized directional derivative of Kéh the direction v is nonnegative,

i.e., f°(xv)>0.

Proof. Let {xx}kek be a refining subsequence convergingt@andyv = limyc ﬂ%ﬁ € T4 (R) be a refining
direction forX; with di € Dy for everyk € L. Sincef is Lipschitz near,” Propositior] 3.9 ensures that
fexv) = limge fO(X; ﬂgﬁ). But, for anyk € L, one can apply the definition of the Clarke generalized
derivative with the roles of andt played byx, andAy||dk||, respectively. Note that this last quantity indeed
converges to zero since Definiti.2 ensures that it is bounded aba\pniwgx{||d|| : d’ € D}, whereD

is a finite set of directions, and Equati¢n (2.2) statesmﬁagoes to zero. Therefore

g
F OO ke i) — F (%0

~ . . f ATd)—f
fo(%;v) > limsup s = Ilmsup%ﬁlﬂﬂ > 0.
kel klIBk kel i 110k

The last inequality follows from the fact that for each sufficiently lakge L, xx + Af'dk € Q and f(x +
AQdy) = fo(xc+ AQ'd) was evaluated and compared by the algorithnfi(ixx), butx, is a minimal frame
center, so the inequality holds. ]

We now show that Clarke directional derivativesfcdt the limitxX of minimal frame centers, for meshes
that get infinitely fine, are nonnegative for all directions in the hypertangent cone, i.e., we show that MADS
generates a Clarke stationary point.

THEOREM 3.13. Let f be Lipschitz near a limik € Q of a refining subsequence, and assume that
T (X) # 0. If the set of refining directions fot is dense in §' (X), theng is a Clarke stationary point of f
onQ.
Proof. The proof follows directly from Theorem 3.J12 and Proposifior 3.9. "

Note that even though the algorithm is appliedftpinstead off, the convergence results are linked
to the local smoothness dfand notfg, which is obviously discontinuous on the boundan of This is
because we usg (1.3) as the definition of the Clarke generalized derivative instead of (1.1). The constraint
qualification used in these results is that the hypertangent cone is non-empty at the feasible limit point ~
Further discussion on non-empty hypertangent cones is found in Rockafellar [21].

A corollary to this last theorem is that ffis strictly differentiable ak,then it is a Clarke KKT point.
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COROLLARY 3.14. Let f be strictly differentiable at a limik € Q of a refining subsequence, and
assume that J'(X) # 0. If the set of refining directions fat is dense in (%), thenk is a Clarke KKT
stationary point of f ovef.

Proof. Strict differentiability ensures that the gradienf (%) exists and thatlf(X)Tv = f°(X;v) for all
directions. It follows directly from the previous proposition thailf ()Tv < 0 for every directionv in
TS!(R), thusxis a Clarke KKT stationary point. "

Our next two results are based on the definition of set regularity (see Def[nitjon 3.7).

PROPOSITION3.15. Let f be Lipschitz near a limit € Q of a refining subsequence, and assume that
TS5 (R) # 0. If the set of refining directions fat is dense in (%), and if Q is regular at&, thenX is a
contingent stationary point of f ovél.

Proof. The definition of regularity of the s& ensures that°(%;w) > 0 for all win T$°(X). "

The following result is the counterpart to Coroll@ry 3.14 for contingent stationarity. The proof is omitted
since it is essentially the same.

COROLLARY 3.16. Let f be strictly differentiable at a limik € Q of a refining subsequence, and
assume that [J'(R) # 0. If the set of refining directions fotis dense in (%), and if Q is regular at, then
X is a contingent KKT stationary point of f ovex.

Example F in[[2] presents an instance of a GPS algorithm such that when applied to a given uncon-
strained optimization problem, it generates a single limit priwhich is not a Clarke stationary point. In
fact, it is shown thaff is differentiable but not strictly differentiable atahdOf(X) is nonzero. This un-
fortunate circumstance is due to the fact that GPS uses a finite number of poll directions. MADS can use
infinitely many.

The following result shows that the algorithm ensures strong optimality conditions for unconstrained
optimization, or whex is in the interior ofQ.

THEOREM3.17.Let f be Lipschitz near a limit of a refining subsequence Qf=R", or if X € int(Q),
and if the set of refining directions fdris dense iR", then0 € 9f (X).

Proof. Let X be as in the statement of the result, tigh(%) = R". Combining Definitiol and Theo-
rem[3.1B with equation (11.2) yields the result. "

Newton’s method uses first derivatives, and the standard analysis of Newton’s method assumes Lipschitz
continuity of the first derivatives. Correspondingly, MADS is an algorithm that uses only function values,
and we assume only that the functibrs Lipschitz neax.”

The SQP method, which is a constrained analog of Newton’s method, makes an assumption on the
constraints such as linear independence of the constraint gradients at a limit point of the iteration. Such
assumptions are called constraint qualifications, and they are meant to ensure that the limit points produced
by the algorithm satisfy necessary conditions for optimality. The weaker constraint qualification we need
for MADS is that the hypertangent cone is nonempty at the limit point of a refining sequence produced by
MADS.

To ensure that the algorithm produces a limit point satisfying necessary conditions, SQP makes as-
sumptions on the initial guess and the method for choosing the next iterate. So far, we have made the main
algorithmic assumption that the set of refining directions is dendgifk). Under these conditions, we
guarantee a Clarke stationary poiat Ih a paper on SQP, it is common to suggest practical algorithmic
procedures to achieve the algorithmic requirements for convergence to a stationary point. That is our next
topic for MADS.

In the general statement of the algorithm we did not present a strategy that would guarantee a dense
set of refining directions in the hypertangent cone. We want to keep the algorithm framework as general
as possible. There are different strategies that could be used to generate a dense set of poll directions. The
selection of the sdDy could be done in a deterministic way or may use some randomness. In the remainder
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of the paper, we present, analyze, and test one MADS strategy that uses some randomness. We do this
because we have not found a deterministic strategy that achieves a good distribution of poll directions when
the process is terminated after a reasonable number of iterations.

4. Practical implementation — LTMADS. We now present two variants of a stochastic implementa-
tion of the MADS algorithm. We call either variant LTMADS, because of the underlying lower triangular
basis construction, and we show that with probability 1, the set of poll directions generated by the algorithm
is dense in the whole space, and in particular in the hypertangent cone.

4.1. Implementable instances of a MADS algorithm.Let G = I, the identity matrix, and leD =
[l —1],t=4,w = —1andw" = 1 be the fixed algorithmic parameters. ChoAfe= 1,A8 = 1to be the
initial mesh and poll size parameters, and define the update rules as follows:
AN -
- if Xcis a minimal frame center
NL1=1 4N if animproved mesh point is found, andAf < 1
AY  otherwise.

A consequence of these rules is that the mesh size parameter is always a power of 4 and never exceeds 1.
Thus,ﬁ > 1is always a nonnegative power of 2 and hence integral.
k

We now present a strategy to randomly generate the poll directions. In what follows, every random
generation is done uniformly with equal probabilities. In order to ensure that the set of refining directions is
dense in the hypertangent cone, one of these directions must be selected in a different way. This direction
must depend only on the value of the mesh size parameter, and not on the iteration number. The direction is
denoted byb(¢) where/ is an integer related to the mesh size parameter. An additional counter, &&aed
initially set to zero. It is used to keep track of the valueg &fr which b(¢) was created. The construction
of b(¢) is as follows.

GENERATION OF THE DIRECTIOND(f) FOR A GIVEN NONNEGATIVE INTEGERY.

e VERIFICATION IF b(/) WAS ALREADY CREATED:
If £c > ¢, then exit this procedure with the existing vedigt) € Z".
Otherwise, sef. < ¢c + 1, and continue to the next step.

e INDEX OF ENTRY WITH LARGEST COMPONENT
Leti be an integer randomly chosen in the Net {1,2,...,n}.

e CONSTRUCTION OFb(¢):
Randomly seb; (¢) to either plus or minus‘2 andbj(¢) for i € N\ {7} to be an integer if—2° +1,—2 +
2,...,2¢ —1}. Recordb(¢) and exit this procedure.

The above procedure returns a vedd§f) € Z" such that all elements but one are integers between
—2+1 and 2 —1. The other element is either2’ or 2. Moreover, when two iterations have the same
mesh size parameter, then the corresponding vebtéysre identical.

To each mesh size paramef§lt, we assign an integér= —log,(A") € N so thatAl' = 4~¢. Note that
the mesh size parameter in LTMADS takes the valuési%, ..., and thereforé is necessarily a nonnegative
integer.

We now present a procedure that extehd@3 to a positive spanning set of either @nn-+ 1 poll di-
rections. The procedure first generategan 1) x (n— 1) lower triangular matrix, and then combines it
with b(¢) to create a basis iR". Finally, this basis is extended to a positive basis by either mirroring the
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directions (for a maximal 2basis), or by taking the negative sum of the directions (for-dl basis).

GENERATION OF THE POSITIVE BASISDk AND UPDATE OFAE.

e CONSTRUCTION OF THE DIRECTIONI({) AND INDEX 1:
Let£ = —log,(AY), and construdb(¢) by the above procedure.
Seti to be the integer ilN such thaib; (¢)| = 2.

e BASIS CONSTRUCTION INR"1:
LetL be a lower triangulafn— 1) x (n— 1) matrix where each term on the diagonal is either plus or minus
2!, and the lower components are randomly chosepHg +1,-2¢ +2,...,2¢ —1}.
L is a basis irR" 1 with | det(L)| = 2¢("-1).

e PERMUTATION OF THE LINES OFL, AND COMPLETION TO A BASIS INR™
Let{p1,P2,-.-,Pn_1} be random permutations of the $¢t {1}. Set

Bp,j=Lij fori,j=12,...,n-1
Bij=0 forj=1,2,...,n—1
Bin=bi(¢) fori=1,2,...,n.

B is a basis irR" with |det(B)| = 2"
e PERMUTATION OF THE COLUMNS OFB:
Let{qi1,dp,...,0qn} be random permutations of the $ét
SetB] ;, = B j for eachi andj in N. B'is a basis irR" with | det(®')| = 2,
e COMPLETION TO A POSITIVE BASIS
— Minimal positive basis: SeDy = [B' d] with di = — 3 jn Bjj-
Set the poll size parameterdkﬁ’ =n,/AT> AE‘.
— Maximal positive basis: Sé&y = [B' —B/].
Set the poll size parameter & = /AT > Al

The rows of a lower triangular matrik are randomly permuted, and a line of zeroes is inserted in
positioni. This results in @ x (n— 1) matrix. The columrb(¢) is appended to it, and this leads to a basis
Bin R". The permutation of the rows ensures that the zeroes of the triangular matrix are not mostly located
in the upper part oB. Afterwards, the columns @ are randomly permuted to ensure that the zeroes are
not mostly located in the right part &. This construction ensures thatet®)| = |det®')| = 2. The
completion to a positive basi3, appends tdd’ either the negative sum of the columnsBf or the negative
of each column.

The construction also ensures thé&t) is necessarily a column of the positive ba3ijs Our convergence
analysis will show that ak goes to infinity, the union of all directiors¢) is dense irR" with probability
one. We will also show that if the entire sequence of iterates converges, then the set of refining directions is
also dense ifR" with probability one.

We now present an examplelR? to highlight the features of the positive basis construction.

EXAMPLE 4.1. Consider an iteration k witl\' = TlG The stepCONSTRUCTION OF THE DIREEG

TION b(¢) AND INDEX 1 fixed ¢ = —log, (A7) = 2. Suppose that the randomly defined vectdt) tig
(—3,2,4,—-1,0)". It follows thati = 3 since (¢) = 4. Observe that all other components of pére
integers between 22 +1and2? — 1.
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Suppose that the st&nsis CONSTRUCTION INR" 1 generates the random lower triangular matrix

4 0 0 0
3 4 0 0| s
L=1-1 2 4 of€Z

1 -2 0 4

Now, if the two permutation steps generate the line permutation végtop,, ps, p2) = (4,1,2,5), and
the column permutation vectdqs, 02, ds,d4,0s5) = (5,1,3,2,4) then the bases constructed from L and)b(
are

3 4 0 0 -3 4 0 0 -3 3

-1 2 -4 0 2 2 0 -4 2 -1

B = 0 0 O 0 4| and B = 0O 0 0O 4 O
-4 0 0 0 -1 0O 0 0 -1 -4

1 -2 0 4 O -2 4 0 0 1

(the entries copied from L appear in boldface characters). One may easily verifydeté)| = |detB')| =
45 and that the four termsﬁqi fori=1,2,3,4as well as l§7q5 are equal to eithed or —4.

Finally, depending on if the minimal or maximal positive basis is selectedCtmePLETION TO A
POSITIVE BASISstep generates the sek Bomposed of the columns of either

4 0 0 -3 3 -4 4 0 0 -3 3 -4 0 0O 3 -3
2 0 -4 2 -1 1 2 0 -4 2 -1 -2 0 4 2 1
0O 0 0O 4 0 -4 |or 0o o 0o 4 O O O O0-4 O
0O 0 0 -1 -4 5 0o 0 0-1 -4 0O O0 O 1 4
-2 4 0 O 1 -3 -2 4 0 0 1 2-4 0 0 -1

A key point of this construction is that any iteration with a mesh size parameter qu%awm have b{)
as the @“ column of Q. In this particular example, i is the fourth column of [ The other columns will
usually differ from one iteration to another.

Since MADS is allowed to bepportunisticand end @0LL step as soon as a better point is found, we
want to randomize theoLL directions. Thus, the purpose of the second step is to permute the lines of the
matrix B so that the zeroes in the upper triangular part of the matrix are randomly positioned, and to permute
the columns so that the dense column is not always the fiBt.iThe name LTMADS is based on the lower
triangular matrix at the heart of the construction of the frames.

The following result shows that the frames generated by the LTMADS algorithm satisfy the conditions
of Definition[2.2.

PROPOSITION4.2. At each iteration Kk, the procedure above yields pdhd a MADS frame Psuch
that:

Pc= {x+AFd:de Dy} C M,

where M is given by Definitiof 2]1 andOs a positive spanning set such that for each By,
e d can be written as a honnegative integer combination of the directions in D:
d = Du for some vector & N™ that may depend on the iteration number k
e the distance from the frame centertr a frame point k4 A'd € B is bounded by a constant times
the poll size parameter:
AP||d] < AP max{||d| : ' € D}
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¢ limits (as defined in Coope and Pride [9]) of the normalized setsi@ positive spanning sets.
Proof. The firstn columns ofDy form a basis ofR" because they are obtained by permuting rows and
columns of the lower triangular matr, which is nonsingular because it has nonzero terms on the diagonal.
Moreover, taking the last direction to be the negative of the sum of the others leads to a minimal positive
basis, and combining the firstcolumns oDy with their negatives gives a maximal positive basig [11].
Again by constructionDy has all integral entries in the intervial 2, 2] (with 2 = LA), and so clearly
k

each columrd of Dg can be written as a nonnegative integer combination of the columbs-ofl, —1].
Hence, the frame defined IB is on the mesivi.

Now the /., distance from the frame center to any frame pointA§'d||. = A'||d|l». There are two
cases. If the maximal positive basis construction is used Afféd| . = /AT = AY. If the minimal positive
basis construction is used, thaff||d||. < n,/Af = Af. The proof of the second bullet follows by noticing
that max{||d|| :d € [I —1]} =1.

The frame can be rewritten in the equivalent fofxa+ | /Afv: v e '} where?/ is a set whose columns
are the same as those®ffter permutation and multiplication W

Coope and Price [9] show that a sufficient condition for the third bullet to hold is that each element of
v is bounded above and below by positive constants that are independenitu$ is trivial to show with
our construction. Indeed, each entry®flies between-1 and 1 and every term on the diagonakis. B is
a triangular matrix, and therefofeet(7’)| = 1. "

The frames given in Figufe 3.2 were generated using minimal positive bases with directioDg:sets
{(=1,007,(0,—1)" (L,1)T}, {(=2,-1)7,(0,-2)",(2,3)"} and {(—3,4)",(4,0)",(~1,—4)T}. One can
see that ad\ andAE go to zero, the number of candidates for frame points increases rapidly. For the
example illustrated in the figure, In the rightmost figure, there are a total of 56 distinct possible frames that
MADS may choose from. The first line of the matixis [+4 0], the second line ifB,; + 4] whereBy; is
an integer between3 and 3. It follows that there arex22 x 7 = 28 possibilities foB. Permuting the lines
doubles the number of possibilities to 56. Permuting the columns does not change the points in the frames.

In addition to an opportunistic strategye., terminating aPOLL step as soon as an improved mesh
point is detected, a standard trick we use in GPS to improve the convergence speed consists in promoting
a successful poll direction to the top of the list of directions for the mextL step. We call thiglynamic
ordering of the polling directions. This strategy can not be directly implemented in MADS since at a
successful iteratiok — 1, the poll size parameter is increased, and therefore a s#&p iof the successful
direction will often be outside the mesh. The way we mimic GPS dynamic ordering in MADS is that when
the previous iteration succeeded in finding an improved mesh point, we execute a simple odgrpoint
searchin the next iteration as follows. Suppose tfiafx) < fo(x-1) and thad is the direction for which
X« = Xk—1+ Ay ,d. Then, the trial point produced by tis&ARCHStep issc = X1 + 44, ;d. Note that with
this construction, i\ ; < 1, thens, = X1 + Af'd and otherwises, = X1 +44A'd. In both casesy lies
on the current meshly. If this SEARCHfinds a better point, then we go on to the next iteration, but if not,
then we proceed to theoLL step. The reader will see in the numerical results below that this seems to be a
good strategy.

4.2. Convergence analysisThe convergence results in Sectjon|3.4 are based on the assumption that
the set of refining directions for the limit of a refining sequence is asymptotically dense in the hypertangent
cone at that limit. The following result shows that the above instances of LTMADS generates an asymptot-
ically dense set of poll directions with probability 1. Therefore, the convergence results based on the local
smoothness of the objective functidrand on the local topology of the feasible regi@rcan be applied to
LTMADS.
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THEOREM 4.3. LetX € Q be the limit of a refining subsequence produced by either instance of LT-
MADS. Then the set of poll directions for the subsequence converginig sisymptotically dense iQ)Hl(f()
with probability 1.
Proof. Let X be the limit of a refining subsequenégy}kcx produced by one of the above instances of
LTMADS (either with the minimal or maximal positive basis). Consider the sequence of positive bases
{Dk}kek - Each one of these bases is generated independently.

We use the notatioR|E] to denote the probability th& occurs. Lew be a direction iR" with ||v|. =1
such thaP[lvj| = 1] > 3 andP[vj = 1| |vj| = 1] =P[vj = —1| |vj| = 1] = 5. We will find a lower bound
on the probability that a normalized directionDy is arbitrarily close to the vector.

Letk be an index oK, and let/ = —log,(A}"). Recall that in the generation of the positive ba&jsthe
columnb(¢) is such thatb; (¢)| = 2¢, and the other componentshf) are random integers betwee’ 4 1

and 2 — 1. Setu= ﬂﬁb(%)ﬂi' It follows by construction that = 2~‘b(¢) and||u|le = |u;| = 1. We will now

show for any (< € < 1, that the probability thafu—v||.. < € is bounded below by some nonnegative number
independent ok, ask € K goes to infinity. Let us estimate the probability that— v;| < € for eachj. For
j =1 we have

Plu—v| <€g]>Ply=v=1]+P[uy =v = —1]

=

1 1 1
=Pl =1|xPMy=1+Pls = -1 xPv==1] > - X —+-xX— = —.
[ =1]xPM =1 +Ply = 1] x Py = 1] = Sx -4 5x > = =

=Y

N
N

Forj € N\ {i} we have
Plluj—vj| <& =Plvj—e<uj <Vj+eg = P[Zf(vj —€) < bj(¢) < 2(v; +s)] :

We will use the fact that the number of integers in the intef2a(vj —€),2(v; +€)] N [-2° +1,2¢ — 1]

is bounded below by the valué£2— 1. Now, since the basd3 are independently generated, and since
bj(¢) is an integer randomly chosen with equal probability among thé 2 1 integers in the interval
[—2¢+1,2¢ — 1], then it follows that

2218+1_1> 20+1 T 2

2lg—1 2e—1 g—27¢
PHUI‘—VJ|<8] .

Recall thas the limit of a refining subsequence, and so, there exists an irdegymh that, /AT =2 < §
wheneven < k € K, and so

Plluj —vj| <€ > for anyk € K with k> a.

LVA‘<>E
> >

4
It follows that

n g\n-1
Pllu—Vv|l. <€ = I'LPHUJ- —vj| <€l > (Zgn for anyk € K with k > a.
]:

We have shown whekiis sufficiently large, thalP[|ju—V|» < €] is larger than a strictly positive constant
which is independent d&. Thus, there will be a poll direction iy for somek € K arbitrarily close to any
directionv € R", and in particular to any directione TS (X). "

The proof of the previous result shows that the set of directions consisting bf¢heirections over
all iterations is dense iR". Nevertheless, we require the algorithm to use a positive spanning set at each
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iteration instead of a single poll direction. This ensures that any limit of a refining subsequence is the limit of
minimal frame centers on meshes that get infinitely fine. At this limit point, the set of refining directions is
generated from the set of poll directions which is dense in LTMADS and finite in GPS. Therefore with both
MADS and GPS, the set of directions for which the Clarke generalized derivatives are nonnegative positively
span the whole space. However, GPS does not allow the possibility that the set of refining directions is dense,
since it is finite.

Finally, we give a condition that ensures dense MADS refining directions with probability 1.

THEOREM 4.4. Suppose that the entire sequence of iterates produced by either instance of LTMADS
converges t&X € Q. Then the set of refining directions for the entire sequence of iterates is asymptotically
dense in §' (%) with probability one.

Proof. Let K be the set of indices of iterations that are minimal frame centers. If the entire sequence
of iterates produced by an instance of LTMADS converges ¢0(J, then the subsequendey }kcx also
converges tx." Therefore {b(¢)}7_, is a subsequence of refining directions. This subsequence was shown
in Theorenj 4.8 to be asymptotically densef§i(X) with probability 1. .

5. Numerical results. We consider four test problems in this section. Each problem is intended to
make a point about MADS. Three of the problems are artificial, and for these problems we give results for
GPS with apoLL step only and with a simple randomizedARCH. The GPS results all user@LL ordering
we have found to be advantageous in our experience using GPS.

The first problem is unconstrained, but GPS is well known to stagnate on this problem if it is given an
unsuitable set of directions. MADS has no problem converging quickly to a global optimizer. The second
problem is a bound constrained chemical engineering problem where GPS is known to behave well enough
to justify publication of the results [14]. Still, on the whole, MADS does better. The third is a simple
nonlinearly constrained problem where GPS and our filter version of GPS are both known to converge short
of an optimizer. As the theory given here predicts, MADS has no difficulty. We also use this problem to
show that MADS does well as the number of variables increases.

The last example is such that the feasible region gets narrow very quickly. This is meant to be a test
for any derivative-free feasible point algorithm - like GPS or MADS with the extreme barrier approach to
constraints. MADS does better than GPS with the filter or the barrier, both of which stagnate due to the
limitation of finitely manypoLL directions. MADS stops making progress when the mesh size gets smaller
than the precision of the arithmetic.

Of course, even when one tries to choose carefully, four examples are not conclusive evidence. However,
we believe that these numerical results coupled with the more powerful theory for MADS make a good case
for MADS versus GPS.

5.1. An unconstrained problem where GPS does poorlyConsider the unconstrained optimization
problem inR? presented in [16] where GPS algorithms are known to converge to non-stationary points:

f(x) = (1—exp(=[|x]?)) x max{||}x— | |x—d|*},

wherec = —d = (30,40)". Figure shows level sets of this function. It can be shown thatlocally
Lipschitz and and strictly differentiable at its global minimizér0)T.

The GPS and MADS runs are initiated>at= (—2.1,1.7)", depicted by a diamond in the right part
of Figure[5.1. The gradient of exists and is non-zero at that point, and therefore both GPS and MADS
will move away from it. Since there is some randomness involved in the MADS instance described in
Sectior{ 4.]L, we ran it a total of 5 times, to see how it compares to our standard NOMAD implementation
of GPS. Figurg 5]2 shows a log plot of the progress of the objective function value for each set of runs.
All pPoLL were opportunistic, and the runs were stopped when a minimal frame with poll size parameter
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Fi. 5.1.Level sets of (x) = (1—exp(—||x]|?)) x max{|jx—cl[?, |x— d]|2}.

less than 100 was detected. For GPS, the maximal @sitive basis refers to the set of positive and
negative coordinate directions, and the two minimal 1 positive bases arg(1,0)",(0,1)",(-1,-1)"}
and{(1,0)",(-0.5,0.8660257 , (—0.5,—0.866025 }.

FiG. 5.2. Progression of the objective function value vs the number of evaluations.

Without a search strategy, every GPS run converged to a point on the Iiﬁeixl, wheref is not
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differentiable. These three limit points are denoted by stars in Figure 5.1. As proved in [3], the limit points
for GPS satisfy the necessary optimality condition that the Clarke generalized directional derivatives are
nonnegative foD at these limit points, but, they are not local optimizers. One can see by looking at the level
sets off that no descent directions can be generated by the GPS algorithm using the above directions.
However, when adding a search strategy (by randomly selectinge2h points at eacdEARCHStep) or
when using LTMADS, all runs eventually generated good directions and converged to the origin, the global
optimal solution. Figur¢ 5]2 suggests that the MADS convergence is faster than GPS. Also, even if ran-
domness appears in these instances of LTMADS, the behavior of the algorithm is very stable in converging
quickly to the origin.

5.2. Atest problem where GPS does wellThe academic example above was one of our motivations
for developing MADS. We now apply MADS to an example from the chemical engineering literature for
which GPS was shown to be preferable to a conjugate-direction approach. éetagle§l4] describe a
method for evaluating the kinetic constants in a rate expression for catalytic combustion applications using
experimental light-off curves. The method uses a transient one-dimensional single channel monolith finite
element reactor model to simulate reactor performance. The objective is to find the values of four param-
eters in a way such that the model estimates as closely as possible (in a weighted least square sense) an
experimental conversion rate. This is a bound constrained nhonsmooth optimization promémvinfnere
the objective function measures the error between experimental data and values predicted by the model.

FiG. 5.3.Data set 1 — Progression of the objective function value vs the number of evaluations.
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FiG. 5.4. Data set 2 — Progression of the objective function value vs the number of evaluations.

FiG. 5.5. Data set 3 — Progression of the objective function value vs the number of evaluations.
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For the three sets of experimental data analyzeld in [14], we compared the instances of GPS and MADS
discussed above. The algorithms terminate whenever a minimal frame center with poll size parameter
equal to 2% is detected, or whenever 500 functions evaluations are performed, whichever comes first. Fig-

ure§ 5.B] 54, arf{d §.5 show the progression of the objective function value versus the number of evaluations
for each data set.

The plots suggest that the objective function value decreases more steadily with GPS than with MADS.
This is because GPS uses a fixed set of poll directions that we know to be an excellent choice for this
problem. By allowing more directions, MADS eventually generates a steeper descent direction, and the
dynamic runs capitalize on this by evaluatihdurther in that direction thus sharply reducing the objective
function value in a few evaluations. In general, if the number of function evaluations is limited to a fixed
number, then it appears that MADS with the dynamic strategy gives a better result than GPS. For all three
data sets, the dynamic runs are preferable to the basic runs. It also appears that for this problem, MADS
runs with minimaln+ 1 directions perform better than the maximalr@ns. In each of the three data sets,
the best overall solution was always produced by MADS with the dynangit directions.

The quality of the best solutions produced by GPS and MADS can be visualized in Figure 5.6 where
the difference between the experimental and predicted conversions are plotted versus time. A perfect model
with perfectly tuned parameters would have had a difference of zero everywhere. The superiority of the
solution produced by MADS versus GPS is mostly visible for the second data set near the time 160sec and
the third data set near the time 200sec where in both cases the fit is better by approximately 1% .

FiG. 5.6.Conversion rate error versus time.

5.3. Linear optimization on an hypersphere. The third example shows again the difficulty caused
by being restricted to a finite number of polling directions. It also illustrates the effect of dimension. This
is a problem with a linear objective and strictly convex full-dimensional feasible region, surely the simplest
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nonlinearly constrained problem imaginable.

n

min Xi
XERN i&

n
st Zix,z < 3n.
i=

There is a single optimal solution to that problem: every component of the veister\/3 and the optimal
value is—/3n.

The starting point is the origin, and the algorithm terminates wier: 1012, or when the number
of function evaluation exceeds 600n, whichever comes first. The algorithm was run with four vatues of
For the GPS method we always uded= D = [I, —I] with dynamic ordering. The GPS filter method is
described in[4]. We used a search strategy, which we often use with the GPS filter method, consisting of a
5npoint latin hypercube sample at the first iteration, amy'arandom search at other iterations.

The behavior of the method is comparable for every value.olnh every case, the MADS algorithm
converged to the global optimal solution. The GPS barrier approach quickly moved to a point on the bound-
ary of the domain and stalled there. The GPS filter approach was able to move away from that point, but it
converged to another sub-optimal solution. The absencesah&cH strategy, and the restriction to a finite
number ofPoLL directions traps the iterates at a non-optimal solution. The addition of a rapdamcH
strategy allows GPS, whamis 10,20 or 50, to move away from this solution, but it still was short of finding
the optimal solution in the number of function calls allowed. The progression of the runs is illustrated in

Figurg5.7.

FIG. 5.7. Progression of the objective function value vs the number of evaluations on an easy nonlinear problem.
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5.4. Numerical limitations. This last example does not satisfy the hypotheses of any GPS or MADS
theorems because the optimizer is-ab. However, it is intended to see how well the various algorithms
track a feasible region that gets narrow quickly. Consider the following problékA:in

min_ a
x=(a,b)T

s.t. 2 <b< 2.

The starting point i0,1)", and the algorithm terminates whéyf' < 10323 i.e., when the mesh size
parameter drops below the smallest positive representable number in double precision arithmetic. We admit
that this is excessive, but we wanted to run the algorithms to their limits. The same strategies as ifi Spction 5.3
are used.

The progression of the algorithms is illustrated in Figurg 5.8. GPS with both the barrier and filter
approaches to constraints converged quickly to points where the standard 2n basis does not contain a feasible
descent direction. The filter GPS approach to constraints did better than the GPS barrier approach because
it is allowed to become infeasible.

FIG. 5.8.Progression of the objective function value vs the number of evaluations on a difficult nonlinear problem.

All'5 runs of the LTMADS method of the previous section ended with roughly the same solution, a point
wherea+AP = a, which is all one can ask. The same behaviour is observed for GPS with a ragd&aH
The fact that LTMADS generates an asymptotically dense set of poll directions, andsbaraH step is
conducted at each GPS iteration explain why both the GPS with a search and LTMADS do better than the
GPS barrier or filter approach.

The feasible region is very narrow, and therefore it gets quite improbable that the MADS poll directions
generate a feasible point. When such a feasible point is generated it is always very close to the frame center
since the mesh and poll parameters are very small.

Even if the algorithm instances failed to solve this problem to optimality and converged to points that
are not Clarke stationary points, the GPS and MADS convergence theory is not violated — yet. In all cases,
there is a set of directions that positively sg&hsuch that for each direction either the Clarke generalized
derivative is nonnegative or is an infeasible direction.
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6. Discussion.GPS is a valuable algorithm, but the application of nonsmooth analysis techniques in [3]
showed its limitations due to the finite choice of directions’in [2]. MADS removes the GPS restriction to
finitely many poll directions. We have long felt that this was the major impediment to stronger proofs of
optimality for GPS limit points (and better behavior), and in this paper we find more satisfying optimality
conditions for MADS in addition to opening new possibilities for handling nonlinear constraints.

We described a stochastic version of MADS, LTMADS, which performed well, especially for a first
implementation. We expect others will find more, and perhaps better, implementations. The structure of this
paper is intended to facilitate the introduction of new MADS instances, and back them with our convergence
analysis. One only need to show that the new instance generates a dense set of refining directions. We chose
to develop a stochastic way of generating these directions. We could have used a deterministic strategy, but
felt that it lacked a desirable property. Indeed, the deterministic ways that we considered were such that
when the algorithm terminated after a finite number of iterations, the set of poll directions was often far
from being uniformly distributed ifR".

Whennis small, our examples suggested that GPS with a rargloxrcHbehaved similarly to MADS.
The similitude breaks down as the number of variables increases since the relative costof ithetep
becomes more important. In MADS tl®LL directions change at each iteration, but they are static in GPS.

We think that the work here is readily applied to choosing templates for implicit filtelring [7], another
very successful algorithm for nasty nonlinear problems.

7. Acknowledgments. Finally, we wish to thank Gilles Couture for codingpMAD, the c++ imple-
mentation of MADS and GPS, and to acknowledge useful discussions with Andrew Booker, Mark Abramson
and Sbastien Le Digabel.
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