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Abstract 

If one solves an infinite dimensional optimization problem by introducing discretizations 
and applying a solution method to the resulting finite dimensional problem, one often observes 
a very stable behavior of this method with respect to varying discretizations. The most 
striking observation is the constancy of the number of iterations needed to satisfy a certain 
stopping criteria. In this paper we give give an analysis of this phenomena, the so called 
mesh independence, for nonlinear least squares problems with norm constraints (NCNLLS). 
A Gauss-Newton method for the solution of NCNLLS is discussed and a convergence theorem 
is given. The mesh independence is proven in its sharpest formulation. Sufficient conditions 
for the mesh independence to hold are related to conditions guaranteeing convergence of the 
Gauss-Newton method. The results are demonstrated on a two point boundary value problem. 
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1 Introduction 

This paper is concerned with the behavior of discretized Gauss-Newton methods for infinite di­
mensional nonlinear least squares problems of the following type: 

mm IIF(x)II}. 
llxllx $ R 

(1.1) 

F is a sufficiently smooth, weakly continuous function, which acts between the two Hilbert spaces 
X, Y. Problems of this kind for example arise in parameter identification, see e.g. [5), [16), [20]. 
The constraint llxllx $ R reflects a priori information on the sought parameter and guarantees 
the solvability of (1.1). 

If residual and nonlinearity of F are of moderate size, the Gauss-Newton method is an appro­
priate technique to solve (1.1). In the Gauss-Newton method the function Fis linearized around 
a given approximation Xt, whereas the constraint is retained. The approximation is improved by 
solving the resulting linear least squares problem. This yields the following Algorithm (here and 
in the subsequent chapters Br ( x) will be the closed ball around x with radius r): 

Algorithm 

(0) Given an initial point xo E BR(0), set f = 0. 

(1) Solve the linearized problem 

mm IIF(xt) + F'(xt)(x - Xt)II} 
llxllx $ R 

Let Xt+i denote the solution of (1.2) and µl+l the corresponding Lagrange multiplier 

(1.2) 

(2) Test for convergence. If test succeeded, take Xt+l as an approximation of the solution. Else 

(3) Set f = f + 1 and goto (1) 

Reviewing the convergence theorems for Gauss-Newton methods for unconstrained problems (see 
e.g. [7], [10], [11)), one expects a linear convergence rate for this Algorithm if the starting point 
is sufficiently close to the solution of (1.1). Moreover the speed of convergence should depend on 
the nonlinearity and size of the residual of F. A detailed convergence analysis confirming these 
considerations is given in chapter 2. Hence, if a good initial point is available, the problem (1.1) 
can theoretically be solved with the Gauss-Newton method as the outer iteration and an inner 
iteration scheme , e.g. the Newton or Hebden-Reinsch iteration ([19], p.273), for the solution of 
(1.2). 

For a globalization of the convergence one can add a line search or trust region strategy. The 
latter leads to minimization problems with two normconstraints instead of (1.2). Utilizing the 
special structure of this subproblem, it can be solved using efficient methods designed for the 
solution of minimization problems with quadratic objective and simple norm constraint as in (1.2). 

But in this paper we are only concerned with the local analysis and assume that a good 
estimation for the solution is available. 
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For the numerical solution, one has to introduce some sort of discretization for the parameter 
space X and the output space Y. 

It is important to study the behavior of the solution method under varying discretizations. 
The continuous dependence of the method on changes in the discretization would guarantee the 
successful application of adaptive mesh refinement strategies, which are proven to be a powerful 
tool to solve infinite dimensional problems. Such strategies are presented in [1] for Newton's 
method, in [15] for Quasi-Newton methods and in [13] for the Gauss-Newton method. 

The theoretical justification for mesh refinement strategies is the so called mesh independence of 
the method, which can roughly be described as the continuous dependence of solutions, iterates and 
convergence behavior of the discretized problem, respectively the method onto the discretizations. 

Mesh independence in its sharpest form was developed in [2] for Newton's method. The influ­
ence of discretizations on Broyden's method was studied in [14]. There, a weaker mesh independent 
property was proven, which does not guarantee uniform bounds on the error between infinite and 
finite dimensional iterates. 

In this paper we extend the mesh independence results in [2] to the normconstraint Gauss­
Newton method, but we will use a somewhat different discretization scheme. We will assume, that 

XM C X and YN CY are finite dimensional linear subspaces 
and 

FN : X--+ YN is a suitable approximation for F. 

Although FN is defined on the whole space X, it is evaluated only for some XM E XM during the 
numerical calculation. The discretized problem is then given as 

mm IIFN(xM)II} 
llxMllx $ R 

XM EXM 
(1.3) 

and in the £-th iteration of the Gauss-Newton method we have to solve for given xf N 

mm IIFN(xfN) + Ffv(xfN)(xM - xfN)II} 
llxMllx $ R 
xM EXM 

(1.4) 

instead of (1.2), where xf N E BR(O) n XM is the current iteration point. Throughout the pa­
per we will denote the iterates of the Gauss-Newton method applied to (1.3) by xf N and the 
corresponding Lagrange multipliers by µf N. For the solution of(l.4) we have to compute the ad­
joints of Ffv(xf N). Since we are working in the finite dimensional spaces, we define the 'adjoint' 
Ffv ( x )* E L(Y, X M) through 

F , (-)* N M N F' (-) M < N X y ,X >x=< y , N XX >y 

F1',(x)* can be any extension of the (XM, 11 · llx), (YN, 11 · IIY) adjoint of Ffv(x) onto Y. We need the 
extensions of FN, Ffv(x) and Ffv(x)* to apply these operators to points which are not contained in 
the finite dimensional subspaces. This allows us to compare infinite and finite dimensional terms 
without prolongation or restriction operators. For finite element discretizations these extensions 
are given in a natural way (see also chapter 4). 

It is important to note, that Ffv ( x )* is an extension of the ( X M, 11 • I Ix), (Y N, 11 · I I y) adjoint 
onto Y, but not the adjoint for the pair (X, II· llx ), (Y, II· IIY ), since in general we do not have, 
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that 
< Ffv(x)*y, X > x=< Y, Ffv(x)x >y 'vx EX, y E y. 

A consequence of this fact is, that 

IIFfv(x)* - F'(x)*IIL(Y,x) -1- IIFfv(x)- F'(x)IIL(X,Y). 

Therefore we have to impose different approximation properties on the function and its derivative 
on one hand and its adjoint on the other. Since FN is defined on X, it is evident, that the 
approximation properties of FN and Ffv are affected only by the discretization of Y, whereas the 
quality of approximation of Ffv * is also influenced by the discretization of X. The assumptions we 
impose on XM, Y N and on the function F and its discretizations are : 

Assumptions 

(Al) FE C 1(BR(0)) 

(A2) IIF(i)(x) - F(i)(y)II::; Lil Ix - YII 'vx, y E BR(0), i = 0, 1. 

(A3) FN E C 1(BR(0)) 

(A4) There exists uniformly bounded Lipschitz constants Lf, i = 0, 1 such that 

IIFX)(x) - FX)(Y)II ::; Lf llx - YII "Ix, YE BR(0), i = 0, 1. 
Without loss of generality we assume, that Lf ::; Li, i = 0, l V N E IN. 

(A5) There exists a bounded function py : [0, 1] --+ JR+ which is continuous in 0 with py(0) = 0 
and which satisfies 
IIF(i)(x) - Fi;)(x)II::; py(l/N) 'vx E BR(0), i = 0, 1. 

(A6) For every x and 6 > 0 there exists M5, such that for all M 2:: M5 there exists XM E XM with 
llx - xMII::; 6 

(A7) There exists a bounded function px: [0, 1]--+ JR+ which is continuous in 0 with px(0) = 0, 
such that the adjoints of the original and discretized Frechet derivatives can be estimated by 
IIF'(x)* - Ffv(x)* 11::; py(l/N) + px(l/M) 'vx E BR(0). 

This setting is suitable for finite element discretizations and, as already pointed out, allow us to 
compare the discretized and infinite dimensional terms without the incorporation of prolongation 
and restriction operators. Another, more important gain is, that we obtain uniform bounds for 
llxt - xf NII, which we would not get in the setting of [2] (see chapter 3). These uniform bounds 
enable us to deduce estimates for the error between the solution of (1.1) and the solutions of 
the discretized problems, which improve estimates derived from perturbation theory for infinite 
dimensional optimization problems. In this sense the Gauss-Newton method can be viewed as a 
tool for the analysis of (1.1) and its discretizations. 

The sufficient conditions for mesh independence are strongly related to the conditions which 
are sufficient for the convergence of the Gauss-Newton method and throughout the paper we will 
use these conditions to formulate our mesh independent results. We do not need second order 
information of F. 

The outline of the paper is as follows: In chapter 2 we give a convergence theorem for the 
algorithm stated above, which uses the special structure of (1.1) and extends results in [10]. Besides 
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the convergence theorem we will give a result concerning the perturbation of solutions of (1.1) in 
presence of discretization. This result is based on perturbation theory for infinite dimensional 
optimization problems. In chapter 3 we will develop the mesh independence principle for the 
Gauss-Newton method and in chapter 4 we will discuss the application to a boundary value 
problem and present some numerical results. 

2 Local Convergence 

The main purpose of this chapter is to establish a convergence theorem for the algorithm presented 
in chapter 1. Gauss-Newton based algorithms for restricted nonlinear least squares problems are 
discussed for example in [6] and [21], but these algorithms, designed for more general problems, 
treat inequality constraints by active set strategies and are therefore not appropriate for our anal­
ysis. In [20], Vogel gives a convergence theorem for problem (1.2), but he uses second order 
information and does not utilize the least squares structure of (1.2). The analysis presented here 
incorporates the special structure of the problem and is a generalization of Theorem 10.2.1 in [10]. 
If the constraint is inactive, the assertions of both theorems are identical in the finite dimensional 
case. 

It is well known, that the solutions of (1.2) can be characterized as solutions of the system of 
Kuhn-Tucker conditions: 

(F'(xt)* F'(xt) + µl+1I)xL+1 = -F'(xt)*(F(xt) - F'(xt)xt) 
µt+i(llxt+illk - R2

) = 0 
µl+1 ~ 0, llxt+1llk - R2

::; 0. 

Forµ> 0 let Xt(µ) be defined as the unique solution of 

(F'(xt)* F'(xt) + µI)x = -F'(xt)*(F(xt) - F'(xt)xt) 

(2.1) 

(2.2) 

and Xt(0) the minimum norm solution of (2.2) withµ = 0. If I Jxt(0)J Ix > R, the problem of finding 
a solution of the Kuhn-Tucker system is equivalent to the computation of a root of 

gt(µ) := llxt(µ)Jlk - R2
. 

gl is a convex and monotonically decreasing function with gl(µ) ___. -R2 asµ ___. oo. Therefore 
the root is uniquely determined. Furthermore gl is continuously differentiable on (0, oo). The first 
derivative is given by 

g~(µ) = -2 < xt(µ), (F'(xt)* F'(xt) + µI)- 1 xt(µ) >x . (2.3) 

Theorem 2.1 Let X, Y be Hilbert spaces. Let F : X --+ Y satisfy {Al}, (A2} and x* be a 
solution of 

mm IJF(x)ll 2 

llxll::; R 
(2.4) 

withµ* > 0 the Lagrange multiplier at x •. Assume further, that for f, '*, u ~ 0 

(2.5) 

and 
II (F'(x)* - F'(y)*) F(y)JI ::; ullx - YII (2.6) 
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for all x, y E BR(O) n Bt(x,.), and for all h E {h E XI x,. + h E BR(O) }. 

If <1' < , .. + µ,., then for all a E (1, (, .. + µ,.)/<1') there exists f,. = f,.(a), f,. > 0 such that the 
solution Xt+1 of 

mm IIF(xt) + F'(xt)(x - Xt)ll 2 

llxll ~ R 
(2.7) 

obeys 

(2.8) 

and 
(2.9) 

provided Xt E BR(O) n B£.(x,.). Here,,., is defined by,.,:= supxEBR(O) IIF'(x)II-

Moreover there exists 0, such that if xt E BR(O)nB(.(x,.) the Lagrange multipliers can be estimated 
as follows 

(2.10) 

Proof: Let c E (1, (, .. + µ,.)/<1') be an arbitrary constant. Since F' is continuous, we obtain from 
(2.5), that for each a E (1, a) there exists f1 E (0, f), such that for all x E BR(O) n B(, (x,.) and for 
all h E {h E XI x,. + h E BR(O)} the following inequality holds 

< (F'(x)* F'(x) + µ,.I) h, h > ~ '* ~ µ,. llhll 2
• 

a 
(2.11) 

(i) In the first part of the proof we will derive the estimate for the Lagrange multipliers. If µl+ 1 

andµ,. are greater than zero, they are characterized as the roots of gt(µ) := llxt(µ)ll 2 - R2 and 
g,.(µ) := llx .. (µ)11 2 - R2 , respectively. We will utilize the convexity of these functions to give lower 
bounds for the Lagrange multipliers. For the development of the estimates it will be favorable to 
distinguish two cases: 

µ 
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From the definition of XL(µ) we can conclude, that 

> 

2 

1 
IIF'(xL)*(F(xL) - F'(xl)xt)II 

K, +µ. 
1 -

2 (IIF'(x.)*(F(x.) - F'(x.)x.)11- Lllx* - x£11) 
K, + µ. 

(here, Lis a Lipschitz constant depending on L1,1,,,sup.,EBR(o) IIF(x)II and R) 
and 

llx* - Xt(µ.)II 
< ll(F'(xt)* F'(xt) + µ.I)- 1 11 

(2.12) 

(ll(F'(xt)* F'(xt) + µ.I)(xt - x.) - (F'(xt)* F(xt) + µ.xL - F'(xt)* F(x.) - µ.x.)11 
+ll(F'(x.) - F'(xt))* F(x.) + µ.x. - µ.x.11) 

a L1 2 < --(1,,-
2 

llx* - Xtll + O'llx* - XLII), (2.13) '* + µ. 

provided llx* - xtll:::; E1, 

(2.13) yields the existence of c such that llx.11 + llxt(µ.)II :::; c independent of£. 

Since 

YL(µ) := llxt(µ)ll2 - R2 

ll(F'(xt)* F'(xt) + µI)- 1 F'(xL)*(F(xL)- F'(xt)xL)ll2 - R2 (2.14) 

is convex, we obtain 

> µ _ Yt(µ.) 
* gHµ.) 

llxL(µ.)11 2 - R2 

= µ. + 2 < xt(µ.), (F'(xt)* F'(xt) + µ.I)- 1 xt(µ.) > 
> ,,,2 + µ. R2 

- llxL(µ.)11 2 

µ. - 2 llxt(µ.)11 2 

> _ K
2 

+ µ. llx.11 + llxt(µ.)11 II _ ( )II 
µ* 2 llxL(µ.)11 2 X* XL µ* 

,,,2 + µ* C 

> µ. - 2 llxL(µ.)112 llx* - XL(µ.)11, 

If we choose 

f 2 := min { fl, IIF'(x.)*(F(x;i- F'(x.)x.)11} , 

we obtain with (2.12), (2.13), (2.15), that for llx* - xtll:::; E2 
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Case 2: µ. < µl+l 
In this case we consider 

g.(µ) JJx*(µ)!i2 - R2 

.- JJ(F'(x.)* F'(x.) + µI)- 1 F'(x.)*(F(x*) - F'(x.)x.)112 - R2
• 

Applying the same considerations as in case 1 and using the inequalities 

and 

2 

1 
JJF'(x.)*(F(x*) - F'(x*)x*)II 

K, + µl+l 

yields 

In the derivation of (2.17) we have used without loss of generality, that llxt+1II + llx*(µt+1)II::; c 

independent of£. The boundedness of llxt+1II + Jlx*(µt+1)II can be proven analogously to (2.13), 
since Xf+l = Xt(µt+1). 
From (2.14) it can be seen, that 

IIF'(xt)*(F(xt) - F'(xt)xt)II 
R 

is an upper bound for µl+l· Therefore the estimate (2.10) follows from (2.16) and (2.17), if we 
choose 

2(K2 + s/R)3c 
O := IIF'(x*)*(F(x*) - F'(x*)x.)11 2 ' 

wheres is defined bys:= supxEBR(o) IIF'(x)*(F(x) - F'(x)x)JJ. 

(ii) For the proof of the first part of the theorem we will again distinguish two cases: 

Case 1: µl+l 2:: µ* 

From the equation 

it can be seen, that Xf+l is a solution of 

mm JIF(xt) + F'(xt)(x - Xt)ll2 + µ*Jlxll2 
llxll::; R 

with Lagrange multiplier µl+1 - µ*. Therefore the first order optimality condition 
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is satisfied. (2.19) together with the optimality condition for (2.4), F'(x*)* F(x*)+µ*x* = 0, yields 

µ*(< Xt+1,xt+1 - x* > - < x*,xl+l - x* >) 
< < F(xt) + F'(xt)(xt+l - Xt), F'(xe)(x* - Xe+1) > + < F(x*), F'(x*)(xe+1 - x*) > 
< < F'(xt)* F(xt) + F'(xt)* F'(xt)(xL+l - Xt) - F'(x*)* F(x*), x* - Xe+1 > 

< < F'(xt)* (F(x*)- fo 1 

F'(xt +t(x* - Xt))(x* - xt)dt) 

+F'(xt)* F'(xt)(x* - xt) + F'(xt)* F'(xe)(xe+1 - x*) - F'(x*)* F(x*), x* - Xe+1 > (2.20) 

Hence, we obtain with (2.6), (2.11), (2.20) 

'*+µ*II II < '*+µ*II II Xt+l - x* - XL+l - x* 
a a 

< II 
1 

II < (F'(xt)* F'(xt) + µ*I) (xt+1 - x*), Xt+l - x* > 
Xl+l - X* 

< II (F'(xt)* - F'(x*)*) F(x*)II 

+IIF'(xt)ll 11 
IIF'(xe) - F'(xt + t(x* - Xt))ll llxe - x*II dt 

< ullxe - x*II + Ltllxt - x*ll 2
, (2.21) 

provided, that llxt - x*II ~ f1. 

Case 2: µ* > µl+l 
x* is the unique solution of 

and can therefore be characterized as the unique solution of 

mm IIF(x*) + F'(x*)(x - x*)ll2 + µL+1llxll 2 

llxll~ R 

with Lagrange multiplierµ* - µl+l· Similar to case 1 (replace µ* by µl+l in (2.20)), it can be 
shown, that this yields 

I* + µ* I I L1K 2 a I Xt+1 - x*I ~ ullxe - x*II + 2 11xt - x*II + (µ* - µt+1)1lxt+1 - x*II· (2.22) 

with (2.10) we can conclude, that for llx* - Xtll < f3, where 

f3 := 

the following estimate holds 

(2.23) 

Inserting this into (2.22) yields 

(2.24) 
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provided llxL - x.11 :s; c3. 

If we choose c* := min(c3, (-y.~i,:~- 0
"

1 
), we finally obtain from (2.21) and (2.24), that I lxt-X• 11 :s; c* 

implies 

< 

Hence, the assertion is proven. 

Remarks 

D 

(1) If one reviews the proof of (2.8), it can be seen immediately, that for the convergence of the 
iterates XL it is merely needed, that (2.6) holds with y replaced by x., i.e. 

II (F'(x)* - F'(x.)*) F(x.)11 :s; ullx - x.11 (2.25) 

Requiring (2.25) instead of (2.6) yields qualitatively the same results . In this case one gets 

ra Li 2 
Iµ. - µL+il :s; --(K-llx* - Xtll + Li sup IIF(x)ll llx. - Xtll) 

I* + µ. 2 xEBn(O) 
(2.26) 

instead of (2.10). In the caseµ. > µt+i the constant u can be retained in (2.26) 

(2) Although inequality (2.5) is assumed to hold only for certain h, easy calculations show, 
that this requirement is equivalent to the condition IIF'(x.)hll2 ~ ,.llhll2 Vh EX. This 
property is due to the special shape of the admissible set. 

(3) Since the errors in the Lagrange multipliers are dominated by the errors in the iterates, the 
theorem above also shows, that if x. lies on the boundary and ifµ. > 0, then it is also true 
for the iterates XL, for f sufficiently large. In other words, the iterates approach the solution 
on the boundary. On the other hand, it is clear, that if the solution is an interior point of 
BR(O), then also the iterates XL lie in the interior up to finitely many. 

Before we analyze the discretized problem, we will discuss the implications of assumption (2.6) in 
Theorem 2.1. 

If Fis two times Frechet differentiable at the solution x., the property (2.6) leads to an estimate 
for the second order part of the second Frechet derivative of IIF(x)ll2 at x •. 

Lemma 2.2 Let X, Y be Hilbert spaces and F: X ---+ Y, FE ci(BR(O)). If F"(x.) exists, the 
condition 

II (F'(x)* - F'(x.)*) F(x.)11 :s; o-jlx - x.11 Vx E BR(O) n B,(x.) 

implies 
ll(F"(x.)(·, h))* F(x.)11 :s; ullhll Vh EX 

10 



Proof: From the differentiability we obtain, that 

ll(F"(x*)(·, h))* F(x*)II ~ (o- + ef>(h))llhll 'vh E {h E XI x* + h E BR(0) }, 

where ¢ is continuous at the origin and fulfills ¢(0) = 0. For an arbitrary n E IN there exists 
8n > 0 such that ef>(h) < l/n 'vh E B 0n(0). This yields 

1 
ll(F"(x*)(·, h))* F(x*)II ~ (o- + -)llhll Vh E {h E XI x* + h E BR(0) }. 

n 

Taking the limit n ---+ oo gives 

ll(F"(x*)(·, h))* F(x.)11 ~ o-ilhll Vh E {h E XI x. + h E BR(0) }. 

Finally, we can apply the same considerations as in part (i) to show, that the inequality is valid 
for all h E X. D 

If we combine Theorem 2.1 and Lemma 2.2, we can conclude the following 

Corollary 2.3 Let the assumptions of Theorem 2.1 hold. Furthermore assume, that F"(x*) exists. 
Then the second Frechet derivative of the Lagrangian at the solution is strictly positive: 

Hence the second order sufficient optimality criteria is satisfied at x*. Especially we obtain, that 
x* is an isolated minimizer and that the objective in (2.4) possesses local quadratic growth ( 
[18] Theorem 5.6). This requirement seems to be inappropriate, since parameter identification 
problems are often 'rank-deficient' and ill-posed. But in presence of ill-posedness one has to 
employ regularization techniques to stabilize the problem, i.e. to guarantee continuous dependence 
of solutions of (2.4) upon input data. Such a technique may be the Tikhonov regularization, where 
a regularization term of the form o:llxll 2 is added to the objective, or a regularization by restriction 
of the admissible parameter set, i.e. an reduction of R. Hence, under suitable assumptions on F and 
on the regularization, the regularized parameter identification problem may fit the requirements 
of Theorem 2.1. In [8], [9] it was shown, that the output least squares formulation of elliptic 
parameter identification problems exhibit a quadratic growth for properly chosen regularization. 

The quadratic growth of the objective function can also be used to derive an estimate for the 
error between the solution of the infinite dimensional problem and the solutions of the discretized 
ones. In the following theorem we will establish such a perturbation result without the requirement 
of twice Frechet differentiable objective functions. 

Theorem 2.4 Let {A1)-{A6) and the assumptions of Theorem 2.1 are valid. Further assume, that 
F and FN are weakly continuous functions. If there exists a continuous function g with g(0) = 0 
and g(t) ~ t Vt E [0, 1] such that d(h1, h2) := g(py(lh1 - h2I)) defines a metric on [0, 1], then for 
all 8 > 0 there exists M 0 and N 0 such that for all M 2: M 0 , N ~ N 0 the discretized problem 

mm IIFN(xM)ll2 

llxMII ~R (2.27) 
xM EXM 

has a solution x~ N satisfying 
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Proof: By (A2) and (A5) there exists c > 0 such that for all N sufficiently large and X1, x2 E 
BR(O) 

This shows, that the discretization of F defines a Lipschitzian perturbation. From (2.5), (2.6), (Al) 
and the complementary condition µ.(llx.11 2 - R2 ) = 0 we can conclude that for some Lipschitz 
constant L and arbitrary x E BR(O) 

IIF(x)ll2 > IIF(x)ll2 + µ.(Jlxll 2 
- R2

) 

> IIF(x.) + fo 1 

F'(x. + t(x - x.))dtl1 2 + µ.(Jlxll 2 
- R2

) 

-2 < F'(x.)F(x.) + µ.x., x - x. > 
> IIF(x.)112 + µ.llx - x.112 - ullx - x.112 + µ.(llx.112 - R2

) 

+111
1 

F'(x. +t(x - x.))dtll2 llx- x.112 + ;.Jlx- x.1!2- IIF'(x.)112 llx - x.11 2 

> IIF(x.)112 + (µ. + i• - u)llx - x.112 - .Lllx - x.!13. 
With a = (µ. + ;. - u)/2 this yields the following growth condition for the infinite dimensional 
problem: 

IIF(x)ll 2 ~ IIF(x.)11 2 + aJJx- x.112, (2.28) 

for all x with llx - x.U ::; (µ. + ;. - u)/(2.L). H~nce, the the results of Alt ([3], Theorem 4, 6) 
yield the existence of N, such that for each N ~ N there exists a solution x;: of 

mm IIFN(x)ll 2 

llxll::; R 

with 

(2.29) 

where c is independent of N. 

For x with llx - x.JI::; (µ. + ;. - u)/(2.L) we deduce from (2.28), (2.29) and (A5) 

1 1 
py( N) 2 + 2py( N)IIFN(x)II + IIFN(x)112 

> IIF(x)!i2 

> IIF(x.)112 + allx - x.112 

> IIF(x;:)112 - 2Lallx. - x;;II IIF(x;:)11 + allx - x;: 112 - 2allx - x;;ll llx. - x;;II 

> IIFN(x;:)112 + allx - x;:11 2 - 2py( ~)IIFN(x;:)11- (2LacllF(x;:)II - 4Rac)J d(O, ~) 

define e = min{cS/2, (µ. + ;. - u)/(4.L)}. If we choose N6 ~ N such that 

12 
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and 

for all N > N 0 , we obtain the following growth condition for the finite dimensional objective 
function 

IIFN(x)ll2 2: IIFN(x~)ll2 + allx - x~ll2 - at, 
provided llx - x~ II<(µ.+ 'Y• - u)/(4£). 
Let Lo= 2Lo supxEBR(D) IIFN(x)II- Then we obtain from (A4), (A5) that 

I IIFN(xi)ll2 - IIFN(x2)ll2I :S Lollx1 - x2II-

(2.30) 

By (A6) there exists M 0 such that for all M 2: M 0 there exits xM E XM with llx~ - xMII :S 
min{tae2/(4La)}. Let x~N denote a solution of 

mm IIFN(x)IJ2 · 
llxll :SR 

xM E B€(x~) n XM 

In the next step we will show, that x!1N is a local solution of (2.27), which will be proven if we 
show, that llxf - x!1NII < e. Assume, that llxf - x~NII = e. Then (2.30) yields 

IIFN(x~N)ll2 2: IIFN(x;'."")112 + ae2 - at. 
On the other hand each xM E BR(O) with llx~ - xMII :S ae2/(4L0 ) satisfies 

IIFN(x~N)ll2 :S IIFN(xM)ll2 :S IIFN(x;'."")112 + at . 

Hence 

a contradiction. 
This gives the assumption, since each local minimizer x!1 N of (2.27) fulfills 

llx~N - x.11 :S llx~N - x~II + llx~ - x.11 < 8/2 + cJd(O, 1/N) :S 8. 

D 

If we have py ( h) = c hP with p 2: 1, which is usually the case for finite element discretizations, 
we can choose g(t) = t1f P. 

Theorem 2.4 gives a qualitative result on the perturbations of solutions, but does not give 
error estimates for the difference between x. and x!1 N, although the derivation of the theorem 
indicates, that llx~ - x.11 is dominated by Jd(O, 1/N) and llx~N - xfll by dist(X, XM) = 
supxEX infxMEXM llxM - xii- But note, that since M 0 in (A6) depends on 8 and x, the distance 
dist(X, XM) may be infinite for fixed M. A detailed analysis of the Gauss-Newton method, which 
will be presented in the next section, will enable us to improve this theorem. We will derive error 
estimates related to the approximation properties of the discretization as well as uniqueness results 
for the minimizers of the discretized problems. 
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3 Mesh Independence 

In this chapter we will investigate the behavior of the Gauss-Newton-Method for the discretized 
problem. Our goal is to develop estimates for the difference between the Gauss-Newton iterates 
of the infinite and finite dimensional problem. 

In the sequel we will use some basic estimates, which are collected in the following lemma. 

Lemma 3.1 Assume, that (Al), (A2), (A3), (A5) and (A 7) are valid. Define p = px(l/M) + 
py ( 1 / N). Then there exist constants c1, c2 and c3, independent of M and N, such that for all 
x, xM, y E BR(O) and for all N E JN the following inequalities hold. 

IIFfv(xM)* Ffv(xM) - F'(x)* F'(x)II :S c1(P + llx - xMII) (3.1) 

IIF'(x)*(F(x) - F'(x)x) - Ffv(xM)*(FN(xM) - Ffv(xM)xM)II :S c2(P + llx - xMII) (3.2) 

IIF'(x)* F'(x) - F'(y)* F'(y)II :S c3 llx - YII (3.3) 

Proof: Define C4 := supxEBR(o) IIF(x)II and C5 := supxEBR(O) IIF'(x)II . From (A5) we obtain 
that 

sup IIFN(xM)II :S c4 + py(l/N) 
xMEBR(O) 

sup IIFfv(xM)II :S cs+ py(l/N) and 
xM EBR(0) 

sup IIFfv(xM)*II :S c5 + px(l/M) + py(l/N) 
xMEBR(O) 

By (A5), (A7) crN, cf N and c:fN* are uniformly bounded. We set C4 = max{c4, SUPM,N crN} 
and cs= max{cs, supM,N(cf N, cf N*)}. This yields 

which proves (3.1). 
(3.2) can be derived in a similar way. We have the following inequalities 

IIF'(x)*(F(x) - F'(x)x) - Ffv(xM)*(FN(xM) - Ffv(xM)xM)II 

< IIF'(x)*II IIF(x)- F'(x)x - (FN(xM) - Ffv(xM)xM)II 

+ IIF'(x)* - Ffv(xM)*II IIFN(xM) - Ffv(xM)xMII 

< cs(Lollx - xMII + py(l/N) + c3llx - xMII + R(L1llx - xMII + py(l/N))) 
+(L1 llx - xMII + px(l/M) + py(l/N)) sup IIFN(xM) - Ffv(xM)xMll -

xMEBR(o) 

The last inequality together with the estimate 

yields the desired result. 
(3.3) results with the choice c3 = 2c5L1. D 
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Now, we are able to derive our fundamental estimates for the iterates and the Lagrange multipliers. 
In the proofs of these results we will utilize the special representation of the iterates Xt+l, x:i1 . 

We set 

x1,(µ) 

and 

-(F'(x1,)* F'(x1,) + µI)- 1 F'(x1,)*(F(xt) - F'(xt)x1,) 

XL - (F'(x1,)* F'(xt) + µI)- 1(F'(xt)* F(:i:t) + µxt) 

(3.4) 

xf N (µ) := -(Ffv(xf N)* Ffv(xf N) + µI)- 1 Ffv(xf N)*(FN(xf N) - Ffv(:xf N)xf N) (3.5) 

= xf N - (Ffv(xf N)* Ffv(xf N) + µI)- 1(Ffv(xf N)* FN(xf N) + µxf N) 

With these abbreviations we especially obtain, that Xt(µl+i) = X£+1 and xf N (µtf) = xtf. 

Lemma 3.2 Assume, that {Al) - {A5) and (A 7) are valid and that 

IIF'(xt)hll2 2: ,llhll2 Vh EX. 

Define TJ := llxfN - Xtll and p := Px(if) + py(t7 ). Let 

ll(F'(xt)* - F'(xfN)*)F(xt)II::; uilxfN - Xtll-

Jf c1(Px(l/M) + py(l/N) + TJ) < '"'f + µ , where c1 is defined in Lemma 3.1, then there exists 
c6 > 0, independent of M, N and i, such that 

Proof: From the definition of xt(µ) and xfN(µ) (see (3.4) and (3.5)), we obtain 

llxf N(µ) - Xt(µ)II 

(3.6) 

< ll(Ffv(xfN)* Ffv(xfN) + µI)- 1 11 (3.7) 

{jj(Ffv(xf N)* Ffv(xf N) + µJ)(xf N - Xt) 

-(Ffv(xf N)* FN(xf N) + µxf N - Ffv(xf N)* FN(xt) - µxt)II (3.8) 

+II ((F}.,,(xf N)* F}.,,(xf N) + µI) - (F'(xt)* F'(xt) + µI)) 

(F'(xt)* F'(xt) + µI)- 1(F'(x1,)* F(xt) + µxt)II (3.9) 

+ll(F'(x1,)* F(x1,) + µx1,) - (Ffv(xfN)* FN(x1,) + µx1,)II} (3.10) 

Using the basic estimates of Lemma 3.1, the expressions (3.7) - (3.10) can be estimated as follows: 

ll(Ffv(xf N)* Ffv(xfN) + µI)- 1 11 

< ll(F'(xt)* F'(x1,) + µI)- 1 11 

1 - ll(F'(x1,)* F'(xt) + µI)- 1(F'(xt)* F'(xt) - Ffv(xf N)* Ffv(xf N))II 
1 

< =r+i, 
1- -r.!.µci(p+ TJ) 

(3.11) 
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11Ffv(xt1"N)* Ffv(xt1"N)(xt1" N - Xt) - (Ffv(xt1"N)* FN(xt1"N) - Ffv(xt1"N)* FN(xt))II 

~ IIFN(xf N)*II IIFN(xf N)(xf N - Xt) - FN(xf N) - FN(xt)II 

~ csL1/2 rJ2 

ll(FN(xt1"N)* Ffv(xf N - F'(xt)* F'(xt))(F'(xt)* F'(xt) + µIr1(F'(xt)* F(xt) + µxt)II 

~ c1(p + 11)llxt(µ)- Xtll 

IIF'(xt)* F(xt) - Ffv(xf N)* FN(xt)II 
< ll(F'(xt)* - F'(xt1"N)*)F(xt)II + ll(F'(xt1"N)* - Ffv(xf N)*)F(xt)II 

+IIFfv(xf N)*II IIFN(xt) - F(xt)II 

< 0'1] + C4p + C5py (1/ N) 

Inserting these bounds into (3.7)-(3.10), we obtain the desired result by setting 

C6 := max{csLi/2, c5 + c4} 

D 

For the derivation of the estimate for the Lagrange multipliers we will utilize the convexity of 
llxt(µ)ll 2 

- R2, and its discretized analogue. 

Lemma 3.3 Let the assumptions of Lemma (3.2} are valid. Define 17 := llxt1"N - xtll and p := 
px(if) + py(17 ). If llxt1"N(µt+1) - Xt(µt+i)II < R and c1(P + 17) < 1 + µL+1, then there exist c7, 
independent of M and N , such that 

lµllf - µt+1 I 
< c1(l+llxfN(µt+1)II) c6172+c1(p+11)llxt(µt+1)-xtll+<r17+c6p (

3
.
12

) 
(1 - llxf N (µt+1) - Xt(µt+i)II/ R) 2 'Y + µl+l - c1 (p + 11) 

Proof: If µl+ 1 = µllf the assertion follows immediately. Therefore let us assume, that µl+l # 
µllf. Set 

Yt(µ) := llxt(µ)li2 - R2, 
Yt1"N(µ) := llxt1"N(µ)li2- R2. 

From the definition of Yt, grN we obtain 

IYt(µ) - gf N (µ)I = ( llxt(µ)II + llxf N (µ)II) I llxt(µ)II - llxt1"N (µ)II I 

(3.13) 

~ 2Rllxt(µ) - xt1"N(µ)II, (3.14) 

providedµ~ max{µL+1, µ~f} and (see (2.3)) 

lg¥N'(µ)I = 2 < x¥N(µ),(Ffv(xt1"N)*Ffv(xt'1"N)+µI)- 1xt1"N(µ) > 

Since FMxt1"N)* Ffv(xt1" N) is selfadjoint on (XM, < ·, · > x) it holds, that 

< (Ffv(xt1"N)* Ffv(xt1"N) + µI)-
1
hM, hM >~ IIFfv(xt1"~)ll 2 + µ lihMll

2 
VhM E XM. 
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Hence 

lgMN'(µ)I ~ _2_11xMN(µ)ll2. 
l cg+µ l 

(3.15) 

Now we will combine the estimates above, to develop the estimate for the error between the 
Lagrange multipliers. First let us consider the case µl+l < µN.f : 

Forµ E [µl+1,µN.f] we obtain similar to (3.14) that 

gf N (µ) - (R + llxf N (µ)ll)llxt(µ) - xf N (µ)II~ Yt(µ) ~ 0. (3.16) 

Since gf N is convex and gf N (µN.f) = 0 ( keep in mind, that µP+f > 0), we conclude 

gf N (µ) ~ gf N (µP+f) + lgf N' (µP+f)I Iµ - µP+f I-

With (3.15) and llxfN(µP+f)II = R this gives 

MN( 2R2 MNI 
Yt µ) ~ 2+ MN lµ-µl+l · 

C5 µl+l 
(3.17) 

Inserting (3.17) into (3.16) yields 

0 > gfN(µt+d- (R + llxfN(µ)ll)llxt(µL+1) - xfN(µL+i)II 

2R2 I MN I ( 11 MN I 11 MN > 2+ MN µl+l -µl+l - R+ Xt (µL+i)I) Xt(µt+i)-xl (µL+i)II, 
C5 µl+l 

respectively 

c2 + µMN 
lµN.f - µt+il ~ 5 

2R;+l (R+ llxfN(µL+1)ll)llxt(µL+i) - xfN(µt+i)JJ. 

With the estimates of Lemma 3.2 we finally obtain 

I MN I< cg+µP+f(R+II MN( )ll)c6r,2+c1(p+77)llx,(µL+1)-xtll+(177+c6p 
µl+l - µl+l - 2R2 XL µl+l + ( + ) . I µl+l - C1 p 1J 

(3.18) 
In the case µL+1 > µP+f we can proceed as follows: 
From the convexity of gp N we obtain 

gpN(µt+i) 
> µl+l - MN'( ) 

gl µl+l 

> + gfN(µL+i) - Yt(µL+1) 
µl+l I MN'( )I Yt µL+1 

In the last equality it was used, that µl+l > 0 is the root of Yl· Together with the estimates (3.14) 
and (3.15) we get 

lµP+f - µL+i I 

R(cg + µL+1) II MN( ) ( )II 
< llxf N(µL+i)Jl2 XL µl+l - Xt µl+l 

< (cg+ µt+1)/R c5772 + c1(p + 77)llxt(µe+1) - Xtll + (17] + c5p (3 19
) 

(1- llxf N(µt+i) - xe(µt+1)II/ R)2 'Y + µL+l - c1(P + 77) · · 
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From the definition of gf N (see (3.13) and (3.4)) it can be seen, that 

IJFMxf N)*(FN(xf N) - F,v(xf N)xf N)II 
R 

and therefore (see (3.1)) 

IIF'(xt)*(F(xt) - F'(xt)xt)II + c2(P + TJ) 
R 

is an upper bound for µ:if. This gives the assertion, since (cg+ µl+1)/R and (cg+ µ:if)/R in 
(3.18), (3.19) are uniformly bounded. D 

Theorem 3.4 Assume, that {Al} - (A5) and (A 7) are valid and that the assumptions of Theorem 
2.1 hold. Then there exists t 1, c (both independent of M, N }, M1, N1 and a function r : JN2 -+JR+, 
such that for all xo E BR(O) n Bf1 (x*), M;::: M1, N;::: N1 the condition Jlxo - xrNII ~ r(M, N) 
implies 

and (3.20) 

(3.21) 

Proof: Throughout the prooflet '*'µ*,t*,u,B,K,L 1 and a denote the constants defined in The­
orem 2 .1 and its proof. For brevity we define p := p x (if) + py ( /:r). 
The proof of the theorem is somewhat technical and therefore will be split in two pieces. In 
the first part of the proof we will examine the unconstrained case and provide the essential esti­
mates. In the second part we will treat the general case which requires to bound lµt - µf NI and 
llxt(µt+1) - xfN(µl+i)II simultaneously. Although the second part is more extensive, it is based 
merely on the same estimates which will be applied in the first part. 

(i) Assume, that llx.11 < R (, which impliesµ.= 0). In the proof of Theorem 2.1 t* was chosen 
such that IIF'(x)ll 2 ~ ~llhll2 for all x E BR(O) n Bf.(x.), moreover ~ > <T. Set 1 := ~ and 
choose . ,-u R-llx*II 

t1 := mm{t., ~· 2 } . (3.22) 

We define cs= max{l, 2t1}. Further, we choose M1, N1 such that 

. { 1 1 -u 3(,-u)2 3(,-u)(R-llx.ll)} 
p < mm --s-,---,---, --, -~(-~-)-2' --'----,-( ~--)--

ci + ci+c6 c1c8 4c1 64cs C6 + c1 16 C6 + c1 cs 
3 -y-u 

(3.23) 

V M ~ M1, N ~ N1, where c1, c6 are defined by Lemma 3.1,3.2. From Theorem 2.1 we obtain, that 
the sequence {xt}JN, generated by the Gauss-Newton Method with starting value xo E BR(O) n 
Bf, (xo), converges q-linearly to x •. Especially, we get llxt+l - Xtll ~ 2t1. Define 

r(M,N) := 

~--------~ -1 
(, - u)2 

l6(c1 + c6) 2 

18 



From p < 3(1 - o-)2/(64cs(c6 + c1)2) we obtain 

8(c6+c1) 
r(M,N)::; ( )c8 p. 

3 ,-0' (3.24) 

Now the theorem can be proven by induction. We present the induction step. Assume, that 
llxt - x:,1NII::; r := r(M, N). 
From the definition of 1:1 is follows, that 

llxt+1II < llx*II + llxt+1 - x*II 
< llx*ll+llxo-x.11 < R 

This shows, that Xt+l = Xt(0). Therefore Lemma 3.2 yields 

llxt+1 - xf (0)II 
c6llxt - x:,1112 + c1(P + llxt - x:,1Nll)llxt+l - xdl + o-llxt - x:,1NII + C6P < 

'i' - c1p - cillxt - xfNII 
< c611xt - x:,1Nll2 + 2c1(p + llxt - x:,1Nllh + o-llxt - x:,1NII + C6P 

1 - c1p- cillxt - xf NII 

The denominator is greater than 0, since pis chosen less then 1 /(c1 + 8
/~~:

6 c1c8 ). Therefore the 
terms on the right hand side are well defined. From 1: 1 ::; ( 1 - a-)/ ( 8c1) and p < (, - a-)/ ( 4c1) we 
find, that a- - 1 + 2c11:1 + c1p < (a- - 1)/2. Hence 

II 
MN( )II c6r2 +u21 r+2c1p1:1+c6p+(,-c1p)r 

X[+l - X l O ::; ----=------------'--~ = T . 
'i' - C1p - C1 T 

(3.25) 

The last equality follows from that fact, that r is the smallest root of 

2 O' - 'i' 
(c1 + c6)T + -2-T + 2c1p1:1 + C6P = 0. 

(3.22), (3.24), (3.25) and p::; 3(,- o-)(R- llx.ll)/(16(c6 + c1)cs) yield 

llxf N (0)II < llx.11 + llxt+1 - x* II+ llxt+1 - x:,1N (0)11::; llx*II + i(R - llx*II) + r < R. 

This shows, that xt!.f = x:,1N(0). Now the assertion follows from (3.24) and (3.25). 

(ii) To proof the general case we proceed as follows. In the first step we will use Lemma 3.3 to derive 
the bound for the Lagrange multipliers. This requires an estimate for llxt(µL+i) - x:,1N(µt+i)II to 
control the first term on the right hand side of (3.12). In the second step we will use Lemma 3.2 and 
perturbation results for linear equations together with the estimate for the Lagrange multipliers 
to verify the bound for the iterates. 
Define 

{,*+µ* } 'i' :=max ----µ*,o ' 
a 

It was shown in the proof of Theorem 2.1, that for x EB,. (x*) n BR(0) the following inequality is 
valid: 

IIF'(x)hll 2 2:: ,llhll 2
• Vh EX 
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Moreover o and t',. were chosen such that u < 1 + µ,.. 
Let 6 E (0, 1 + µ,. - u) be arbitrary. In this part of the proof 8 will play the role which was played 
by 1 - u in the first part. Set 

and Cg = max{l, 2t'2}. Since the error in the Lagrange multipliers are dominated by the error in 
the iterates, we obtain from (2.10) in Theorem 2.1, that for llx .. - xall < t'2 

< 

Define M2, N2 such that 

(3.26) 

r1(M, N) 

Then we obtain 

(3.27) 

With these arrangements, we obtain similar to the calculations in (i), that ( r 1 := r1 (M, N) ) 

llxt(µt+1) - xfN(µHi)II 

c5llxt - xf Nll2 + 2c1(P + llxt - xf Nll)t:2 + ullxt - xf NII+ c5p 

, + µ,. - lµe+1 - µ,.I - c1p- ciJlxt - xf NII 
< 

(3.28) 

(3.29) 

provided llxt - xf NII :'.S r1(M, N). 

Since llxt(µt+1)II :'.SR we obtain from (3.29) that llxfN(µH1)II is bounded. Therefore there exists 
c7 , independent of M, N, such that llxf N(µH1)II :S C7 and c1(l + llxf N(µt+1)II) :'.S c7, where c7 
is defined as in lemma 3.3. If we choose M3 2'. M2 , N3 2'. N 2 such that 

(3.30) 
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(3.27) and (3.29) yield 
c7 -------:-,,..,..,...,.-,--,--~ ~ 4c1, 

(1 - I lxt(µL+l) - xf N (µl+l) 11/ R)2 

provided M ~ M3, N ~ N3 and llxt - xf II~ T1(M, N). 

(3.31) 

Since lµL+l - µr+f I is bounded by the same term as llxt(µL+1) - xf N(µt+i)II (up to the con­
stant c?/(1 - llxt(µL+1) - xf N (µt+i)II/ R)2) ) we obtain from (3.12), (3.31) and (3.29), that 
llxt - xf NII~ T1(M, N) implies 

(3.32) 

Together with the 3.27 this gives the desired estimate for the Lagrange multipliers. To prove the 
estimate for the iterates, we have to combine the previous results. Lemma (3.2) yields 

llxL+1 - xr+f II 
llxt(µt+i) - xf N (µr+f)II 

< llxt(µL+1)- xfN(µL+1)II + llxfN(µL+1)- xfN(µr+f)II 

< c611xt - xf Nll 2 + c1(P + llxe - xf Nll)llxL+1 - Xtll + ullxt - xf NII+ C6P 
'Y + µ* - lµL+l - µ*I - c1p- cillxe - xf NII 

+llxf N(µL+1) - xfN(µr+f)II (3.33) 

If A, A E L(X, X) are continuously invertible with IIA-111 IIA-A.11 < 1, then 

Together with (3.11) this yields 

llxf N(µL+1)- xfN(µr+f)II 

< ll(FN(xf N)* FN(xf N) + µe+1I)- 1 II lµL+l - µr+f I llxfN(µt+i)II 
l - ll(FN(xfN)* FN(xfN) + µL+1I)- 1II lµe+i - µr+fl 

lµl+l - µr+f I C7 
< 

'Y + µ* - lµt+l - µ*I- c1p- c1llxt - xfNII - lµt+1 - µr+fl 

Define C10 = C1 + 4c7 S(c~tco) C9, then we conclude with (3.27) and (3.32) 

provided M ~ M3, N ~ N3 and llxt-xf NII~ T1(M, N). Ifwe insert (3.34) into (3.33), we observe 
that llxt+l - x~f II is bounded by a term which has the same structure than the bound in (3.28) 
(replace in c1 by c10 and c6 by cu := c6 + 4c~). Therefore, with the choices M1 ~ M3, N1 ~ N3 
such that 

fJ2 
p ~ 64 ( ) VM ~ M1, N ~ N1 C9 C!Q + CU 
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and 

r(M, N) := min {r1 (M, N), ( 4( 
6 

) + 
C10 + Cu l6(c10 + cu)2 

we finally obtain that llxL - xf NII~ r(M, N) implies llxt+1 - x:!.f 11 ~ r(M, N), which gives the 
assertion, since 

(M N) < 
8(c10 + cu) 

T , - 36 Cg p. 

D 

To guarantee that the error between Xi and xfN could be bounded by px(l/M) + py(l/N), 
we have to ensure that the starting point xf N satisfies a certain approximation property, which 
is essentially llxo - xrNII ~ O(px(l/M) + py(l/N)). However, if the starting point for the 
infinite dimensional problem satisfies x0 E XM VM, we can choose xf = xo for all M (and 
N). In this case we always have llxo - xf NII ~ r(M, N). Such situations occur for example if 
XM = span{¢1 , ... , ¢M }, where ¢i are splines and x 0 is a constant function. 

The advantage of this approach is that we obtain uniform bounds between the infinite dimen­
sional iterates Xi and the corresponding finite dimensional xf N, whereas in the setting of [2] we 
would obtain uniform bounds between the restriction of the infinite dimensional iterates onto the 
finite dimensional space, ~ M Xi and the iterates xf N. In the case of finite element discretizations, 
with X = H", ~M the spline interpolant, this would lead to estimates of the form (see [4] p.217) 

llxi - xf NIIH• < llxL - C!i.M xdlH• + 11.6..M XL - xfNIIH• 
1 

< c Mk+l-s llxtllHk+1 + c(px(l/M) + py(l/N)). 

This bound involves the Hk+1-norm of XL, and therefore leads only to a pointwise estimate, since 
llxLIIHk+• may not be bounded. 

An immediate consequence of this mesh independent behavior is the fact, that independent of 
the meshsize an (almost) constant number of iterations is needed to satisfy an appropriate stopping 
criteria. Appropriate stopping criteria for the restricted Gauss-Newton method are either 

llxi - P(xL - F'(xL)* F(xL))II < TOL 

IIF'(xt)* F(xt) + µlxtll < TOL, 

or 

where TOL is a given bound and P denotes the projection onto the feasible set. In our case 

{ 

R y 
P(y) = ~ if IIYII > R 

else 

If the iteration point Xt is an interior point, both criteria reduces to IIF'(xL)* F(xL)II < TOL. We 
will use the abbreviation 

llxL - P(xL - F'(xL)* F(xt))II 
IIF'(xL)* F(xL) + µLxLII, 
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depending on which criteria is used. With tfl N we will denote the corresponding discretized values. 
We use the same notation for both terms, since we have the same type of estimates for ltt - tfl NI 
no matter if (3.35) or (3.36) is used. £(TOL) and .eM N (TOL) will be defined to be the smallest 
iteration counts for which the termination criteria is satisfied, i.e. 

min{£! tl < TOL} 

min{£! tff N < TOL}. 

Now the uniform estimate, derived in Theorem 3.4 yields 

Corollary 3.5 Let the assumptions of Theorem (3.4) hold. If Xo and xr are given such that 
Xo E B,1(x.) and llxo - xrN11 :'.S T(M,N), {f1 and T(M,N) defined as in Theorem (3.4),) then 
for every TOL > 0 and 6 > 0 there exist M2, N2 such that 

/f tl(TOL)-1 > TOL we obtain 

Proof: In the proof of Theorem (3.4) it was shown, that under the assumptions listed above 
llxt - xff NII :'.S c(px(l/M) + py(l/N)) for all .e and M 2: M1, N 2: Ni. This yields, that there 
exists c, independent of M, N such that 

If we choose M 2, N2 such that 

lte(TOL) - tf[foL)I < TOL - te(TOL) VM 2: M2, N 2: N2. 

and 

we obtain 

and 

teMN(TOL) :'.S tf,./f;(TOL) + lteMN(TOL) - t~(TOL)I < TOL + 6 VM 2: M2, N 2: N2 

If te(TOL)-l > TOL we can choose 6 = 1/2(te(TOL)-l -TOL). This yields £(TOL + 6) = £(TOL). 
Hence the assumption is proven. D 

We conclude this section with results on the convergence rate of the Gauss-Newton method for 
the discretized problem and on perturbations of solutions and Lagrange multipliers. In addition 
to the assumptions (Al)-(A7) we need an assumption on the curvature of F and FN: 

(AB) There exists a sequence {lMN }, lMN---+ O(M, N---+ oo) , such that for all x, y E BR(O) n XM 

ll((F~(x)* - F~(y)*) - (F'(x)* - F'(y)*))FN(Y)II :'.S lMNllx - YII 
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In the following theorem we will use the notation of Theorem 2.1 and its proof. 

Theorem 3.6 Let {Al}-{AB) and the assumptions of Theorems 2.1, and 3.4 hold. Then for all 
a E (1, (-y. +µ.)ju) and all€ E (0, €.(a)) there exist M, and N, such that for all M 2: M,, N 2: N, 
and all xg:1N E BR(0) n B,(x.) the Gauss-Newton method for the discretized problem with staring 
point xg:1N converges to a solution x!1N of (1.3). Moreover, x!1N is the unique minimizer of (1.3} 
in B,(x.) and the convergence rate is given by 

MN LMN MN 
IIXLM+N

1 
_ xM. NII < au II MN MNII a 1 "' II MN MNll2 MN+ MN Xl - X* + 2( MN+ MN) XL - X* r. µ. r. µ. 

< 11xrN - x~NII, 

where ,,,MN:= supxEBR(o) IIFN(x)II and {,!1 N}JN, {uMNhv are sequences with 

lr!1N - r.l = O(px(l/M) + py(l/N)), luMN - ul = o(eMN + px(l/M) + py(l/N)). 

The errors between x. and x!1N and between the Lagrange multipliers can be estimated by 

(3.37) 

where c > 0 denotes a generic constant. 

Proof: We only give a sketch of the proof. 
Theorem 2.4 yields, that there exists a sequence {x!1N}JN of minimizers of (1.3) such that 
x!1 N --+ x * ( M, N --+ oo). Theorem 3 .4 yields the error estimate 

since (3.20) holds for all £. 

From (2.6), (A5) and (A8) we obtain, that for all x, y E BR(0) 

ll(FN(x)* - FN(y)*)FN(Y)II 

< ll(F'(x)* - F'(y)*)F(y)II + ll(F'(x)* - F'(y)*)(F(y) - FN(Y))II 
+ll((FN(x)* - FN(y)*) - (F'(x)* - F'(y)*))FN(Y)II 

< ullx - YII + py(l/N)Lillx - YII +eMN llx - YII 

Hence there exist uMN 2: u such that luMN - ul = O(eMN + px(l/M) + py(l/N)) and 

ll(FN(x)* - FN(y)*)FN(Y)II:::; uMNllx - Yll -

(A4) and (2.5) yield 

IIFN(x!1N)hMll2 > (IIF'(x!1N)hMII - IIFN(x!1N)hM - F'(x!1N)hMll) 2 

> (~llhMII - py(l/N)llhMll)2 · 
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Hence there exist a sequence {r~N}JN, r~ N = r. + O(px(l/M) + py(l/N)) such that 

IIF~(x~N)hMll 2 ~ r~NllhMll 2 VhM E XM. 

If we denote the Lagrange multiplier corresponding to x~ N by µ~ N, one can show similar to 
Lemma 3.3,3.2 (note that x*(µ*) = x* and use (3.37)), that for sufficiently large M, N there exists 
c independent of M, N such that 

Iµ. - µ~NI::; c(px(l/M) + py(l/N)). 

These preliminaries show, that we can choose M, N such that 

( 
r~N +µ~N) 

a E 1, MN 
u 

VM~M,N~N. 

If we apply Theorem 2.1 to x~N, we obtain the existence of f~N such that the Gauss-Newton 
method for the discretized problem with arbitrary starting point xrN E BR(O) n B,MN(X~N) 
converges to x~ N: • 

< 

Moreover, the proof of Theorem 2.1 shows, that f~ N -+ €*. 

The uniqueness of the solution x~N follows from the fact, that the Gauss-Newton method with 
arbitrary starting point x0 E B,(x.) converges towards x~N. D 

If F and FN are twice Frechet differentiable, a sufficient condition for (A8) to hold is 

IIFi(y)* FN(x) - F"(y)* FN(x)IIL(X,X)::; (px(l/M) + py(l/N)) Vx, y E BR(O). 

Since Fi(y)* is applied to an element of YN, it could be the ordinary YN,XM adjoint, 
Fi(y)* E L(YN,XM © XM)- In this case we obtain eMN = px(l/M) + py(l/N) and uMN = 
O(px(l/M) + py(l/N)). 

4 Examples 

In this section we will demonstrate, how the analysis of the previous sections can be applied to 
a certain parameter identification problems. Although we are considering the one dimensional 
problem, it should be mentioned , that our analysis can be extended to the multidimensional case. 
The parameter identification problem for the two point boundary value problem can be stated as 
follows: 

For a given observation z E L2(0, 1) or HJ(O, 1) find q E H 1 (0, 1) with llqlln,(o,l) ~ R 
and q(x) ~ r > 0 a.e. on (0, 1), such that 

u(q):::::: z. 
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Here u(q) E HJ(0, 1) is defined to be the weak solution of the state equation 

-(qu')' = f 
u(0) = u(l) = 0 

with f E L2 (0, 1), i.e. u(q) is defined through 

in (0, 1) 

< qu',v' >=< f,v > Vv E HJ(0, 1). (4.1) 

(For the rest of the chapter we will drop the notation of the space (0, 1) and we will always use the 
notation < . , . > for the L 2 - scalarproduct.) It is well known, that ( 4.1) always possess a solution 
u(q) E HJ and since q E H 1 , / E L 2 one can even show, that u(q) E HJ n H 2 with 

llu(q)IIH2 ~ cll/11£ 2 , (4.2) 

where c is a constant depending on 'Y and R (see e.g. [5), p. 223). In the sequel, we will denote 
by u(q) the solution of (4.1). For the solution of the parameter identification problem described 
above, we have to specify '::::::'. Here we will investigate the Output Least Squares formulation, i.e. 
we seek solutions of 

mm llu(q)- zllz, 
llqllH1 ~ R (4.3) 

q(x) ~ 'Y a.e. on (0, 1) 

where Z = £E(1,oo) or HJ(0, 1). It is well known, that (4.3) may be ill-posed in the sense, that 
small perturbations in the observation z may lead to large errors in the solution q of ( 4.3). In order 
to get a stable problem, for which it is possible to estimate the error between the computed solution 
of problem ( 4.3) with perturbed data z and the true, but unknown solution corresponding to the 
unperturbed data, one has to modify the problem. A possible remedy to remove this difficulty is 
the Tikhonov regularization. Here one adds a regularization term to the objective, so that ( 4.3) 
changes to 

llqllH 1 ~ R (4.4) 
q(x) ~ 'Y a.e. on (0, 1) 

The Tikhonov regularization for nonlinear problems was studied by many authors (see e.g. [5), 
[16), [8), [9), [12]). In the following we assume, that q. is a solution of ( 4.4) which satisfies q. ( x) > 
'Y a.e. on (0, 1). Since II· IIH1 dominates the infinity-norm and since we are doing a local analysis, 
we may drop the constraint 'q(x) > 'Y a.e. on (0, 1)'. In the sequel it will always implicitely be 
assumed, that the considered parameter functions q (, q1 , q2 , •• • ) are satisfying this constraint. In 
this case (4.4) fits our framework, if we set 

X = H 1
, Y = Z x H 1 (endowed with the product topology) 

and 

F(q) = ( u(qlq- z ) . 

(In this chaper we follow the conventional notation in parameter identification and denote the 
sought variable by q, whereas x E (0, 1) denotes the space variable!) It can be shown, that F is 
infinitely often Frechet differentiable. The first Frechet derivative is given by 
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where 'T/ = uq(q)(h) is the solution of 

< q'TJ1 ,v1 >= - < hu',v' > '<Iv E HJ. (4.5) 

The variational equation 

(4.6) 

where 'T/i is the solution of ( 4.5) with h; instead of h, characterizes the second Frechet derivative 
of F, which is given as 

For the numerical solution of ( 4.4) we choose piecewise linear splines. Let cpfl, t/Jf be the 
functions defined by 

{ 

M(x - ii/) 
cpfl (x) = :(~ - x) 

x E [i;/, k] 
xE(k,~] 
otherwise 

{ 

N(x-L:j/) xE[L:j/,i,] 
t/;f ( X) = N ( i:jJ- - X) X E ( i, , i:jJ-] 

0 otherwise 

We set XM := span{cpr, ... ,cp~}, VN := span{t/;{", ... ,t/;~-1} and YN := VN X XM. The 
discretized solution of the state equation is given as the uniquely determined element uN = uN (q) 
which satisfies 

< quN', vN' >=< f, vN > VvN EVN. (4.7) 

Now we choose the discretization of F as follows: 

where zN is a discretization of z, for example the spline interpolant. 

The Frechet derivative of uN (q), 'T/N := uf (q)(h), is given as the unique solution of 

(4.8) 

The second Frechet derivative is given analogously to ( 4.6). This especially proves the validity of 
(Al) and (A3). 

In the following we will denote by u( q) the solution of ( 4.1) and by uN ( q) its discretization, i.e. 
the solution of ( 4. 7), for a given parameter function q. And we will use a similar notation for the 
Frechet derivatives. 

We will now verify, that F and its discretization satisfies the assumptions (A2) and (A4). 
Since u(q1) - u(q2) satisfies the variational equation 

we immediately obtain from ( 4.2) and 

(4.9) 
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that 

llu(q1) - u(q2)IIH2 < cll(q1 - q2)u(q2)'ll£2 

< c2cill/ll£2llq1 - q2IIH1 · (4.10) 

From the error analysis of finite element methods we get (see [4], p.152,217) 

llu(q)- uN(q)IIH1 < ~¾llu(q)IIH2 ! 
< ~¾cll/11£ 2 !· (4.11) 

Using the Aubin-Nitsche trick (see e.g. [4], p.229), this estimate can be improved for the L2-norm 
to 

N 1 
llu(q)- u (q)IIL2 :S c2 N2 

The Frechet derivatives uq(q) and uf (q) are defined through the same kind of elliptic differential 
equation. Therefore we can apply a similar analysis to derive continuity results for these functions. 
If we use the corresponding estimates to (4.2), (4.10) and inequality (4.9), we obtain 

lluq(q1)- uq(q2)IIH2 :S c1c(llq1 - q2IIH1lluq(q2)(h)IIH1 + llhllH1llu(q1)- u(q2)IIH1) 

:s; 2cic3IIJIIL 2 llq1 - q2IIH1 llhllH1 

Let ( E HJ denote the solution of 

< q(', v' >=< huN', v' > Vv E HJ. 

Then the error between the discretized and infinite dimensional Frechet derivative can be estimated 
through 

1111- 11NIIH1 < 1111- (IIH1 + II( - 11NIIH1 

< c1 ~llhllH1 llu(q) - UN (q)IIH1 + JR ~c1cllhllH1lluN (q)IIH1 2_ , y::;1r N 

< 2#¾c1cll/llL2 llhllH1 ! 
In the case of L2 norms we can apply the Aubin-Nitsche trick twice and improve the L2-bound to 

N 1 
1111-77 ll£2'.SC3N2 

The above techniques can obviously be applied to the second and even higher Frechet derivatives. 
The calculations above show, that F satisfies the assumptions (A2) and (A4) for Z = HJ with 
py(l/N) = cy 1/N, provided llz - zNIIHJ ~ cl/N and for Z = L2 with py(l/N) = cy 1/N2, 
provided llz - zNIIL2 ~ c 1/N2 . 

Now we will investigate the computation of the adjoint of F'. From the structure of F' it is 
obvious, that it is sufficient to study the calculation of (uq(q))*. The adjoint of uq(q) applied to 
g E L2 can be computed in two steps 
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(1) Solve the adjoint equation for given q and g 

< qw',v' >=< g,v > Vv E HJ (4.12) 

(2) Transition from the L 2 to the H 1 topology 

< P, i,p > + < p', i,p' >=< u(q)'w', i,p > \/i,p E H 1 (4.13) 

(In our example the adjoint equation is just the state equation, since the differential operator 
Dxq(Dx·) is formally selfadjoint.) If we solve the two equations, we obtain p = (uq(q))*(g), which 
can be seen, if we set v = uq(q)(i,p) in (4.12): 

< g, Uq(q)(i,p) > < qw1
, Uq(q)(i,p) > 

= < w', q uq(q)(i,p) > 
= < i,p, u(q)'w' > = < p, i,p > H• 

(for the third equality we used the definition of the Frechet derivative, see ( 4.5) with v replaced 
by w). The variational equation (4.13) is the weak formulation of the elliptic problem 

p" + p = u(q)'w' in (0, 1) 

with Neumann boundary conditions 

a
ap (0) = ap (1) = 0. 

n 8n 

(4.13) yields 
- < p',i,p' >=< p,i,p > - < u(q)'w',i,p > \/i,p E C[f°, 

which shows, that p" exists and equals p- u(q)'w'. Especially we obtain p" E L2 and 

The Lax-Milgram Theorem and ( 4.9) yield 

Hence we obtain, that the weak solution of the Neumann problem obeys the regularity property 
p E H 2 and 

IIPIIH2 :5 2c1Jlu(q)IIH2 llwllH1 

:5 2c2c1II/IIL2IIYIIL2 · (4.14) 

This bound together with the techniques already applied to prove (A2) and (A4) can now be used 
to derive an estimate of type (A5). If we discretize the Neumann Problem ( 4.13) and solve 

< PM, i,pM > + < pM', i,pM' >=< u(q)'w', i,pM > \/i,pM E XM 

the error between the solutions of (4.13) and (4.15) can be estimated by 

,Mil 2 l I 1 IIP- P H1 :5 2c1c ;II/IIL2llul £ 2 M 

(4.15) 

(4.16) 

((4.14) and [4] p.152,217 ). The adjoint of the discretized Frechet derivative uf (q) is given through 
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(1) Solve the adjoint equation 

( 4.17) 

(2) Transition from the L2 to the H 1 topology 

<PM, 'PM > + < pM', <pM
1 >=< UN (q)' wN', 'PM > \:/<pM E XM (4.18) 

At the end we obtain pM = ( uf (q))*(g). The error between the infinite dimensional and discretized 
adjoints can be estimated by (see (4.2), (4.9), (4.11), (4.16)) 

lip- PMlln1 

< IIP- PMlln1 + 11PM - PMlln1 

< 2c2c1.!_ll/ll£2IIYll£2Ml + sup <uN(q)'wN'-u(q)'w',<p> 
7r 1ll"IIH1=l 

2 1 1 N' N I N' < 2c c1 -II/IIL2IIYIIL2- + sup < w - w', u(q)1<p > + < u (q) - u(q)', w <p > 
Jr M lll"IIH1=l 

2 1 1 N1 I N I N1 

< 2c c1;ll/ll£ 2 IIYll£2 M + c1llw - w lln1llu(q)lln1 + cillu (q) - u(q)lln1llw lln1 

< 2c
2
c1~ll/ll£2IIYll£2 ! +2{fa~cc1II/IIL2IIYll£2 ! · 

The last inequality proves, that (A5) is also valid with px(l/M) = ex 1/M, but we have 
py(l/N) = cy 1/N no matter if Z = L2 or HJ. 

We ran several test examples from the set of test problems in [17]. The test functions for the 
results we present below are given by: 

Example 1 u(q*) = sin(1rx) 

q* = 1/2 + cos(x), llq*llifl = ~ + sin(l) 

Example 2 
{ -9x' +6x x E[0, 1/3] 

u(q*) - 1 x E(l/3, 2/3] 
-9x2 + 12x - 3 x E(2/3, 1] 

3 2 1r2 

q* = 1/2 + sin(n), llq*ll1-1 = 4 +; + 2 

Example 3 u(q*) = sin(1rx) 

1 + x, llq.llJ/1 
10 

q* = 3 

The Gauss-Newton method was implemented using the Hebden-Reinsch method for the com­
putation of µtt.f as the inner iteration. In all test runs we chose zN to be the spline interpolant 
of z. The iterations were terminated if tr N :S TO L or £ > 15. For all test runs we took q0 = 0 .2 
and incorporated either the Tikhonov regularization or the regularization by norm constraint. All 
computation were done on a SUN Sparcstationl in double precision Fortran. 
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Tables 1 and 2 show the results for unperturbed observations. For small regularization param­
eter a the discretized problems have almost zero residual at the solution and the Gauss-Newton 
method convergences quadratically. Therefore there is no difference in the number of iterations for 
small a, except for Example 2, where regularization is needed to observe mesh independence. 

Table 1 

Number of Iterations 

qo = 0.2 z = u(q.) 

Example 1 
TOL = 10-H TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 7 7 7 7 7 7 7 7 7 7 7 7 
10-s 7 7 7 7 7 7 7 7 7 7 7 7 
10-6 7 7 7 7 7 7 7 7 7 7 7 7 
10-4 8 8 8 8 8 8 7 7 7 7 7 7 
10-2 10 10 10 10 10 10 8 8 8 8 8 8 

Example 2 
TOL = 10-H TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 11 > 15 8 6 7 7 10 > 15 8 7 7 7 
10-s 8 7 7 7 7 7 7 7 7 7 7 7 
10-6 7 7 7 7 7 7 6 6 6 6 6 6 
10-4 9 9 9 9 9 9 7 7 7 7 7 7 
10-2 9 9 9 9 9 9 7 7 7 7 7 7 

Example 3 
TOL = 10-H TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 8 8 8 8 8 8 7 7 7 7 7 7 
10-s 8 8 8 8 8 8 7 7 7 7 7 7 
10-6 8 8 8 8 8 8 7 7 7 7 7 7 
10-4 8 8 8 8 8 8 7 7 7 7 7 7 
10-2 10 10 10 10 10 10 8 8 8 8 8 8 
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In the norm constraint case, we obtain similar results, except for Example 2. Here we recognize 
an unstable behavior for R = 1.5, 1.2 and TOL = 10-8 • This might be due to the fact, that the 
Lagrange multipliers are computed approximately. If the constraint is active, we stop the inner 
iteration for the computation of µf N if 

Therefore the projection is computed in the following way: 

else 

Table 2 

Number of Iterations 

tfN = llqfN - P(qfN - Ffv(qf N)* FN(qfN))II (= IIFJv(qfN)* FN(qf N) + µfN qf NII) 
qo = 0.2 z = u(q.) 

Example 1 
TOL = 10-e TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
1.3 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 7(7) 7(7) 7(7) 7(7) 7(7) 
1.0 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 8(8) 8(8) 8(8) 8(8) 8(8) 
0.8 8(9) 8(9) 8(9) 8(9) 8(9) 8(9) 6(7) 6(7) 6(7) 6(7) 6(7) 

Example 2 
TOL = 10-e TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
2.5 7(7) 7(7) 7(7) 7(7) 7(7) 7(7) 6(6) 7(7) 7(7) 7(7) 7(7) 
2.0 7(7) 7(7) 7(7) 7(7) 7(7) 7(7) 6(6) 6(6) 6(6) 6(6) 6(6) 
1.5 8(8) 8(8) 8(8) 8(8) 8(8) 7(7) 6(6) 6(6) 6(6) 6(6) 6(6) 
1.2 8(8) 8(8) 8(8) 8(8) 7(7) 7(7) 7(7) 6(6) 6(6) 6(6) 6(6) 

Example 3 
TOL = 10-H TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
1.8 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 7(7) 7(7) 7(7) 7(7) 7(7) 
1.3 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 8(8) 8(8) 8(8) 8(8) 8(8) 
1.0 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 8(8) 8(8) 8(8) 8(8) 8(8) 
0.8 9(9) 9(9) 9(9) 9(9) 9(9) 9(9) 7(7) 7(7) 7(7) 7(7) 7(7) 
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384 
7(7) 
8(8) 
6(7) 

192 
384 
7(7) 
6(6) 
6(6) 
6(6) 

192 
384 
7(7) 
8(8) 
8(8) 
7(7) 



Tables 3 and 4 show the results for perturbed observations. In the case of Tikhonov regulariza­
tion mesh independence can be observed only for sufficiently large a. This behavior is theoretically 
justified through Theorems 2.1 and 3.4. The increase of a causes an increase of I on one hand 
(for this problem we have 1 = a) and on the other hand an increase of the residual and therefore 
of <T. Our results indicate, that a = 1 + µ* > <T for small, but sufficiently large a. If a is further 
increased, the difference of between a and <T gets smaller and for regularization parameters a :::: 1 
the method did not converge (a result which is not reported in our tables). For Examples 1 and 
3, a = 0.1, the criteria £ > 15 is satisfied before the gradient reaches TOL, although the method 
converges. 

Table 3 

Number of Iterations 

qo = 0.2 z = u(q*) + 0.05sin(107l"X - 0.51r) 

Example 1 

TOL = 10-8 TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 > 15 8 10 > 15 > 15 > 15 11 9 8 > 15 > 15 > 15 
10-6 10 10 11 11 11 11 7 7 8 8 8 8 
10-4 8 8 8 8 8 8 7 7 7 7 7 7 
10-2 10 10 10 10 10 10 8 8 8 8 8 8 
10-1 > 15 > 15 > 15 > 15 > 15 > 15 12 12 12 12 12 12 

Example 2 
TOL = 10-8 TOL = 10-tr 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 12 > 15 > 15 > 15 > 15 > 15 10 > 15 13 > 15 > 15 > 15 
10-6 8 10 > 15 > 15 10 10 7 7 > 15 > 15 7 7 
10-4 8 8 8 8 7 9 7 7 7 7 7 7 
10-2 9 9 9 9 9 9 7 7 7 7 7 7 
10-1 11 11 11 11 11 11 9 9 9 9 9 9 

Example 3 
TOL = 10 -s TOL = 10-0 

M 6 12 24 48 96 192 6 12 24 48 96 192 
aN 12 24 48 96 192 384 12 24 48 96 192 384 
0 > 15 9 10 > 15 > 15 > 15 11 8 9 > 15 > 15 > 15 
10-6 11 11 11 13 13 14 7 8 8 9 9 9 
10-4 8 8 8 8 8 8 7 7 7 7 7 7 
10-2 10 10 10 10 10 10 8 8 8 8 8 8 
10-1 > 15 > 15 > 15 > 15 > 15 > 15 13 13 13 13 13 13 
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In the case of regularization by restriction, we choose a stronger perturbation, since the given 
constraints force a strong regularization. The numerical results for the weaker perturbation did 
not differ (much) from those given in the Table 2. 

Table 4 

Number of Iterations 

tf N = llqf N - P(qf N - FN(qf N)* FN(qf N))II (= IIFN(qf N)* FN(qf N) + µf N qf NII) 

qo = 0.2 z = u(q*) + 0.5sin(101rx - 0.51r) 

Example 1 
TOL= 10-" TOL = 10 •O 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
1.3 9(9) 8(8) 9(9) 9(9) 9(9) 9(9) 7(7) 7(7) 7(7) 7(7) 7(7) 
1.0 9(9) 9(10) 9(10) 9(10) 9(10) 9(10) 7(7) 7(7) 7(7) 7(7) 7(7) 
0.8 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 6(6) 6(6) 6(6) 6(6) 6(6) 

Example 2 
TOL = 10-l! TOL = 10-0 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
2.5 11(11) 9(9) 10(10) 10(10) 11(11) 11(11) 8(8) 7(7) 8(8) 8(8) 8(8) 
2.0 11(11) 10(10) 10(10) 9(9) 9(9) 9(9) 8(8) 7(7) 7(7) 7(7) 7(7) 
1.5 11(11) 10(10) 10(10) 10(10) 9(9) 9(9) 8(8) 8(8) 7(7) 7(7) 7(7) 
1.2 11(11) 10(10) 10(10) 9(9) 9(9) 9(9) 8(8) 7(7) 7(7) 7(7) 7(7) 

Example 3 

TOL = 10-0 TOL = 10-6 

M 6 12 24 48 96 192 6 12 24 48 96 
RN 12 24 48 96 192 384 12 24 48 96 192 
1.8 9(9) 9(9) 9(9) 9(9) 9(9) 9(9) 8(8) 8(8) 8(8) 8(8) 8(8) 
1.3 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 8(8) 8(8) 8(8) 8(8) 8(8) 
1.0 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 8(8) 8(8) 8(8) 8(8) 8(8) 
1.2 9(9) 9(9) 9(9) 9(9) 9(9) 9(9) 7(7) 7(7) 7(7) 7(7) 7(7) 

34 

192 
384 
7(7) 
7(7) 
6(6) 

192 
384 
8(8) 
7(7) 
7(7) 
7(7) 

192 
384 
8(8) 
8(8) 
8(8) 
7(7) 
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