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Abstract. It has been known for some time that distorted finite elements produce

relatively (and, sometimes, dramatically) poor results. This has been related to the

completeness condition. In this paper, we investigate this issue and propose that

the abstract mathematical viewpoint represented by the completeness condition is

actually a statement of the physical need for a finite element computation to recover

accurate stresses in the metric space. This follows from the projection theorem

describing finite element analysis which shows that the stresses computed by the

displacement finite element procedure are a best approximation of the true stresses

at an element as well as global level. The simplest possible element is used to

elucidate the principles.
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1. Introduction

It has been known from the very early days of finite element research that a distorted finite

element is much less accurate than a finite element of regular shape (e.g. a quadrilateral element

as compared to a rectangular element). Serious studies of mesh distortion sensitivity date from

early investigations of the isoparametric formulation (Stricklin et al 1977; Backlund 1978;

Gifford 1979; Arnold et al 2002). It was clearly observed that the early isoparametric plane

stress elements (8-node and 9-node based on serendipity and Lagrangian shape functions)

performed extremely well for regular meshes based on elements of square or rectangular

geometry, but that this degraded rapidly when the elements were distorted.

Studies on mesh distortion sensitivity and immunity were recently renewed by Rajendran

and co-workers (Rajendran & Liew 2003; Ooi et al 2004; Rajendran & Subramanian 2004).

These studies explored the counter-intuitive use of unsymmetric formulations characterized

by the use of two separate sets of shape functions, viz., the so-called compatibility (or conti-

nuity) enforcing shape functions and the so-called completeness enforcing shape functions.

The former are chosen to satisfy exactly the minimum inter- as well as intra-element displace-

ment continuity requirements, while the latter are chosen to satisfy all the (linear and higher
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Figure 1. The 3-noded bar ele-
ment with nodes at x1, x2 and x3.

order) completeness requirements so as to reproduce exactly a quadratic displacement field.

Numerical results from test problems reveal that the new plane stress element (Rajendran &

Liew 2003) is capable of reproducing exactly a complete quadratic displacement field under

all types of admissible mesh distortions, only if the continuity enforcing shape functions are

based on isoparametric functions and are actually the test functions while the completeness

enforcing shape functions are based on metric forms and are now the trial functions. The phys-

ical insight into why the test functions should be continuity enforcing and why this is ensured

if isoparametric functions are adopted is easy to understand (Rajendran & Subramanian

2004). Similarly, it is easy to appreciate that if the trial functions are set up using metric func-

tions, the completeness conditions are met (Rajendran & Subramanian 2004). However, this

completeness-fulfilling argument remains at an abstract mathematical level and it is not clear

what physically intuitive condition is being satisfied.

Prathap and co-workers (Prathap 1993; Prathap & Mukherjee) have proposed that varia-

tionally correct (i.e no variational crimes are committed) finite element computation automat-

ically seeks out stresses in a best-fit manner (the computed stresses are a best-approximation

of the actual stresses) at the element level. This is stated mathematically as a projection theo-

rem (Strang & Fix 1973) or as an orthogonality condition (Babuska & Stroubolis 2001) at the

global level. Recently Prathap & Mukherjee (2003, 2004) have shown that the best-fit nature

is valid at the global level because it is indeed valid at the element level, the global best-fit

emerges holistically out of the local best-fits. It is tempting now to propose that the reason

why the unsymmetric parametric-metric formulation is effective is because the stress repre-

sentation is managed in the metric space and this is what is expected of the best-fit paradigm

of finite element computation.

We propose to use a very simple 3-noded bar element to seek out the physical insight to

explain why the parametric-metric (PM) version has excellent mesh distortion immunity.

2. The 3-noded bar element using parametric and metric functions

Figure 1 shows the 3-noded bar element of length L with nodes at x1, x2 and x3. We assume

that the node x2 is not at the centre of the bar so that the distortion parameter ∩ = x2 − L/2.

The parametric (better known as isoparametric) formulation requires the interpolation of

the x coordinate using x = Nixi and the displacement field u = Niui , where Ni are the

quadratic interpolation parametric functions, xi are the nodal coordinates and ui is the nodal

displacement vector.

If g is the natural coordinate so that x1 is at g = −1, x2 is at g = 0 and x3 is at g = 1, then

x and u are interpolated by

x = g(g − 1)/2x1 + (1 − g2)x2 + g(g + 1)/2x3, (1a)

u = g(g − 1)/2u1 + (1 − g2)u2 + g(g + 1)/2u3. (1b)
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Although a quadratic interpolation is assumed for the displacement field, we note that when

node x2 is not at the centre of the bar so that the distortion parameter ∩ is non-zero, the strain

ε = du/dx is no longer a linear function of x.

Indeed we have,

ε = du/dx = [(u3 − u1)/2 + g(u1 + u3 − 2u2)]/[(x3 − x1)/2 + g(x1 + x3 − 2x2)] (2)

where the denominator represents the Jacobian governing the transformation from x to g

spaces. If x2 is not exactly mid-way between x1 and x3, J is no longer a constant and this has

curious implications for the accuracy of the element and this is what we shall investigate next.

Rajendran and co-workers (Rajendran & Liew 2003; Ooi et al 2004; Rajendran &

Subramanian 2004) proposed that distortion immunity is obtained if the interpolation for the

real strain/stress is derived from trial functions in the metric, i.e. x space. The metric part

of the formulation now uses u = Miui , where Mi are the metric functions. It is a simple

exercise to derive these functions (Rajendran & Subramanian 2004).

2.1 Virtual strains vs. real stresses

We simplify the weak form of the statement of the boundary value problem of the one-

dimensional bar under the action of a body force f as follows:

∫
(δεvσ − δuvf )dx = 0. (3)

The real stress tensor is σ and δuv and δεv are the variations of the virtual displacement

and strain. We do not now postulate that σ = Dεv where D is the constitutive matrix, to

emphasise that in the virtual work form in which Eq. (3) is expressed, the real stresses σ

and the virtual strains εv can be introduced independently without violating the variational

correctness norms. In other words, the Petrov–Galerkin formulation where the virtual strains

are derived from one set of test functions and the real stresses are derived from an independent

set of trial functions along with the constitutive law is variationally correct even though a

finite element implementation will lead to unsymmetric matrices. Following Ooi et al (2004),

for the virtual strain to be admissible, the virtual displacement must be at least C0 continuous

along the element boundary (inter-element continuity). This is satisfied by the parametric

choice of functions for the virtual displacements for any admissible shape of the element (this

distinction is not important for the one-dimensional element used here but would become

significant when two- and three-dimensional problems are taken up). However, metric shape

functions satisfy the inter-element continuity requirement only when the element conforms to

certain regular shapes. Let us now examine the suitability of the parametric or metric functions

for the displacement fields u from which the real stresses σ = DDD(∇u) is computed, where ∇
is the strain-displacement operator. It becomes immediately clear, from reference to (1), that

the real stresses are those stresses which manage to represent the equilibrium of forces. It is

obvious that in the real world (which is metric), this is best represented in metric space. Thus

a finite element formulation will seek out stresses σ h which are a best-fit in the metric space

of σ .

Note that if we do not make this distinction between real and virtual, i.e. if ε = εv because

identical functions are used for the trial and test functions in the finite element formulation of

the problem, we get the classical Galerkin formulation and consequently symmetric matrices.

Since it is paramount that the virtual displacements must be in parametric form to ensure

inter-element continuity, a Galerkin formulation will find it difficult to achieve the best-fit
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stress paradigm as then the real stresses are also represented in the parametric space and

this may not transform in a simple affine manner to the metric space. Another physically

intuitive way of looking at this situation is that the trial functions define the real stresses

satisfying the kinetic (equilibrium) condition in the virtual work equation and the test functions

enforce the kinematic conditions of continuity. The Petrov–Galerkin approach allows the

competing requirements of managing continuity and equilibrium under mesh distortion to

be negotiated. This explains why the unsymmetric PM formulation gives the best distortion

tolerance (Rajendran & Liew 2003; Ooi et al 2004; Rajendran & Subramanian 2004). We

choose the numerical experiments carefully to highlight this aspect clearly.

3. Formulation of PP and PM versions of the 3-noded bar element

Rajendran and co-workers have given a very elaborate account of the formulation of the

unsymmetric problem (Rajendran & Liew 2003; Ooi et al 2004; Rajendran & Subramanian

2004). For the sake of completeness, this is summarized as shown below. The parametric

shape functions are defined as

N1 = g(g − 1)/2, N2 = (1 − g2) and N3 = g(g + 1)/2. (4)

From this, the strain displacement matrices can be written as

BBBppp = [N1,g, N2,g, N3,g]/x,g. (5)

The metric functions Mi can be easily derived (Rajendran & Subramanian 2004) and the

corresponding strain displacement matrices are

BBBmmm = [M1,x, M2,x, M3,x]. (6)

The stiffness matrices for the PP and PM elements are then

KKKpp =
∫

(BBBp)TTTD BD BD Bpppdx (7)

and

KKKpm =
∫

(BBBppp)TTTD BD BD Bmmmdx. (8)

The consistent load vector for both cases is identical and is given by

fff pp = fff pm =
∫

(NNN)TTTbbb dx, (9)

where bbb is the body force. In (7) to (9), the cross-sectional area has been taken as unity.

4. A numerical experiment with the 3-noded bar element

4.1 Case of uniformly distributed load q = 1

We take up a single element test where the bar is fixed at x1 = 0 and is free at x3 = 1. The

length of the bar is therefore L = 1. Young’s modulus is taken as E = 1, area of cross-

section A = 1, and a uniformly distributed axial load of intensity q = 1 is assumed to be
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Table 1. Deflections u2 and u3 for a single-element test of fixed–free bar with uniform traction
load of q = 1.

∩ = 0 ∩ = −0·05

Displacements PP PM Exact PP PM Exact

u2 0·37500 0·37500 0·37500 0·34833 0·34875 0·34875
u3 0·50000 0·50000 0·50000 0·50000 0·50000 0·50000

applied along the length of the bar. The units are assumed to be consistent so that we have

σ = ε = 1·0 − x. Note that the stress and strain are defined in a very simple linear fashion in

the metric space, and if the element is distorted, this would be captured only in a nonlinear

fashion by the parametric coordinate system. Indeed, we then have

σ = ε = 1·0 − x = 1·0 − x2 − 0·5g + ∩g2. (10)

Two elements are developed: the PP element uses parametric interpolations for both test and

trial functions, while the PM element uses parametric interpolations for the test functions and

metric interpolations for the trial functions.

Table 1 displays the results from a single-element model of the example. We find that the

PP and PM elements give the exact displacements when there is no distortion (∩ = 0). When

there is distortion (∩ = −0·05), only the PM formulation is insensitive to distortion. To

understand why this is so, we must study the stress/strain recovery more carefully. Figure 2

shows the stress/strain recovered from the displacements computed using the PP element for

the case with distortion, where a 2-pt. integration is used to evaluate the stiffness matrix.

Figure 2. The variation of stress
in a fixed–free bar for uniformly
distributed load when x2 = 0·45
for PP model.
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Figure 3. The variation of stress
in a fixed–free bar for uniformly
distributed load when x2 = 0·45
for PM model.

From figure 2, we see that if the strain/stress is computed using the parametric transforma-

tion involving the Jacobian J in the denominator, the variation of strain thus computed is as

shown by the thin solid line. Due to the rapid variation of J over the element length, it is not

possible for it to sensibly capture the linear variation in the metric space (shown by the thick

solid line in the g space). The dashed line indicates the extrapolation of stress from the Gauss

point values used for the 2-pt. Gaussian numerical integration of the PP stiffness matrix.

This is a closer approximation of the actual variation of strain and explains why the 2-pt

rule is favoured in most industry standard packages. For a more definitive closure between

predictions and computations, we rigorously derive the various relationships in the next

section.

Figure 3 now shows the stress/strain recovered from the displacements computed using

the PM element for the case with distortion. Again, a 2-pt. integration is used to evaluate

the stiffness matrix. From figure 3, we see that the strain/stress computed using the metric

functions is exactly the same as the exact solution. The Jacobian J is no longer in the picture.

With the PM formulation, it is now possible to sensibly capture the linear variation in the

metric space (shown by the thick solid line in the x space).

4.2 Case of quarter point singularity when g = −0·5

Table 1 and figures 1 and 2 show the result when the distortion is ∩ = −0·05. In fact,

for whatever distortion (∩ = −0·5 to ∩ = −0·5) the PM formulation is able to recover

the linear variation of stresses exactly. This includes the curious case of the quarter

point singularity, where when g = −0·5 the PP formulation produces singular stresses.

However, the PM formulation has no difficulty here and recovers the correct stress pat-

tern. Indeed, for this case, u2 = 0·2187464 and u3 = 0·5 give the computed stress as

(1 − x)!
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Figure 4. The variation of stress
in a fixed-free bar for varying dis-
tributed load when x2 = 0·45 for
PM model.

4.3 Case of varying distributed load q = 1 − x

We now take up the same single element test as before but impose a more complicated loading

case, that of a varying distributed load of intensity q = 1−x. The exact solution for this leads

to a cubic polynomial for the displacement field and a quadratic variation for the stress field.

However, this can never be realized in a finite element computation because of the need to

replace the loading by a consistent load vector. The use of a consistent load vector to replace

this system is equivalent to the imposition of concentrated loads Fi at the three nodes, and

the stress variation corresponding to this is of a stepped nature as seen by the solid line in

figure 4. The loads can be quite easily computed by the standard procedure shown in (9).

The units are assumed to be consistent so that we have σ = ε = F2 + F3, for x < x2 and

σ = ε = F3 for x > x2.

We investigate the computed results obtained using the PM element model to see the extent

to which the best-fit property is preserved for this case. Figure 4 shows the variation of stresses

computed from the displacements from the PM model as compared to the exact stress (solid

line) in the bar when the concentrated loads are placed at x2 = 0·45 (∩ = −0·05) and x3 = 1·0
corresponding to the varying distributed load of intensity q = 1 − x. The load at x1 = 0 is

obviously ineffective due to the Dirichlet condition imposed there. The PM model, due to the

use of the M-trial functions, gives a linear variation of stress. The solution is seen to be stable,

implying that the stability constant (inf-sup constant) ensures the best approximation and that

this is stable. Also shown for comparison is the stress from best-fit approximation (shown by

the thin solid line) obtained from the actual stepped stress variation (thick solid line) the finite

element model is trying to represent. The stress from PM (thin broken line) is very slightly

in error. Indeed, as the distortion increases, this discrepancy increases. This is actually due

to the fact that the PM formulation is a best-fit of the PP formulation of the problem and

not the best-fit of the exact stress that is being modelled. The analysis relevant to this is too

detailed to be given here and is presented elsewhere (Prathap et al 2005). Figure 5 shows the

variation of stresses computed from the displacements from the PM model as compared to

the “exact” stress (solid line) in the bar when the node N2 is placed at x2 = 0·35 (∩ = −0·15)

for the same problem with the system of concentrated loads equivalent to the linearly varying

distributed load. Now there is a noticeable difference between the stress computed by the PM
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Figure 5. The variation of stress
in a fixed-free bar for varying dis-
tributed load when x2 = 0·35 for
PM model.

model and the best-fit. Indeed, it can be shown (Prathap et al 2005) that the PM model is a

best-fit to the PP model.

5. Closure between predictions and computations

For scientific closure, what is observed phenomenologically (in this case, computed by the

finite element model) must be independently arrived at by prediction from first principles.

With particular reference to the results from the PP model (table 1 and figure 2), we must be

able to demonstrate that the stress computed using the strain-displacement relations and the

computed nodal displacements is the same as predicted by the application of the best-fit rule

to the anticipated exact stress.

From table 1, u2 = 0·34833 and u3 = 0·5 gives the computed strain as,

εh
c = (0·5 − 0·3932)/(1 + 0·2g), (11)

where the denominator represents the Jacobian defining the transformation from the parametic

g to the metric x space. It is this function that is drawn as the thin solid line in figure 2. As

a 2-pt. Gaussian integration rule has been employed, the strain sensed by the finite element

computation is linear in g and can easily be extracted from (11) by extrapolation from the

two points corresponding to the 2-point Gauss–Legendre integration rule, gi = ±1
√

3 as

εh
c (2 − pt) = 0·5333 − 0·5g. (12)

This is indicated by the dashed line in figure 2.

Let us now predict this from an application of the best-fit rule to the exact strain which is

defined in metric space as

ε = 1·0 − x

= 1·0 − x2 − 0·5g + ∩g2

= 0·55 − 0·5g − 0·05g2

= 0·5333 − 0·5g + 0·0166(1 − 3g2). (13)
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We have deliberately expanded it in terms of Legendre polynomials so that we can sense

directly that the predicted best-fit in the g space to this is obtained as the straight line passing

through the points gi = ±1
√

3 (a property emerging from the orthogonal nature of the

Legendre polynomials) as,

εp = 0·5333 − 0·5g. (14)

The exact agreement between the computed εh
c (2 − pt) and the predicted εp now provides

us the scientific closure.

The reason for the small discrepancy between the exact displacement u2 and that com-

puted by the PP model is due to the fact that the exact strain in the metric x space has

been replaced by a linear strain in the parametric g space. The PM model does not suffer

from this deficiency because the exact strain is now a linear function in the metric space

and this is exactly captured by the finite element strain which is also a linear function in

x.

6. Unsymmetric formulation and the inf-sup condition

The inf-sup condition is a fundamental requirement for stability and optimality of conven-

tional finite element schemes where there is locking, or unconventional schemes (where

there is varaiational incorrectness, e.g. due to reduced integration and consequently zero-

energy modes, or for mixed or hybrid finite element schemes, Iosilevich et al 1997). In the

present case, the abstract formulation has to be examined on this Babuska–Brezzi condi-

tion. Where only trial functions are used, the error is (up to the multiplicative constant C)

the error of the best approximation of the exact solution by the trial functions. Where both

trial and test functions are used, it is speculated that the trial functions are related to the

approximation (approximability) and the test function to the stability (Arnold & Babuska

1984).

From the foregoing, it is accepted that when the inf-sup condition is satisfied, the element

has an optimal (maximum) convergence rate. Following Bathe et al (2000), the smallest

non-zero eigenvalue of the problem can serve as a surrogate for the inf-sup condition of the

problem. Dynamic studies using the PM formulation (to be communicated separately) show

that the log of the smallest non-zero eigenvalue is a constant when plotted against the log of

the characteristic element length, thereby confirming that the PM formulation has an optimal

convergence rate.

7. Conclusions

This paper confirms that in finite element modelling, the best-fit paradigm gives an accurate

picture of how strains and stresses are computed, even when there is distortion in the element

leading to a non-uniform mapping from the parametric to metric space. This paradigm also

elegantly explains why the PM formulation, as observed more generally even for 2D and 3D

applications, is immune to mesh distortion (Rajendran & Liew 2003; Ooi et al 2004; Rajen-

dran & Subramanian 2004). It is reasonable to conclude that the unsymmetric parametric-

metric formulation is effective because the stress representation is managed in the metric

space and this is what is expected from the best-fit paradigm of finite element computa-

tion.
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