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Abstract. This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS
extends the Generalized Pattern Search (GPS) class by allowing local exploration, calledpolling, in an asymptotically dense set of
directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification
due to Rockafellar, MADS can treat constraints by the extremebarrier approach of setting the objective to infinity for infeasible points
and treating the problem as unconstrained.

The main GPS convergence result is to identify limit points ˆx, where the Clarke generalized derivatives are nonnegative in a finite
set of directions, calledrefining directions. Although in the unconstrained case, nonnegative combinations of these directions span the
whole space, the fact that there can only be finitely many GPS refining directions limits rigorous justification of the barrier approach
to finitely many linear constraints for GPS. The main result of this paper is that the MADS algorithms can generate an asymptotically
dense set of refining directions.

For LTMADS, an implementable instance of MADS, the refining directions are dense in the hypertangent cone at ˆx with probability
1. This result holds if the iterates associated with the refining directions converge to a single ˆx. We compare LTMADS to versions of
GPS on some test problems. We also illustrate the limitation of our results with examples.

Key words. Mesh adaptive direct search algorithms (MADS), convergence analysis, constrained optimization, nonsmooth analysis,
Clarke derivatives, hypertangent, contingent cone.

1. Introduction. We present and analyze a newMesh Adaptive Direct Search(MADS) class of algo-
rithms for minimizing a nonsmooth functionf : Rn→R∪{+∞} under general constraintsx∈Ω 6= /0⊆Rn.
For the form of the algorithm given here, the feasible regionΩ may be defined through blackbox constraints
given by an oracle, such as a computer code that returns a yes or no indicating whether or not a specified
trial point is feasible.

In the unconstrained case, whereΩ = Rn, this new class of algorithms occupies a position somewhere
between the Generalized Pattern Search (GPS) class [22], as organized in [6], and the Coope and Price
frame-based methods [10]. A key advantage of MADS over GPS is that local exploration of the space
of variables is not restricted to a finite number of directions (calledpoll directions). This is the primary
drawback of GPS algorithms in our opinion, and our main motivation in defining MADS was to overcome
this restriction. MADS algorithms are frame-based methods. We propose a less general choice of frames
than the choices allowed by Coope and Price. Our MADS frames are easy to implement, and they are
specifically aimed at ensuring an asymptotically dense set of polling directions. We illustrate our ideas with
an example algorithm that we call LTMADS because it is based on a random lower triangular matrix.

The convergence analysis here is based on Clarke’s calculus [8] for nonsmooth functions. The analysis
evolved from our previous work on GPS [3] where we gave a hierarchy of convergence results for GPS that
show the limitations inherent in the restriction to finitely many directions. Specifically, we showed that for
unconstrained optimization, GPS produces a limit point at which the gradient is zero if the function at that
point is strictly differentiable [17]. Strict differentiability is just the requirement that the generalized gradient
is a singleton, i.e., that∂ f (x̂) = {∇ f (x̂)} in addition to the requirement thatf is Lipschitz near ˆx. But if the
function f is only Lipschitz near such a limit point ˆx, then Clarke’s generalized directional derivatives [8]
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are provably nonnegative only for a finite set of directionsD̂ ⊂ Rn whose nonnegative linear combinations
span the whole space:

f ◦(x̂;d) := limsup
y→x̂, t↓0

f (y+ td)− f (y)
t

≥ 0 for all d ∈ D̂. (1.1)

D̂ is called the set ofrefining directions. This result 1.1 for GPS is not as strong as stating that the generalized
derivative is nonnegative for every direction inRn, i.e., that the limit point is a Clarke stationary point, or
equivalently that 0∈ ∂ f (x̂), the generalized gradient off at x̂ defined by

f ◦(x̂;v)≥ 0 for all v∈ Rn ⇔ 0∈ ∂ f (x̂) := {s∈ Rn : f ◦(x̂;v)≥ vTs for all v∈ Rn}. (1.2)

Example F in [2] shows that indeed the GPS algorithm does not necessarily produce a Clarke stationary
point for Lipschitz functions because of the restriction to finitely many poll directions. This is so even if the
gradient exists at the limit point ˆx. For the unconstrained case, this restriction can be overcome by assuming
more smoothness forf , e.g., strict differentiability at ˆx [3] as mentioned above.

However, the directional dependence of GPS in the presence of even bound constraints cannot be over-
come by any amount of smoothness, by using penalty functions, or by the use of the filter approach for
handling constraints [4]. In contrast, MADS produces unconstrained limit points at which the Clarke deriva-
tives are nonnegative for every direction inRn.

Besides the advantages for the unconstrained case of an asymptotically dense set of refining directions,
MADS can also treat a wide class of nonlinear constraints by the “barrier” approach. By this we mean that
the algorithm is not applied directly tof but to the barrier functionfΩ, defined to be equal tof on Ω and
+∞ outsideΩ. This way of rejecting infeasible points was shown to be effective for GPS with finitely many
linear constraints by Lewis and Torczon [18]. However, their proof requires that the tangent cone generators
of the feasible region at boundary points near an iterate be known at each iteration. For LTMADS, no special
effort is needed for the barrier approach to be provably effective with probability 1 on nonlinear constraints
satisfying a reasonable constraint qualification due to Rockafellar [21] – that there exists a hypertangent
vector at the limit point. A key advantage of the barrier approach is that one can avoid expensive function
calls to f whenever a constraint is violated. Indeed, the question of feasibility of a trial point needs only a
yes or no answer - the constraints do not need to be given by a known algebraic condition.

The class of algorithms presented here differs significantly from previous GPS extensions [4, 19] to
nonlinear constraints. Treating constraints as we do motivates us to use the generalization of the Clarke
derivative presented in Jahn [15]. Jahn’s approach is aimed at a case like ours where the evaluation off is
restricted to points in the feasible domainΩ. Thus we use the following definition of the Clarke generalized
derivative at ˆx∈Ω in the directionv∈ Rn:

f ◦(x̂;v) := limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tv∈Ω

f (y+ tv)− f (y)
t

. (1.3)

Both definitions (1.1) and (1.3) coincide whenΩ = Rn or whenx̂∈ int(Ω).
The main theoretical objective of this paper is to show that under appropriate assumptions, any MADS

algorithm produces a constrained Clarke stationary point,i.e., a limit point x̂ ∈ Ω satisfying the following
necessary optimality condition

f ◦(x̂;v) ≥ 0 for all v∈ TCl
Ω (x̂), (1.4)

whereTCl
Ω (x̂) is the Clarke tangent cone toΩ at x̂ (see [8] or Definition 3.5).



MESH ADAPTIVE DIRECT SEARCH ALGORITHMS 3

The paper is organized into two main parts. First, Sections 2 and 3 present the abstract MADS algo-
rithm class and its convergence analysis. The analysis revolves around three types of tangent cones. This
allows us to tie some convergence results to local differentiability of the functionf at limit points satisfy-
ing certain constraint qualifications. We present sufficient conditions under which (1.4) holds. We discuss
the consequences of this when the algorithm is applied to an unconstrained problem, or when the setΩ is
regular in the sense of Definition 3.7 or [8]. We also give a stronger contraint qualification ensuring that
MADS produces a contingent KKT stationary point iff is strictly differentiable. The reader will find a quite
different algorithm analyzed using the same concepts in [12].

Then in Sections 4 and 5, we give an implementable instance of MADS along with numerical experi-
ments to compare MADS with standard GPS. On an artificial example where GPS and Nelder-Mead are well
known to stagnate, we show that MADS reaches the global optimum. We give a comparison on a parameter
fitting problem in catalytic combustion kinetics on which we know that GPS performs well [14]. We also
give an example illustrating the power of being able to handle even simple nonlinear constraints by the bar-
rier approach. We also use this example to illustrate that MADS can cope surprisingly well as the dimension
of the problem increases. The final example shows the value of randomly generated polling directions for a
problem with a narrowing feasible region.

Notation. R,Z andN respectively denote the sets of real numbers, integers, and nonnegative integers.
For x∈ Rn andδ ∈ R+, Bδ(x) denotes the open ball of radiusδ centered atx. For a matrixD, the notation
d ∈ D indicates thatd is a column ofD. The iteration numbers are denoted by the indexk.

2. Mesh Adaptive Direct Search algorithms. Given an initial iteratex0 ∈ Ω, a MADS algorithm
attempts to locate a minimizer of the functionf overΩ by evaluatingfΩ at some trial points. The algorithm
does not require any derivative information forf . This is useful when there are several local optima. But it
is essential when∇ f is unavailable, either because it does not exist, or it cannot be accurately estimated due
to noise inf or other reasons.

MADS is an iterative algorithm where at each iteration a finite number of trial points are generated,
and the infeasible trial points are discarded. The objective function values at the feasible trial points are
compared with the current incumbent valuefΩ(xk), i.e., the best feasible objective function value found so
far. Each of these trial points lies on thecurrent mesh, constructed from a finite set ofnD directionsD⊂ Rn

scaled by amesh size parameter∆m
k ∈ R+.

There are two restrictions on the setD. First,D must be a positive spanning set [11],i.e., nonnegative
linear combinations of its elements must spanRn. Second, each directiond j ∈ D (for j = 1,2, . . . ,nD) must
be the productGzj of some fixed non-singular generating matrixG∈Rn×n by an integer vectorzj ∈ Zn. For
convenience, the setD is also viewed as a realn×nD matrix.

DEFINITION 2.1. At iteration k, the current mesh is defined to be the following union:

Mk =
[

x∈Sk

{x+∆m
k Dz : z∈ NnD} ,

where Sk is the set of points where the objective function f had been evaluated by the start of iteration k.
In the definition above, the mesh is defined to be the union of sets overSk. Defining the mesh this way

ensures that all previously visited points lie on the mesh, and that new trial points can be selected around any
of them using the directions inD. This definition of the mesh is identical to the one in [4] and generalizes
the one in [3].

The mesh is conceptual in the sense that it is never actually constructed. In practice, one can easily make
sure that the strategy for generating trial points is such that they all belong to the mesh. One simply has to
verify in Definition 2.1 thatx belongs toSk and thatz is an integer vector. The objective of the iteration is to
find a trial mesh point with a lower objective function value than the current incumbent valuefΩ(xk). Such
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a trial point is called animproved mesh point, and the iteration is called asuccessful iteration. There are no
sufficient decrease requirements on the objective function value.

The evaluation offΩ at a trial pointx is done as follows. First, the constraints definingΩ are tested
to determine ifx is feasible or not. Indeed, since some of the constraints definingΩ might be expensive or
inconvenient to test, one would order the constraints to test the easiest ones first. Ifx 6∈Ω, then fΩ(x) is set
to +∞ without evaluatingf (x), and perhaps without evaluation all the constraints definingΩ. In effect, this
means we discard the infeasible trial points. On the other hand, ifx∈Ω, then f (x) is evaluated. This remark
may seem obvious, but it saves computation, and it is needed in the proof of Theorem 3.12.

Each iteration is divided into two steps. The first, called theSEARCHstep, has the same flexibility as in
GPS. It allows evaluation offΩ at any finite number of mesh points. Any strategy can be used in theSEARCH

step to generate a finite number of trial mesh points. Restricting theSEARCH points to lie on the mesh is a
way in which MADS is less general than the frame methods of Coope and Price [10]. TheSEARCH is said
to be empty when no trial points are considered. The drawback to theSEARCHflexibility is that it cannot be
used in the convergence analysis – except to provide counterexamples as in [2]. More discussion ofSEARCH

steps is given in [1, 20, 6].
When an improved mesh point is generated, then the iteration may stop, or it may continue if the user

hopes to find a better improved mesh point. In either case, the next iteration will be initiated with a new
incumbent solutionxk+1 ∈ Ω with fΩ(xk+1) < fΩ(xk) and with a mesh size parameter∆m

k+1 equal to or
larger than∆m

k (the exact rules for updating this parameter are presented below). Coarsening the mesh when
improvements infΩ are obtained can speed convergence.

Whenever theSEARCH step fails to generate an improved mesh point, then the second step, called
the POLL, is invoked before terminating the iteration. The difference between the MADS and the GPS
algorithms lies exactly in thisPOLL step. For this reason, our numerical comparisons in the sequel use
empty, or very simple,SEARCHsteps in order to isolate the value of the MADSPOLL step.

When the iteration fails in generating an improved mesh point, then the next iteration is initiated from
any pointxk+1 ∈ Sk+1 with fΩ(xk+1) = fΩ(xk); though there is usually a single such incumbent solution,
and thenxk+1 is set toxk. The mesh size parameter∆m

k+1 is reduced to increase the mesh resolution, and
therefore to allow the evaluation off at trial points closer to the incumbent solution. More precisely, given
a fixed rational numberτ > 1, and two integersw− ≤−1 andw+ ≥ 0, the mesh size parameter is updated as
follows:

∆m
k+1 = τwk∆m

k for somewk ∈
{

{0,1, . . . ,w+} if an improved mesh point is found
{w−,w−+1, . . . ,−1} otherwise.

(2.1)

Everything up to this point in the section applies to both GPS and MADS. We now present the key
difference between both classes of algorithms. For MADS, we introduce thepoll size parameter∆p

k ∈ R+
for iterationk. This new parameter dictates the magnitude of the distance from the trial points generated by
the POLL step to the current incumbent solutionxk. In GPS, there is a single parameter to represent these
quantities:∆k = ∆p

k = ∆m
k . In MADS, the strategy for updating∆p

k must be such that∆m
k ≤ ∆p

k for all k, and
moreover, it must satisfy

lim
k∈K

∆m
k = 0 if and only if lim

k∈K
∆p

k = 0 for any infinite subset of indicesK. (2.2)

An implementable updating strategy satisfying these requirements is presented in Section 4.
We now move away from the GPS terminology, and toward that of Coope and Price. The set of trial

points considered during thePOLL step is called aframe. The frames of Coope and Price can be more general
than MADS frames in a way not important to the present discussion. For this reason, we do not digress to
discuss their general definition here [9].
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The MADS frame is constructed using a current incumbent solutionxk (called theframe center) and the
poll and mesh size parameters∆p

k and∆m
k to obtain a positive spanning set of directionsDk. Unlike GPS,

generally the MADS set of directionsDk is not a subset ofD.
DEFINITION 2.2. At iteration k, the MADS frame is defined to be the set:

Pk = {xk +∆m
k d : d ∈ Dk} ⊂ Mk ,

where Dk is a positive spanning set such that0 6∈ Dk and for each d∈ Dk,
• d can be written as a nonnegative integer combination of the directions in D:

d = Du for some vector u∈ NnDk that may depend on the iteration number k
• the distance from the frame center xk to a frame point xk +∆m

k d∈Pk is bounded by a constant times
the poll size parameter:
∆m

k ‖d‖ ≤ ∆p
k max{‖d′‖ : d′ ∈ D}

• limits (as defined in Coope and Price [9]) of the normalized sets Dk are positive spanning sets.
In GPS, the setDk is a subset of the finite setD. There is more flexibility in MADS. We will present an

instance of MADS where the closure of the cone generated by the set

∞[
k=1

{
d
‖d‖

: d ∈ Dk

}
equalsRn with probability 1. We will say that the set of poll directions is asymptotically dense with proba-
bility 1.

If the POLL step fails to generate an improved mesh point then the frame is called aminimal frame, and
the frame centerxk is said to be aminimal frame center. This leads to mesh refinement. At each iteration,
the columns ofDk are called the poll directions.

The algorithm is stated formally below. It is very similar to GPS, with differences in thePOLL step, and
in the new poll size parameter.

A GENERAL MADS ALGORITHM

• INITIALIZATION : Let x0 ∈Ω, ∆m
0 ≤ ∆p

0, D, G, τ, w− andw+ satisfy the requirements given above.
Set the iteration counterk← 0.

• SEARCH AND POLL STEP: Perform theSEARCHand possibly thePOLL steps (or only part of them) until an
improved mesh pointxk+1 is found on the meshMk (see Definition 2.1).

– OPTIONAL SEARCH: EvaluatefΩ on a finite subset of trial points on the meshMk.
– LOCAL POLL: EvaluatefΩ on the framePk (see Definition 2.2).

• PARAMETER UPDATE: Update∆m
k+1 according to Equation (2.1), and∆p

k+1 according to (2.2).
Setk← k+1 and go back to theSEARCHandPOLL step.

The crucial distinction and advantage of MADS over GPS is that the MADS mesh size parameter∆m
k

may go to zero more rapidly than∆p
k . Consequently, the directions inDk used to define the frame may be

selected in a way so that asymptotically they are not confined to a finite set. Note that in GPS both∆m
k and∆p

k
are equal: a single parameter plays the role of the mesh and poll size parameters, and therefore, the number
of positive spanning sets that can be formed by subsets ofD is constant over all iterations.

For example, suppose that inR2 the setD is composed of the eight directions{(d1,d2)T 6= (0,0)T :
d1,d2 ∈ {−1,0,1}}. There are a total of eight distinct positive bases containing three directions that can be
constructed fromD. Figures 2.1 and 2.2 illustrate some possible frames inR2 for three values of∆m

k . The
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FIG. 2.1. Example of GPS frames Pk = {xk +∆m
k d : d ∈ Dk}= {p1, p2, p3} for different values of∆m

k = ∆p
k . In all three figures,

the mesh Mk is the intersection of all lines.

frames in Figure 2.1 are generated by a GPS instance, and are such that∆p
k = ∆m

k . Regardless ofk and of the
mesh or poll size parameters, each direction inDk is confined to be selected inD.

The frames in Figure 2.2 are generated by an instance of MADS with∆p
k = n

√
∆m

k . One can see that
the new MADS algorithm may select the directions ofDk from a larger set. With the new algorithm, the
frame may be chosen among the mesh points lying inside the square with the dark contour. We will present
in Section 4 an implementation of MADS ensuring that given any directions inRn, the algorithm generates
arbitrarily close poll directions, i.e., that the set of poll directions is asymptotically dense inRn.
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FIG. 2.2. Example of MADS frames Pk = {xk + ∆m
k d : d ∈ Dk} = {p1, p2, p3} for different values of∆m

k and ∆p
k . In all three

figures, the mesh Mk is the intersection of all lines.

We have presented above a general framework for MADS algorithms. The next section contains a de-
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tailed convergence analysis for that general framework. It presents sufficient conditions to ensure a hierarchy
of convergence results based on the local differentiability off (using the Clarke non-smooth calculus) and
on the local properties ofΩ (using three types of tangent cones). The results rely on the assumption that
a specific set of directions (called the refining directions – see Definition 3.2) be dense in a tangent cone.
Then, in Section 4 we propose a specific implementation called LTMADS, and give sufficient conditions to
satisfy this assumption.

3. Convergence analysis of MADS.The convergence analysis below relies on the assumptions that
x0 ∈Ω, that f (x0) is finite, and that all iterates{xk} produced by the MADS algorithm lie in a compact set.
Future work will relax the first assumption by incorporating the filter approach given in [4].

The section is divided into three subsections. The first recalls Torczon’s [22] analysis of the behavior
of the mesh size parameter and defines refining sequences as in [3]. It also defines the idea of a refining
subsequence and a refining direction. The second subsection recalls the definitions of the hypertangent,
Clarke, and contingent cones in addition to some results on generalized derivatives. The third contains a
hierarchy of convergence results based on local properties of the feasible regionΩ.

3.1. Preliminaries. Torczon [22] first showed the following result for unconstrained pattern search
algorithms. Then Audet and Dennis [3] used the same technique for a description of GPS that is much closer
to our description of MADS. The proof of this result for MADS is identical to that of GPS. The element
necessary to the proof is that for any integerN≥ 1, the iteratexN may be written asxN = x0 +∑N−1

k=0 ∆m
k Dzk

for some vectorszk ∈ NnD . This is still true with our new way of defining the mesh and the frame (see
Definitions 2.1 and 2.2).

PROPOSITION3.1. The poll and mesh size parameters produced by a MADS instance satisfy

liminf
k→+∞

∆p
k = liminf

k→+∞
∆m

k = 0.

Since the mesh size parameter shrinks only at minimal frames, Proposition 3.1 guarantees that there are
infinitely many minimal frame centers. The following definition specifies the subsequences of iterates and
limit directions we use.

DEFINITION 3.2. A subsequence of the MADS iterates consisting of minimal frame centers,{xk}k∈K

for some subset of indices K, is said to be arefining subsequenceif {∆p
k}k∈K converges to zero.

Let x̂ be the limit of a convergent refining subsequence. If the limitlimk∈L
dk
‖dk‖

exists for some subset
L⊆ K with poll direction dk ∈Dk, and if xk +∆m

k dk ∈Ω for infinitely many k∈ L, then this limit is said to be
a refining direction forx̂.

It is shown in [3], that there exists at least one convergent refining subsequence. We now present some
definitions that will be used later to guarantee the existence of refining directions.

3.2. Three types of tangent cones.Three different types of tangent cones play a central role in our
analysis. Their definition, and equivalent ones, may be found in [21, 8, 15]. After presenting them, we
supply an example where the three cones differ to illustrate some of our results. The first cone that we
present is the hypertangent cone.

DEFINITION 3.3 (Hypertangent cone).A vector v∈ Rn is said to be a hypertangent vector to the set
Ω⊆ Rn at the point x∈Ω if there exists a scalarε > 0 such that

y+ tw∈Ω for all y ∈Ω∩Bε(x), w∈ Bε(v) and 0 < t < ε. (3.1)

The set of hypertangent vectors toΩ at x is called thehypertangent cone toΩ atx and is denoted by THΩ (x).

--
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The hypertangent cone is a useful concept for understanding the behavior of the MADS algorithm.
When analysing MADS, we will be concerned with specific subsequences:

• minimal frame centersxk→ x̂;
• mesh size parameters∆m

k ↘ 0 and step size∆k‖dk‖↘ 0;

• normalized refining directionsdk
‖dk‖
→ v 6= 0.

These subsequences will be chosen in a way so thatxk ∈Ω andxk+(∆m
k ‖dk‖) dk

‖dk‖
∈Ω. The connection with

the the hypertangent definition is obvious by noticing that the roles ofy, t andw are played byxk,∆m
k ‖dk‖ and

dk
‖dk‖

, respectively. The connection with the Clarke derivative (1.3) will be made explicit in Theorem 3.12.
Since the definition of a hypertangent is rather technical and crucial to our results, we will pause for

a short discussion. The reader could easily show that ifΩ is a full dimensional polytope defined by linear
constraints, then every direction from a point ˆx ∈ Ω into the interior ofΩ is a hypertangent. That follows
immediately from the following result relating hypertangents to the constraint qualification suggested by
Gould and Tolle [13]. See also [5] for a discussion of the Gould and Tolle constraint qualification and the
closely related one of Mangasarian and Fromovitz.

THEOREM 3.4. Let C: Rn→Rm be continuously differentiable at a pointx̂∈Ω = {x∈Rn : C(x)≤ 0},
and letA(x̂) = {i ∈ {1,2, . . . ,m} : ci(x̂) = 0} be the active set at̂x. Then v∈ Rn is a hypertangent vector to
Ω at x̂ if and only if∇ci(x̂)Tv < 0 for each i∈ A(x̂) with ∇ci(x̂) 6= 0.
Proof. Let v be a hypertangent vector toΩ at x̂. Then, there exists anε > 0 such that ˆx+ tv ∈ Ω for any
0 < t < ε. Let i ∈ A(x̂). Continuous differentiability ofci at x̂ implies that

∇ci(x̂)Tv = lim
t→0

ci(x̂+ tv)−ci(x̂)
t

≤ 0 .

It only remains to show that∇ci(x̂)Tv 6= 0 when∇ci(x̂) 6= 0. Suppose by way of contradiction that
∇ci(x̂)Tv = 0 and∇ci(x̂) 6= 0. Since the hypertangent cone is an open set [21], for any nonnegativeδ ∈ R
sufficiently small,v+δ∇ci(x̂) is a hypertangent vector toΩ at x̂. It follows that

0 ≥ ∇ci(x̂)T(v+δ∇ci(x̂)) = δ‖∇ci(x̂)‖22 > 0,

which is a contradiction. Thus,∇ci(x̂)Tv < 0 when∇ci(x̂) 6= 0.
To prove the converse, leti ∈ A(x̂) be such that∇ci(x̂) 6= 0 andv ∈ Rn be such that‖v‖ = 1 and

∇ci(x̂)Tv< 0. The product∇ci(y)Tw is a continuous function at(y; w) = (x̂; v), and so there is someε1 > 0
such that

∇ci(y)Tw < 0 for all y∈ Bε1(x̂) andw∈ Bε1(v). (3.2)

Takeε = min{1, ε1
3 } and lety,w be inBε(x̂) andBε(v) respectively withy∈ Ω, and let 0< t < ε. We will

show thaty+ tw∈Ω. Our construction ensures thatci(y)≤ 0 andε < ε1, and so by the mean value theorem,
we have

ci(y+ tw)≤ ci(y+ tw)−ci(y) = ∇ci(y+θtw)T(tw) for someθ ∈ [0,1]. (3.3)

But, ‖y+ θtw− x̂‖ ≤ ‖y− x̂‖+ θt(‖w− v‖+ ‖v‖) < ε + ε(ε + 1)≤ 3ε≤ ε1, thusy+ θtw ∈ Bε1(x̂), and
w ∈ Bε(v)⊆ Bε1(v). It follows that equation (3.2) applies and therefore∇ci(y+ θtw)Tw < 0. Combining
this with (3.3) and with the fact thatt > 0 implies thatci(y+ tw)≤ 0. But ci was any active component
function, and soC(y+ tw)≤ 0 and thusy+ tw∈Ω.

We would like to culminate our hierarchy of convergence results by providing necessary conditions to
ensure contingent stationarity. In order to do so, we present two other types of tangent cones.

• 
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DEFINITION 3.5 (Clarke tangent cone).A vector v∈Rn is said to be a Clarke tangent vector to the set
Ω⊆Rn at the point x in the closure ofΩ if for every sequence{yk} of elements ofΩ that converges to x and
for every sequence of positive real numbers{tk} converging to zero, there exists a sequence of vectors{wk}
converging to v such that yk + tkwk ∈ Ω. The set TCl

Ω (x) of all Clarke tangent vectors toΩ at x is called the
Clarke tangent cone toΩ at x.

DEFINITION 3.6 (Contingent cone).A vector v∈ Rn is said to be a tangent vector to the setΩ ⊆ Rn

at the point x in the closure ofΩ if there exists a sequence{yk} of elements ofΩ that converges to x and a
sequence of positive real numbers{λk} for which v= limk λk(yk−x). The set TCo

Ω (x) of all tangent vectors
to Ω at x is called the contingent cone (or sequential Bouligand tangent cone) toΩ at x.

DEFINITION 3.7. The setΩ is said to be regular at x provided TCl
Ω (x) = TCo

Ω (x). Any convex set
is regular at each of its points [8]. BothTCo

Ω (x) andTCl
Ω (x) are closed cones, and bothTCl

Ω (x) andTH
Ω (x)

are convex cones. Moreover,TH
Ω (x)⊆ TCl

Ω (x)⊆ TCo
Ω (x). Rockafellar [21] showed thatTH

Ω (x) = int(TCl
Ω (x))

wheneverTH
Ω (x) is nonempty.

3.3. Generalized derivatives.Recall that we are using Jahn’s definition (1.3) of the Clarke derivative
instead of (1.1), and therefore we cannot directly use the calculus theory developed in [8]. The next lemma
and proposition extend previously known calculus results in the unconstrained case.

LEMMA 3.8. Let f be Lipschitz near̂x∈Ω with Lipschitz constantλ. If u and v belong to THΩ (x̂), then

f ◦(x̂;u) ≥ f ◦(x̂;v)−λ‖u−v‖.

Proof. Let f be Lipschitz near ˆx∈Ω with Lipschitz constantλ and letu andv belong toTH
Ω (x̂). Let ε > 0 be

such thaty+ tw∈Ω whenevery∈Ω∩Bε(x̂), w∈ Bε(u)∪Bε(v) and 0< t < ε. This can be done by taking
ε to be the smaller of the values foru andv guaranteed by the definition of a hypertangent. In particular, if
y∈Ω∩Bε(x̂) and if 0< t < ε, then bothy+ tu andy+ tv belong toΩ. This allows us to go from the first to
the second equality of the following chain:

f ◦(x̂;u) = limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tu∈Ω

f (y+tu)− f (y)
t = limsup

y→ x̂, y∈Ω
t ↓ 0, y+ tv∈Ω

f (y+tu)− f (y)
t

= limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tv∈Ω

f (y+tv)− f (y)
t + f (y+tu)− f (y+tv)

t

= f ◦(x̂;v) + limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tv∈Ω

f (y+tu)− f (y+tv)
t ≥ f ◦(x̂;v)−λ‖u−v‖.

Based on the previous lemma, the next proposition shows that the Clarke generalized derivative is con-
tinuous with respect tov on the Clarke tangent cone. The result is necessary to the proofs of Theorems 3.12
and 3.13.

PROPOSITION3.9. Let f be Lipschitz near̂x∈Ω. If TH
Ω (x̂) 6= /0 and if v∈ TCl

Ω (x̂) then

f ◦(x̂;v) = lim
w→ v,

w∈ TH
Ω (x̂)

f ◦(x̂;w).

• 
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Proof. Let λ be a Lipschitz constant forf nearx̂ ∈ Ω and let{wk} ⊂ TH
Ω (x̂) be a sequence of directions

converging to a vectorv∈ TCl
Ω (x̂). By definition of the hypertangent cone, let 0< εk < 1

k be such that

y+ tw∈Ω whenevery∈Ω∩Bεk(x̂),w∈ Bεk(wk) and 0< t < εk. (3.4)

We first show the inequalityf ◦(x̂;v)≤ limk f ◦(x̂;wk). Equation (3.4) implies that

f ◦(x̂;v) = limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tv∈Ω

f (y+tv)− f (y)
t = limsup

y→ x̂, y∈Ω
t ↓ 0, y+ tv∈Ω

y+ twk ∈Ω

f (y+tv)− f (y)
t

≤ limsup
y→ x̂, y∈Ω

t ↓ 0, y+ twk ∈Ω

f (y+twk)− f (y)
t − f (y+twk)− f (y+tv)

t

= f ◦(x̂;wk) + limsup
y→ x̂, y∈Ω

t ↓ 0, y+ twk ∈Ω

f (y+twk)− f (y+tv)
t .

As k goes to infinity,
∣∣∣ f (y+twk)− f (y+tv)

t

∣∣∣≤ λ‖wk−v‖ goes to zero. Since{wk} was arbitrary in the hypertan-

gent cone, it follows that

f ◦(x̂;v) ≤ lim
w→ v,

w∈ TH
Ω (x̂)

f ◦(x̂;w).

Second, we show the reverse inequality:f ◦(x̂;v)≥ limk f ◦(x̂;wk). Let us defineuk = 1
kwk +(1− 1

k)v =
wk + (1− 1

k)(v−wk). Since the hypertangent cone is a convex set, and sincev lies in the closure of the
hypertangent cone, then it follows thatuk ∈ TH

Ω (x̂) for everyk = 1,2, . . .

We now consider the generalized directional derivative

f ◦(x̂;uk) = limsup
y→ x̂, y∈Ω

t ↓ 0, y+ tuk ∈Ω

f (y+tuk)− f (y)
t .

The fact thatuk ∈ TH
Ω (x̂) implies that there existsyk ∈Ω∩Bεk(x̂) and 0< tk

k < εk such thatyk + tkuk ∈Ω and

f (yk + tkuk)− f (yk)
tk

≥ f ◦(x̂;uk)− εk, (3.5)

whereεk is the constant from equation (3.4). We now define the sequencezk = yk + tk
k wk ∈Ω converging to

x̂, and the sequence of scalarshk = (1− 1
k)tk > 0 converging to zero. Notice that

zk +hkv = yk + tk

(
1
k

wk +(1− 1
k
)v

)
= yk + tkuk ∈ Ω,
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and therefore

f ◦(x̂;v) = limsup
z→ x̂, z∈Ω

h ↓ 0, z+hv∈Ω

f (z+hv)− f (z)
t ≥ lim

k

f (zk+hkv)− f (zk)
hk

= lim
k

f (yk+tkuk)− f (yk)
(1−1

k )tk
+ f (yk)− f (yk+

tk
k wk)

(1−1
k )tk

by equation (3.5):≥ lim
k

f ◦(x̂;uk)− εk + f (yk)− f (yk+
tk
k wk)

(1−1
k )tk

by Lemma 3.8: ≥ lim
k

f ◦(x̂;wk)−λ‖uk−wk‖− εk +
λ
k ‖wk‖
(1−1

k )

= lim
k

f ◦(x̂;wk)−λ‖v−wk‖+ 1
k‖v‖ = f ◦(x̂;wk).

Unfortunately, the above Proposition is not necessarily true when the hypertangent cone is empty:
f ◦(x̂;v) may differ from limw→v f ◦(x̂;w). The above proof breaks as we cannot show in Equation (3.4)
thaty+ twk belongs toΩ wheny∈ Ω is close to ˆx and whent > 0 is small. The following example inR2

illustrates that in this case, the Clarke generalized derivative is not necessarily upper semi-continuous on the
contingent cone.

EXAMPLE 3.10.Consider a feasible regionΩ⊂ R2 that is the union of

Ω1 = {(a,b)T : a≥ 0, b≥ 0} with Ω2 = {(−a,b)T : b =−a2, a≥ 0}.

One can verify that at the origin

TH
Ω (0) = /0, TCl

Ω (0) = {(a,0)T : a≥ 0} ⊂Ω1 and TCo
Ω (0) = Ω1∪{(−a,0)t : a≥ 0},

and thereforeΩ is not regular at the origin.
Consider the continuous concave function inR2: f (a,b) =−max{0,a}. Notice that f(a,b) = 0 for

(a,b)T ∈Ω2, and f(a,b) =−a≤ 0 onΩ1. We will show that f◦(0;w) is nonnegative for w in the interior of
the contingent cone but f◦(0;e1) =−1 with e1 = (1,0)T in the Clarke tangent cone.

Let w= (w1,w2)T be any direction in int(TCo
Ω (0)) = int(Ω1). We will construct appropriate subse-

quences in order to compute a valid lower bound on f◦(0;w). For every positive integer k, define

yk =
(
−w1

k
,
−w2

1

k2

)T

and tk =
1
k
.

One can easily check that yk ∈ Ω2 ⊂ Ω, and hence f(yk) = 0 for every k. Also, for every k>
w2

1
w2

, we have

yk + tkw =
(

0, 1
k2 (kw2−w2

1)
)T
∈ Ω1 ⊂ Ω is on the nonnegative b axis. It follows that f(yk + tkw) = 0 for

every such k, and so

f ◦(0;w)≥ lim
k→∞

f (yk+tkw)− f (yk)
tk

= lim
k→∞

k · (0−0) = 0.

In particular, taking w= (1,ε), we have that f◦(0;(1,ε)T) is nonnegative for anyε > 0.
However, let us compute the Clarke generalized directional derivative f◦(0;e1) at the origin in the

direction e1 = (1,0)T ∈ TCl
Ω (0). The origin cannot be approached by points yk = (ak,bk)T ∈ Ω with the

• 
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properties that bk < 0, and yk + tke1 ∈ Ω with tk > 0. This is easy to see from a picture because yk would
have to be inΩ2, and then yk + tke1 cannot possibly be inΩ. A necessary condition for both sequences to
be inΩ is that yk belongs toΩ1, where f(a,b) =−a. But then every difference quotient in the definition of
f ◦(0;e1) is−1, and therefore f◦(0;e1) =−1.

This example shows that when the hypertangent cone atx̂ is empty, but the Clarke tangent cone is not, it
is possible that f◦(x̂;w) is nonnegative for every w in the interior of the contingent cone and drops discon-
tinuously to a negative value on the boundary of the contingent cone: f◦(x̂;e1) < limsupw→e1

f ◦(x̂;w).

3.4. A hierarchy of convergence results for MADS.We now present different necessary optimality
conditions based on the tangent cone definitions.

DEFINITION 3.11. Let f be Lipschitz near̂x ∈ Ω. Then,x̂ is said to be a Clarke, or contingent,
stationary point of f overΩ, if f ◦(x̂;v)≥ 0 for every direction v in the Clarke, or contingent, cone ofΩ at
x̂, respectively.

In addition,x̂ is said to be a Clarke, or contingent KKT stationary point of f overΩ, if −∇ f (x̂) exists
and belongs to the polar of the Clarke, or contingent cone ofΩ at x̂, respectively.

This leads to our basic result on refining directions from which all our hierarchy of results are derived.
The proof of this results also illustrates the close connection between the MADS framework, the Clarke
calculus and the definition of a hypertangent vector.

THEOREM 3.12.Let f be Lipschitz near a limit̂x∈Ω of a refining subsequence, and let v∈ TH
Ω (x̂) be a

refining direction forx̂. Then the generalized directional derivative of f atx̂ in the direction v is nonnegative,
i.e., f ◦(x̂;v)≥ 0.
Proof. Let {xk}k∈K be a refining subsequence converging to ˆx andv = limk∈L

dk
‖dk‖
∈ TH

Ω (x̂) be a refining
direction for x̂, with dk ∈ Dk for every k ∈ L. Since f is Lipschitz near ˆx, Proposition 3.9 ensures that
f ◦(x̂;v) = limk∈L f ◦(x̂; dk

‖dk‖
). But, for anyk ∈ L, one can apply the definition of the Clarke generalized

derivative with the roles ofy andt played byxk and∆m
k ‖dk‖, respectively. Note that this last quantity indeed

converges to zero since Definition 2.2 ensures that it is bounded above by∆p
k max{‖d′‖ : d′ ∈ D}, whereD

is a finite set of directions, and Equation (2.2) states that∆p
k goes to zero. Therefore

f ◦(x̂;v) ≥ limsup
k∈L

f (xk+∆m
k ‖dk‖

dk
‖dk‖

)− f (xk)

∆m
k ‖dk‖

= limsup
k∈L

f (xk+∆m
k dk)− f (xk)

∆m
k ‖dk‖

≥ 0.

The last inequality follows from the fact that for each sufficiently largek ∈ L, xk + ∆m
k dk ∈ Ω and f (xk +

∆m
k dk) = fΩ(xk + ∆m

k dk) was evaluated and compared by the algorithm tof (xk), but xk is a minimal frame
center, so the inequality holds.

We now show that Clarke directional derivatives off at the limitx̂ of minimal frame centers, for meshes
that get infinitely fine, are nonnegative for all directions in the hypertangent cone, i.e., we show that MADS
generates a Clarke stationary point.

THEOREM 3.13. Let f be Lipschitz near a limit̂x ∈ Ω of a refining subsequence, and assume that
TH

Ω (x̂) 6= /0. If the set of refining directions for̂x is dense in THΩ (x̂), thenx̂ is a Clarke stationary point of f
on Ω.
Proof. The proof follows directly from Theorem 3.12 and Proposition 3.9.

Note that even though the algorithm is applied tofΩ instead off , the convergence results are linked
to the local smoothness off and not fΩ, which is obviously discontinuous on the boundary ofΩ. This is
because we use (1.3) as the definition of the Clarke generalized derivative instead of (1.1). The constraint
qualification used in these results is that the hypertangent cone is non-empty at the feasible limit point ˆx.
Further discussion on non-empty hypertangent cones is found in Rockafellar [21].

A corollary to this last theorem is that iff is strictly differentiable at ˆx, then it is a Clarke KKT point.

• 

• 
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COROLLARY 3.14. Let f be strictly differentiable at a limit̂x ∈ Ω of a refining subsequence, and
assume that THΩ (x̂) 6= /0. If the set of refining directions for̂x is dense in THΩ (x̂), thenx̂ is a Clarke KKT
stationary point of f overΩ.
Proof. Strict differentiability ensures that the gradient∇ f (x̂) exists and that∇ f (x̂)Tv = f ◦(x̂;v) for all
directions. It follows directly from the previous proposition that−∇ f (x̂)Tv≤ 0 for every directionv in
TCl

Ω (x̂), thusx̂ is a Clarke KKT stationary point.
Our next two results are based on the definition of set regularity (see Definition 3.7).
PROPOSITION3.15. Let f be Lipschitz near a limit̂x∈ Ω of a refining subsequence, and assume that

TH
Ω (x̂) 6= /0. If the set of refining directions for̂x is dense in THΩ (x̂), and if Ω is regular at x̂, thenx̂ is a

contingent stationary point of f overΩ.
Proof. The definition of regularity of the setΩ ensures thatf ◦(x̂;w)≥ 0 for all w in TCo

Ω (x̂).
The following result is the counterpart to Corollary 3.14 for contingent stationarity. The proof is omitted

since it is essentially the same.
COROLLARY 3.16. Let f be strictly differentiable at a limit̂x ∈ Ω of a refining subsequence, and

assume that THΩ (x̂) 6= /0. If the set of refining directions for̂x is dense in THΩ (x̂), and ifΩ is regular atx̂, then
x̂ is a contingent KKT stationary point of f overΩ.

Example F in [2] presents an instance of a GPS algorithm such that when applied to a given uncon-
strained optimization problem, it generates a single limit point ˆx which is not a Clarke stationary point. In
fact, it is shown thatf is differentiable but not strictly differentiable at ˆx and∇ f (x̂) is nonzero. This un-
fortunate circumstance is due to the fact that GPS uses a finite number of poll directions. MADS can use
infinitely many.

The following result shows that the algorithm ensures strong optimality conditions for unconstrained
optimization, or when ˆx is in the interior ofΩ.

THEOREM 3.17.Let f be Lipschitz near a limit̂x of a refining subsequence. IfΩ = Rn, or if x̂∈ int(Ω),
and if the set of refining directions forx̂ is dense inRn, then0∈ ∂ f (x̂).
Proof. Let x̂ be as in the statement of the result, thenTH

Ω (x̂) = Rn. Combining Definition 3.11 and Theo-
rem 3.13 with equation (1.2) yields the result.

Newton’s method uses first derivatives, and the standard analysis of Newton’s method assumes Lipschitz
continuity of the first derivatives. Correspondingly, MADS is an algorithm that uses only function values,
and we assume only that the functionf is Lipschitz near ˆx.

The SQP method, which is a constrained analog of Newton’s method, makes an assumption on the
constraints such as linear independence of the constraint gradients at a limit point of the iteration. Such
assumptions are called constraint qualifications, and they are meant to ensure that the limit points produced
by the algorithm satisfy necessary conditions for optimality. The weaker constraint qualification we need
for MADS is that the hypertangent cone is nonempty at the limit point of a refining sequence produced by
MADS.

To ensure that the algorithm produces a limit point satisfying necessary conditions, SQP makes as-
sumptions on the initial guess and the method for choosing the next iterate. So far, we have made the main
algorithmic assumption that the set of refining directions is dense inTH

Ω (x̂). Under these conditions, we
guarantee a Clarke stationary point ˆx. In a paper on SQP, it is common to suggest practical algorithmic
procedures to achieve the algorithmic requirements for convergence to a stationary point. That is our next
topic for MADS.

In the general statement of the algorithm we did not present a strategy that would guarantee a dense
set of refining directions in the hypertangent cone. We want to keep the algorithm framework as general
as possible. There are different strategies that could be used to generate a dense set of poll directions. The
selection of the setDk could be done in a deterministic way or may use some randomness. In the remainder

• 

• 

• 
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of the paper, we present, analyze, and test one MADS strategy that uses some randomness. We do this
because we have not found a deterministic strategy that achieves a good distribution of poll directions when
the process is terminated after a reasonable number of iterations.

4. Practical implementation – LTMADS. We now present two variants of a stochastic implementa-
tion of the MADS algorithm. We call either variant LTMADS, because of the underlying lower triangular
basis construction, and we show that with probability 1, the set of poll directions generated by the algorithm
is dense in the whole space, and in particular in the hypertangent cone.

4.1. Implementable instances of a MADS algorithm.Let G = I , the identity matrix, and letD =
[I − I ],τ = 4,w− = −1 andw+ = 1 be the fixed algorithmic parameters. Choose∆m

0 = 1,∆p
0 = 1 to be the

initial mesh and poll size parameters, and define the update rules as follows:

∆m
k+1 =


∆m

k
4 if xk is a minimal frame center

4∆m
k if an improved mesh point is found, and if∆m

k ≤
1
4

∆m
k otherwise.

A consequence of these rules is that the mesh size parameter is always a power of 4 and never exceeds 1.
Thus, 1√

∆m
k
≥ 1 is always a nonnegative power of 2 and hence integral.

We now present a strategy to randomly generate the poll directions. In what follows, every random
generation is done uniformly with equal probabilities. In order to ensure that the set of refining directions is
dense in the hypertangent cone, one of these directions must be selected in a different way. This direction
must depend only on the value of the mesh size parameter, and not on the iteration number. The direction is
denoted byb(`) where` is an integer related to the mesh size parameter. An additional counter, called`c is
initially set to zero. It is used to keep track of the values of` for which b(`) was created. The construction
of b(`) is as follows.

GENERATION OF THE DIRECTIONb(`) FOR A GIVEN NONNEGATIVE INTEGER`.

• VERIFICATION IF b(`) WAS ALREADY CREATED:
If `c > `, then exit this procedure with the existing vectorb(`) ∈ Zn.
Otherwise, set̀c← `c +1, and continue to the next step.

• INDEX OF ENTRY WITH LARGEST COMPONENT:
Let ι̂ be an integer randomly chosen in the setN = {1,2, . . . ,n}.

• CONSTRUCTION OFb(`):
Randomly setb̂ι(`) to either plus or minus 2̀, andbi(`) for i ∈ N \{ι̂} to be an integer in{−2` +1,−2` +
2, . . . ,2`−1}. Recordb(`) and exit this procedure.

The above procedure returns a vectorb(`) ∈ Zn such that all elements but one are integers between
−2` + 1 and 2̀−1. The other element is either−2` or 2̀ . Moreover, when two iterations have the same
mesh size parameter, then the corresponding vectorsb(`) are identical.

To each mesh size parameter∆m
k , we assign an integer` =− log4(∆m

k ) ∈ N so that∆m
k = 4−`. Note that

the mesh size parameter in LTMADS takes the values 1,1
4, 1

16, . . ., and thereforè is necessarily a nonnegative
integer.

We now present a procedure that extendsb(`) to a positive spanning set of either 2nor n+ 1 poll di-
rections. The procedure first generates an(n−1)× (n−1) lower triangular matrix, and then combines it
with b(`) to create a basis inRn. Finally, this basis is extended to a positive basis by either mirroring the
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directions (for a maximal 2nbasis), or by taking the negative sum of the directions (for an+1 basis).

GENERATION OF THE POSITIVE BASISDk AND UPDATE OF ∆p
k .

• CONSTRUCTION OF THE DIRECTIONb(`) AND INDEX ι̂:
Let ` =− log4(∆m

k ), and constructb(`) by the above procedure.
Setι̂ to be the integer inN such that|b̂ι(`)|= 2`.

• BASIS CONSTRUCTION INRn−1:
Let L be a lower triangular(n−1)× (n−1) matrix where each term on the diagonal is either plus or minus
2`, and the lower components are randomly chosen in{−2` +1,−2` +2, . . . ,2`−1}.
L is a basis inRn−1 with |det(L)|= 2`(n−1).

• PERMUTATION OF THE LINES OFL, AND COMPLETION TO A BASIS IN Rn:
Let {p1, p2, . . . , pn−1} be random permutations of the setN\{ι̂}. Set

Bpi , j = Li, j for i, j = 1,2, . . . ,n−1
Bι̂, j = 0 for j = 1,2, . . . ,n−1
Bi,n = bi(`) for i = 1,2, . . . ,n.

B is a basis inRn with |det(B)|= 2`n.

• PERMUTATION OF THE COLUMNS OFB:
Let {q1,q2, . . . ,qn} be random permutations of the setN.
SetB′i,q j

= Bi, j for eachi and j in N. B′ is a basis inRn with |det(B′)|= 2`n.

• COMPLETION TO A POSITIVE BASIS:

– Minimal positive basis: SetDk = [B′ d] with di =−∑ j∈N B′i j .

Set the poll size parameter to∆p
k = n

√
∆m

k ≥ ∆m
k .

– Maximal positive basis: SetDk = [B′ −B′].
Set the poll size parameter to∆p

k =
√

∆m
k ≥ ∆m

k .

The rows of a lower triangular matrixL are randomly permuted, and a line of zeroes is inserted in
position ι̂. This results in an× (n−1) matrix. The columnb(`) is appended to it, and this leads to a basis
B in Rn. The permutation of the rows ensures that the zeroes of the triangular matrix are not mostly located
in the upper part ofB. Afterwards, the columns ofB are randomly permuted to ensure that the zeroes are
not mostly located in the right part ofB′. This construction ensures that|det(B)| = |det(B′)| = 2`n. The
completion to a positive basisDk appends toB′ either the negative sum of the columns ofB′, or the negative
of each column.

The construction also ensures thatb(`) is necessarily a column of the positive basisDk. Our convergence
analysis will show that ask goes to infinity, the union of all directionsb(`) is dense inRn with probability
one. We will also show that if the entire sequence of iterates converges, then the set of refining directions is
also dense inRn with probability one.

We now present an example inR5 to highlight the features of the positive basis construction.

EXAMPLE 4.1. Consider an iteration k with∆m
k = 1

16. The stepCONSTRUCTION OF THE DIREC-
TION b(`) AND INDEX ι̂ fixed ` = − log4(∆m

k ) = 2. Suppose that the randomly defined vector b(`) is
(−3,2,4,−1,0)T . It follows that ι̂ = 3 since b3(`) = 4. Observe that all other components of b(`) are
integers between−22 +1 and22−1.
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Suppose that the stepBASIS CONSTRUCTION INRn−1 generates the random lower triangular matrix

L =


−4 0 0 0

3 4 0 0
−1 2 −4 0

1 −2 0 4

 ∈ Z4×4.

Now, if the two permutation steps generate the line permutation vector(p1, p2, p3, p4) = (4,1,2,5), and
the column permutation vector(q1,q2,q3,q4,q5) = (5,1,3,2,4) then the bases constructed from L and b(`)
are

B =


3 4 0 0 −3
−1 2 −4 0 2

0 0 0 0 4
−4 0 0 0 −1

1 −2 0 4 0

 and B′ =


4 0 0 −3 3
2 0 −4 2 −1
0 0 0 4 0
0 0 0 −1 −4
−2 4 0 0 1


(the entries copied from L appear in boldface characters). One may easily verify that|det(B)|= |det(B′)|=
45 and that the four terms B′pi ,qi

for i = 1,2,3,4 as well as B′3,q5
are equal to either4 or −4.

Finally, depending on if the minimal or maximal positive basis is selected, theCOMPLETION TO A

POSITIVE BASISstep generates the set Dk composed of the columns of either
4 0 0 −3 3 −4
2 0 −4 2 −1 1
0 0 0 4 0 −4
0 0 0 −1 −4 5
−2 4 0 0 1 −3

 or


4 0 0 −3 3 −4 0 0 3 −3
2 0 −4 2 −1 −2 0 4 −2 1
0 0 0 4 0 0 0 0 −4 0
0 0 0 −1 −4 0 0 0 1 4
−2 4 0 0 1 2 −4 0 0 −1

 .

A key point of this construction is that any iteration with a mesh size parameter equal to1
16 will have b(̀ )

as the qth5 column of Dk. In this particular example, b(̀) is the fourth column of Dk. The other columns will
usually differ from one iteration to another.

Since MADS is allowed to beopportunisticand end aPOLL step as soon as a better point is found, we
want to randomize thePOLL directions. Thus, the purpose of the second step is to permute the lines of the
matrixB so that the zeroes in the upper triangular part of the matrix are randomly positioned, and to permute
the columns so that the dense column is not always the first inDk. The name LTMADS is based on the lower
triangular matrix at the heart of the construction of the frames.

The following result shows that the frames generated by the LTMADS algorithm satisfy the conditions
of Definition 2.2.

PROPOSITION4.2. At each iteration k, the procedure above yields a Dk and a MADS frame Pk such
that:

Pk = {xk +∆m
k d : d ∈ Dk} ⊂ Mk ,

where Mk is given by Definition 2.1 and Dk is a positive spanning set such that for each d∈ Dk,
• d can be written as a nonnegative integer combination of the directions in D:

d = Du for some vector u∈ NnD that may depend on the iteration number k
• the distance from the frame center xk to a frame point xk +∆m

k d∈Pk is bounded by a constant times
the poll size parameter:
∆m

k ‖d‖ ≤ ∆p
k max{‖d′‖ : d′ ∈ D}

-
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• limits (as defined in Coope and Price [9]) of the normalized sets Dk are positive spanning sets.
Proof. The first n columns ofDk form a basis ofRn because they are obtained by permuting rows and
columns of the lower triangular matrixB, which is nonsingular because it has nonzero terms on the diagonal.
Moreover, taking the last direction to be the negative of the sum of the others leads to a minimal positive
basis, and combining the firstn columns ofDk with their negatives gives a maximal positive basis [11].

Again by construction,Dk has all integral entries in the interval[−2`,2`] (with 2` = 1√
∆m

k
), and so clearly

each columnd of Dk can be written as a nonnegative integer combination of the columns ofD = [I ,−I ].
Hence, the frame defined byDk is on the meshMk.

Now the`∞ distance from the frame center to any frame point is‖∆m
k d‖∞ = ∆m

k ‖d‖∞. There are two
cases. If the maximal positive basis construction is used, then∆m

k ‖d‖∞ =
√

∆m
k = ∆p

k . If the minimal positive
basis construction is used, then∆m

k ‖d‖∞ ≤ n
√

∆m
k = ∆p

k . The proof of the second bullet follows by noticing
that max{‖d′‖∞ : d′ ∈ [I − I ]}= 1.

The frame can be rewritten in the equivalent form{xk+
√

∆m
k v : v∈V }whereV is a set whose columns

are the same as those ofB after permutation and multiplication by
√

∆m
k .

Coope and Price [9] show that a sufficient condition for the third bullet to hold is that each element of
V is bounded above and below by positive constants that are independent ofk. This is trivial to show with
our construction. Indeed, each entry ofV lies between−1 and 1 and every term on the diagonal is±1. B is
a triangular matrix, and therefore|det(V )|= 1.

The frames given in Figure 2.2 were generated using minimal positive bases with directions setsDk:
{(−1,0)T ,(0,−1)T ,(1,1)T}, {(−2,−1)T ,(0,−2)T ,(2,3)T} and {(−3,4)T ,(4,0)T ,(−1,−4)T}. One can
see that as∆m

k and ∆p
k go to zero, the number of candidates for frame points increases rapidly. For the

example illustrated in the figure, In the rightmost figure, there are a total of 56 distinct possible frames that
MADS may choose from. The first line of the matrixB is [±4 0], the second line is[B21 ±4] whereB21 is
an integer between−3 and 3. It follows that there are 2×2×7 = 28 possibilities forB. Permuting the lines
doubles the number of possibilities to 56. Permuting the columns does not change the points in the frames.

In addition to an opportunistic strategy,i.e., terminating aPOLL step as soon as an improved mesh
point is detected, a standard trick we use in GPS to improve the convergence speed consists in promoting
a successful poll direction to the top of the list of directions for the nextPOLL step. We call thisdynamic
ordering of the polling directions. This strategy can not be directly implemented in MADS since at a
successful iterationk−1, the poll size parameter is increased, and therefore a step of∆m

k in the successful
direction will often be outside the mesh. The way we mimic GPS dynamic ordering in MADS is that when
the previous iteration succeeded in finding an improved mesh point, we execute a simple one pointdynamic
searchin the next iteration as follows. Suppose thatfΩ(xk) < fΩ(xk−1) and thatd is the direction for which
xk = xk−1+∆m

k−1d. Then, the trial point produced by theSEARCHstep issk = xk−1+4∆m
k−1d. Note that with

this construction, if∆m
k−1 < 1, thensk = xk−1 +∆m

k d and otherwise,sk = xk−1 +4∆m
k d. In both casessk lies

on the current meshMk. If this SEARCHfinds a better point, then we go on to the next iteration, but if not,
then we proceed to thePOLL step. The reader will see in the numerical results below that this seems to be a
good strategy.

4.2. Convergence analysis.The convergence results in Section 3.4 are based on the assumption that
the set of refining directions for the limit of a refining sequence is asymptotically dense in the hypertangent
cone at that limit. The following result shows that the above instances of LTMADS generates an asymptot-
ically dense set of poll directions with probability 1. Therefore, the convergence results based on the local
smoothness of the objective functionf and on the local topology of the feasible regionΩ can be applied to
LTMADS.

• 
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THEOREM 4.3. Let x̂ ∈ Ω be the limit of a refining subsequence produced by either instance of LT-
MADS. Then the set of poll directions for the subsequence converging tox̂ is asymptotically dense in THΩ (x̂)
with probability 1.
Proof. Let x̂ be the limit of a refining subsequence{xk}k∈K produced by one of the above instances of
LTMADS (either with the minimal or maximal positive basis). Consider the sequence of positive bases
{Dk}k∈K . Each one of these bases is generated independently.

We use the notationP[E] to denote the probability thatE occurs. Letv be a direction inRn with ‖v‖∞ = 1
such thatP[|v j | = 1]≥ 1

n andP[v j = 1 | |v j | = 1] = P[v j = −1 | |v j | = 1] = 1
2. We will find a lower bound

on the probability that a normalized direction inDk is arbitrarily close to the vectorv.
Let k be an index ofK, and let̀ =− log4(∆m

k ). Recall that in the generation of the positive basisDk, the
columnb(`) is such that|b̂ι(`)|= 2`, and the other components ofb(`) are random integers between−2` +1

and 2̀−1. Setu = b(`)
‖b(`)‖∞ . It follows by construction thatu = 2−`b(`) and‖u‖∞ = |ûι| = 1. We will now

show for any 0< ε < 1, that the probability that‖u−v‖∞ < ε is bounded below by some nonnegative number
independent ofk, ask∈ K goes to infinity. Let us estimate the probability that|u j −v j |< ε for each j. For
j = ι̂ we have

P[|ûι− v̂ι|< ε]≥ P[ûι = v̂ι = 1]+P[ûι = v̂ι =−1]

= P[ûι = 1]×P[v̂ι = 1]+P[ûι =−1]×P[v̂ι =−1] ≥ 1
2
× 1

2n
+

1
2
× 1

2n
=

1
2n

.

For j ∈ N\{ι̂} we have

P[|u j −v j |< ε] = P[v j − ε < u j < v j + ε] = P
[
2`(v j − ε) < b j(`) < 2`(v j + ε)

]
.

We will use the fact that the number of integers in the interval
[
2`(v j − ε),2`(v j + ε)

]
∩

[
−2` +1,2`−1

]
is bounded below by the value 2`ε− 1. Now, since the basesDk are independently generated, and since
b j(`) is an integer randomly chosen with equal probability among the 2`+1− 1 integers in the interval[
−2` +1,2`−1

]
, then it follows that

P[|u j −v j |< ε]≥ 2`ε−1
2`+1−1

>
2`ε−1
2`+1 =

ε−2−`

2
.

Recall that ˆx is the limit of a refining subsequence, and so, there exists an integerα such that
√

∆m
k = 2−`≤ ε

2
wheneverα≤ k∈ K, and so

P[|u j −v j |< ε]≥
ε−

√
∆m

k

2
≥ ε

4
for anyk∈ K with k≥ α.

It follows that

P[‖u−v‖∞ < ε] =
n

∏
j=1

P[|u j −v j |< ε]≥
( ε

4

)n−1

2n
for anyk∈ K with k≥ α.

We have shown whenk is sufficiently large, thatP[‖u−v‖∞ < ε] is larger than a strictly positive constant
which is independent of∆m

k . Thus, there will be a poll direction inDk for somek∈ K arbitrarily close to any
directionv∈ Rn, and in particular to any directionv∈ TH

Ω (x̂).
The proof of the previous result shows that the set of directions consisting of theb(`) directions over

all iterations is dense inRn. Nevertheless, we require the algorithm to use a positive spanning set at each

• 
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iteration instead of a single poll direction. This ensures that any limit of a refining subsequence is the limit of
minimal frame centers on meshes that get infinitely fine. At this limit point, the set of refining directions is
generated from the set of poll directions which is dense in LTMADS and finite in GPS. Therefore with both
MADS and GPS, the set of directions for which the Clarke generalized derivatives are nonnegative positively
span the whole space. However, GPS does not allow the possibility that the set of refining directions is dense,
since it is finite.

Finally, we give a condition that ensures dense MADS refining directions with probability 1.
THEOREM 4.4. Suppose that the entire sequence of iterates produced by either instance of LTMADS

converges tôx∈ Ω. Then the set of refining directions for the entire sequence of iterates is asymptotically
dense in THΩ (x̂) with probability one.
Proof. Let K be the set of indices of iterations that are minimal frame centers. If the entire sequence
of iterates produced by an instance of LTMADS converges to ˆx ∈ Ω, then the subsequence{xk}k∈K also
converges to ˆx. Therefore,{b(`)}∞

`=1 is a subsequence of refining directions. This subsequence was shown
in Theorem 4.3 to be asymptotically dense inTH

Ω (x̂) with probability 1.

5. Numerical results. We consider four test problems in this section. Each problem is intended to
make a point about MADS. Three of the problems are artificial, and for these problems we give results for
GPS with aPOLL step only and with a simple randomizedSEARCH. The GPS results all use aPOLL ordering
we have found to be advantageous in our experience using GPS.

The first problem is unconstrained, but GPS is well known to stagnate on this problem if it is given an
unsuitable set of directions. MADS has no problem converging quickly to a global optimizer. The second
problem is a bound constrained chemical engineering problem where GPS is known to behave well enough
to justify publication of the results [14]. Still, on the whole, MADS does better. The third is a simple
nonlinearly constrained problem where GPS and our filter version of GPS are both known to converge short
of an optimizer. As the theory given here predicts, MADS has no difficulty. We also use this problem to
show that MADS does well as the number of variables increases.

The last example is such that the feasible region gets narrow very quickly. This is meant to be a test
for any derivative-free feasible point algorithm - like GPS or MADS with the extreme barrier approach to
constraints. MADS does better than GPS with the filter or the barrier, both of which stagnate due to the
limitation of finitely manyPOLL directions. MADS stops making progress when the mesh size gets smaller
than the precision of the arithmetic.

Of course, even when one tries to choose carefully, four examples are not conclusive evidence. However,
we believe that these numerical results coupled with the more powerful theory for MADS make a good case
for MADS versus GPS.

5.1. An unconstrained problem where GPS does poorly.Consider the unconstrained optimization
problem inR2 presented in [16] where GPS algorithms are known to converge to non-stationary points:

f (x) =
(
1−exp(−‖x‖2)

)
×max{‖x−c‖2,‖x−d‖2},

wherec = −d = (30,40)T . Figure 5.1 shows level sets of this function. It can be shown thatf is locally
Lipschitz and and strictly differentiable at its global minimizer(0,0)T .

The GPS and MADS runs are initiated atx0 = (−2.1,1.7)T , depicted by a diamond in the right part
of Figure 5.1. The gradient off exists and is non-zero at that point, and therefore both GPS and MADS
will move away from it. Since there is some randomness involved in the MADS instance described in
Section 4.1, we ran it a total of 5 times, to see how it compares to our standard NOMAD implementation
of GPS. Figure 5.2 shows a log plot of the progress of the objective function value for each set of runs.
All POLL were opportunistic, and the runs were stopped when a minimal frame with poll size parameter

• 



20 CHARLES AUDET AND J. E. DENNIS, JR.

FIG. 5.1.Level sets of f(x) =
(
1−exp(−‖x‖2)

)
×max{‖x−c‖2,‖x−d‖2}.

less than 10−10 was detected. For GPS, the maximal 2npositive basis refers to the set of positive and
negative coordinate directions, and the two minimaln+ 1 positive bases are{(1,0)T ,(0,1)T ,(−1,−1)T}
and{(1,0)T ,(−0.5,0.866025)T ,(−0.5,−0.866025)T}.

FIG. 5.2.Progression of the objective function value vs the number of evaluations.
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4x1, where f is not
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differentiable. These three limit points are denoted by stars in Figure 5.1. As proved in [3], the limit points
for GPS satisfy the necessary optimality condition that the Clarke generalized directional derivatives are
nonnegative forD at these limit points, but, they are not local optimizers. One can see by looking at the level
sets off that no descent directions can be generated by the GPS algorithm using the above directions.

However, when adding a search strategy (by randomly selecting 2nmesh points at eachSEARCHstep) or
when using LTMADS, all runs eventually generated good directions and converged to the origin, the global
optimal solution. Figure 5.2 suggests that the MADS convergence is faster than GPS. Also, even if ran-
domness appears in these instances of LTMADS, the behavior of the algorithm is very stable in converging
quickly to the origin.

5.2. A test problem where GPS does well.The academic example above was one of our motivations
for developing MADS. We now apply MADS to an example from the chemical engineering literature for
which GPS was shown to be preferable to a conjugate-direction approach. Hayeset al. [14] describe a
method for evaluating the kinetic constants in a rate expression for catalytic combustion applications using
experimental light-off curves. The method uses a transient one-dimensional single channel monolith finite
element reactor model to simulate reactor performance. The objective is to find the values of four param-
eters in a way such that the model estimates as closely as possible (in a weighted least square sense) an
experimental conversion rate. This is a bound constrained nonsmooth optimization problem inR4

+, where
the objective function measures the error between experimental data and values predicted by the model.

FIG. 5.3.Data set 1 – Progression of the objective function value vs the number of evaluations.
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FIG. 5.4.Data set 2 – Progression of the objective function value vs the number of evaluations.

FIG. 5.5.Data set 3 – Progression of the objective function value vs the number of evaluations.
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For the three sets of experimental data analyzed in [14], we compared the instances of GPS and MADS
discussed above. The algorithms terminate whenever a minimal frame center with poll size parameter
equal to 2−6 is detected, or whenever 500 functions evaluations are performed, whichever comes first. Fig-
ures 5.3, 5.4, and 5.5 show the progression of the objective function value versus the number of evaluations
for each data set.

The plots suggest that the objective function value decreases more steadily with GPS than with MADS.
This is because GPS uses a fixed set of poll directions that we know to be an excellent choice for this
problem. By allowing more directions, MADS eventually generates a steeper descent direction, and the
dynamic runs capitalize on this by evaluatingf further in that direction thus sharply reducing the objective
function value in a few evaluations. In general, if the number of function evaluations is limited to a fixed
number, then it appears that MADS with the dynamic strategy gives a better result than GPS. For all three
data sets, the dynamic runs are preferable to the basic runs. It also appears that for this problem, MADS
runs with minimaln+1 directions perform better than the maximal 2nruns. In each of the three data sets,
the best overall solution was always produced by MADS with the dynamicn+1 directions.

The quality of the best solutions produced by GPS and MADS can be visualized in Figure 5.6 where
the difference between the experimental and predicted conversions are plotted versus time. A perfect model
with perfectly tuned parameters would have had a difference of zero everywhere. The superiority of the
solution produced by MADS versus GPS is mostly visible for the second data set near the time 160sec and
the third data set near the time 200sec where in both cases the fit is better by approximately 1% .

FIG. 5.6.Conversion rate error versus time.

5.3. Linear optimization on an hypersphere. The third example shows again the difficulty caused
by being restricted to a finite number of polling directions. It also illustrates the effect of dimension. This
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nonlinearly constrained problem imaginable.

min
x∈Rn

n

∑
i=1

xi

s.t.
n

∑
i=1

x2
i ≤ 3n.

There is a single optimal solution to that problem: every component of the vectorx is−
√

3 and the optimal
value is−

√
3n.

The starting point is the origin, and the algorithm terminates when∆p < 10−12, or when the number
of function evaluation exceeds 600n, whichever comes first. The algorithm was run with four values ofn.
For the GPS method we always usedDk = D = [I ,−I ] with dynamic ordering. The GPS filter method is
described in [4]. We used a search strategy, which we often use with the GPS filter method, consisting of a
5npoint latin hypercube sample at the first iteration, and an/5 random search at other iterations.

The behavior of the method is comparable for every value ofn. In every case, the MADS algorithm
converged to the global optimal solution. The GPS barrier approach quickly moved to a point on the bound-
ary of the domain and stalled there. The GPS filter approach was able to move away from that point, but it
converged to another sub-optimal solution. The absence of aSEARCHstrategy, and the restriction to a finite
number ofPOLL directions traps the iterates at a non-optimal solution. The addition of a randomSEARCH

strategy allows GPS, whenn is 10,20 or 50, to move away from this solution, but it still was short of finding
the optimal solution in the number of function calls allowed. The progression of the runs is illustrated in
Figure 5.7.

FIG. 5.7. Progression of the objective function value vs the number of evaluations on an easy nonlinear problem.
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5.4. Numerical limitations. This last example does not satisfy the hypotheses of any GPS or MADS
theorems because the optimizer is at−∞. However, it is intended to see how well the various algorithms
track a feasible region that gets narrow quickly. Consider the following problem inR2:

min
x=(a,b)T

a

s.t. ea≤ b≤ 2ea.

The starting point is(0,1)T , and the algorithm terminates when∆m
k < 10−323 i.e., when the mesh size

parameter drops below the smallest positive representable number in double precision arithmetic. We admit
that this is excessive, but we wanted to run the algorithms to their limits. The same strategies as in Section 5.3
are used.

The progression of the algorithms is illustrated in Figure 5.8. GPS with both the barrier and filter
approaches to constraints converged quickly to points where the standard 2n basis does not contain a feasible
descent direction. The filter GPS approach to constraints did better than the GPS barrier approach because
it is allowed to become infeasible.

FIG. 5.8.Progression of the objective function value vs the number of evaluations on a difficult nonlinear problem.

All 5 runs of the LTMADS method of the previous section ended with roughly the same solution, a point
wherea±∆p

k = a, which is all one can ask. The same behaviour is observed for GPS with a randomSEARCH.
The fact that LTMADS generates an asymptotically dense set of poll directions, and that aSEARCHstep is
conducted at each GPS iteration explain why both the GPS with a search and LTMADS do better than the
GPS barrier or filter approach.

The feasible region is very narrow, and therefore it gets quite improbable that the MADS poll directions
generate a feasible point. When such a feasible point is generated it is always very close to the frame center
since the mesh and poll parameters are very small.

Even if the algorithm instances failed to solve this problem to optimality and converged to points that
are not Clarke stationary points, the GPS and MADS convergence theory is not violated – yet. In all cases,
there is a set of directions that positively spanR2 such that for each direction either the Clarke generalized
derivative is nonnegative or is an infeasible direction.
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6. Discussion.GPS is a valuable algorithm, but the application of nonsmooth analysis techniques in [3]
showed its limitations due to the finite choice of directions in [2]. MADS removes the GPS restriction to
finitely many poll directions. We have long felt that this was the major impediment to stronger proofs of
optimality for GPS limit points (and better behavior), and in this paper we find more satisfying optimality
conditions for MADS in addition to opening new possibilities for handling nonlinear constraints.

We described a stochastic version of MADS, LTMADS, which performed well, especially for a first
implementation. We expect others will find more, and perhaps better, implementations. The structure of this
paper is intended to facilitate the introduction of new MADS instances, and back them with our convergence
analysis. One only need to show that the new instance generates a dense set of refining directions. We chose
to develop a stochastic way of generating these directions. We could have used a deterministic strategy, but
felt that it lacked a desirable property. Indeed, the deterministic ways that we considered were such that
when the algorithm terminated after a finite number of iterations, the set of poll directions was often far
from being uniformly distributed inRn.

Whenn is small, our examples suggested that GPS with a randomSEARCHbehaved similarly to MADS.
The similitude breaks down as the number of variables increases since the relative cost of thePOLL step
becomes more important. In MADS thePOLL directions change at each iteration, but they are static in GPS.

We think that the work here is readily applied to choosing templates for implicit filtering [7], another
very successful algorithm for nasty nonlinear problems.
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mentation of MADS and GPS, and to acknowledge useful discussions with Andrew Booker, Mark Abramson
and Śebastien Le Digabel.
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