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Mesh Modification for Evolution Equations
By Todd Dupont

Abstract. Finite element methods for which the underlying function spaces change with time
are studied. The error estimates produced are all in norms that are very naturally associated
with the problems. In some cases the Galerkin solution error can be seen to be quasi-optimal.
K. Miller's moving finite element method is studied in one space dimension; convergence is
proved for the case of smooth solutions of parabolic problems. Most, but not all, of the
analysis is done on linear problems. Although second order parabolic equations are em-
phasized, there is also some work on first order hyperbolic and Sobolev equations.

1. Introduction. Finite element methods usually fail to perform well on problems
whose solutions are too rough to be approximated well in the space of trial
functions. Typically, computed solutions will oscillate unacceptably near regions of
rapid change when too coarse a mesh is used, or if sufficient dissipation is added to
control the oscillations, then the front is smeared.

The most straightforward solution to this difficulty is to include sufficient
flexibility to match the solution to a reasonable level of accuracy. This approach
works well for problems whose roughness is concentrated in a fixed small part of the
region being studied. For many important problems the solutions are rough in a very
small fraction of the underlying domain, but the area of roughness sweeps out a
substantial part of the total region over the life of the problem. For fixed-mesh finite
element methods these problems would require the use of great flexibility over
essentially the entire domain, and this is frequently too expensive to be a useful
approach.

Consider the following problems as possible examples in which some form of
time-dependent mesh might be useful.

The displacement in a porous medium of one fluid by another that is miscible
with it is frequently simulated using an equation of the form

(1.1) (pu, + v ■ Vu - V • Dvu = 0,

where u(x, t) is the concentration of the displacing fluid, tp = y(x) is the porosity,
V is the gradient with respect to the spatial variables, v = v(x, t) is an underlying
flow field, and D is a diffusivity matrix. This equation is the simplest example of the
many types of models that are used in petroleum engineering. For some realistic
situations the solution u is very nearly piecewise constant; u is approximately one or
zero over most of the region with a rather narrow transition region. The transition
region is an area of roughness of u that sweeps out a large portion of the reservoir
during the course of the problem.
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86 TODD DUPONT

Conservation laws of the form

(1.2) u, + (f(u))x-Euxx = 0

are used to model a wide variety of phenomena. For such equations one or more
"near shocks" can develop. It is necessary when e > 0 is quite small to use a very
fine mesh close to these near shocks or to add dissipation in some form in these
regions. Direct application of the most elementary finite element methods without
these precautions can give solutions that have properties that are qualitatively in
error.

Two phase flow in pipes is a problem that has attracted much interest lately.
There is no consensus as yet as to the proper equations to use in describing such
flows, but there are many sets that have been proposed. (See [23] for a recent
survey.) Since the physical systems involved have sharp fronts that sweep out long
lengths of pipe, a good mathematical model should have that property too. Most of
the models proposed consist of functional relations together with first order systems
with small dissipation terms. Thus they have some of the properties of the conserva-
tion law ( 1.2).

Another motivation for considering changing meshes for evolution equations is
that optimal or near optimal meshes for steady state problems can be computed if
the rules by which the mesh evolves are properly chosen. This seems particularly
interesting for singular perturbation problems.

In this paper I consider a combination of two fundamental techniques for mesh
modification. The two methods can be characterized as continuous and discontinuous
changes in the underlying space. The prototype of a continuous change is a finite
element space in which the elements are being smoothly deformed with time. While
in the case of purely discontinuous changes the underlying function space is held
fixed for a period of time and then abruptly changed to another.

There has been a considerable amount of work, both theoretical and experimental,
on changing meshes for time-dependent problems, An early practical demonstration
of the utility of changing the function space was given by H. S. Price and R. S.
Varga [20]. Shortly thereafter J. Douglas and I proved in [8] that a finite number of
mesh changes could be tolerated without loss in the rate of convergence.

P. Jamet in [12] introduced a general class of Galerkin-like methods for parabolic
problems. He proved optimal order convergence results under a mild constraint on
the number of discontinuous changes in the function spaces. Jamet's work with R.
Bonnerot on the Stefan problem [4], [5], [6] presents a chain of ideas that has
culminated in a method that has a continuously moving mesh that tracks the fronts
in a multiphase Stefan problem; their method also admits discontinuous mesh
changes. They used a related approach in [7] for compressible flow calculations, and
Jamet has analyzed a one-dimensional parabolic analog in [13].

K. Miller and R. Miller introduced the moving finite element method in [ 17] and
K. Miller provided interesting examples of the application of this method in [18].
This technique gives a general principle by which nodes are to be moved and seems
to be applicable to a very wide range of problems [2], [11].

D. R. Lynch and W. G. Gray [16] derive finite element methods for deforming
meshes and apply these to shallow water equations. They use the flow velocity of the
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MESH MODIFICATION FOR EVOLUTION EQUATIONS 87

fluid to move the knots as though they were neutral-density chips floating in the
fluid. Their paper contains several pages of discussion of the history of moving
meshes in the context of finite difference and finite element methods.

In [19] K. O'Neill and D. R. Lynch use a moving mesh procedure for a
convection-diffusion equation. They used the given flow to move the mesh points
near the local roughness in their one-dimensional example.

In [15] O. K. Jensen and B. A. Finlayson indicate the economies that can be had
by moving the mesh in a chemical flooding problem. They actually choose to move
the domain of the problem across a fixed mesh that covers a larger domain. In [14]
they apply a moving coordinate system approach (translation of the domain) to
solve transport equations. The rate at which the coordinates change can either be a
fixed constant or adaptively defined.

Throughout the first six sections of this paper I use rather standard notation for
the Sobolev spaces and their norms. For 1 < p < oo and m a nonnegative integer,
Wm'p(Q) will be used to denote the usual Sobolev spaces [1]. Also, Hm(Qi) is the
same as Wm'2(Q). The norm on H°(Q) = L2(ß) will be denoted by || - || or
II • IIL2W. The space H~m(tl) is defined to be the dual to Hm(Q); this is not exactly
the universal choice. No fractional order spaces are used in this paper.

For functions xp from an interval J into a norm space X, with norm || • || x, we use
the notation

ll*W;;0= [jHWxds

with the usual p — oo modification.
Section 2 treats parabolic Galerkin methods both in the case of continuous-time

and discrete-time approximations. A theorem is proved that, for a particular norm,
reduces the estimation of the error in the Galerkin solution to a question in
approximation theory. The theorems in this section were constructed specifically for
the case when the finite-dimensional function spaces are changing, but these
particular theorems are new in the case of a fixed function space.

Section 3 contains asymptotic error bounds that are obtained from the results of
Section 2.2. In Section 3.2 the results of Section 2.2 are generalized to include certain
nonlinear parabolic problems with nonlinear Neumann boundary conditions.

Section 4 presents an example to show that mesh changes, when completely
uncontrolled, can cause convergence to the wrong function. In Section 5 a Galerkin
method for first order equations is examined.

Section 6 is devoted to an analysis of K. Miller's moving finite element method
[17]. Only the continuous-time case is treated. An existence and stability result is
given and then asymptotic error estimates are proved for smooth solutions. The
order of convergence for this method on smooth solutions is optimal.

Section 7 looks briefly at Sobolev equations.

2. Basic Results for Parabolic Galerkin Methods. Let Q be a bounded domain in
Rd with piecewise smooth boundary. For T > 0 set Q = £2 X (0, T) and T = 3fi X
(0, T). This section deals primarily with the approximate solution of the following

</p
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parabolic problem:

(2.1)
u, + bu + v ■ V« — V • (aVw) =/   on Q,

du
dv g   on T,       u(x,0) = u0(x)   onß,

where V is the spatial gradient operator and b, v, a, f, g, and u0 are given smooth
functions. The outward normal to 3ß is v. Assume that the function a is uniformly
positive on Q. Adopt the notation

(2.2) (<p,xp) = fq>(x)xp(x)dx,        (<p,xp) = f <p{x)xp(x) do(x),

and let

(2.3) B(<p, xp) = B(t; <p,xp)= ( [btpxp + (v ■ v<pH + aV<p ■ V«//] dx.
JQ

The problem (2.1) can then be posed as

(u„xp) + B(u,xp) = (f,xp)+ (g,xp),       xpEHx(u),0<t<T,
(2.4) «(■,0)

2.1. Continuous-Time Galerkin Approximations. Partition [0, T] using T0 = 0 < Tx
< ■ ■ ■ < TM = T, and let J¡ = [7}_„ 7}). Suppose that for each t G [0, T] 911(0 is a
finite-dimensional subspace of /7'(Q). Suppose further that 91L(i) varies smoothly
on each J] in the following sense: for j:= \,...,M, there exists [\pk (•, t): k =
1,.. .,Nj) C 911(0 for / G Jj such that {xpkJ(-, t):k=\,... ,7V}} is a basis for 911(0,
t ^\pkj(-,t) is continuously differentiable as a map of Jj into L2(ß), and the
derivative is bounded. Further suppose that there exists a constant C such that for
0<t *£ T

(2.5i)

(2.5Ü)

l<pllw.(0)<CII«pll,      <pe91L(0,

*=i 2 «*^*j
a=i

on/,,7 = l,...,Af.7   ^

The constant C in (2.5) will not enter into the estimates below except through its
existence. I.e., the size of C is not important, but if it were unbounded there would
be technical complications. (When we look at the time-discrete versions of this
process the existence of C will play no role at all.)

Next we define a function space 9H that will contain the approximate solution. 91L
consists of certain functions V defined on [0, T) such that for each t E [0, T)
V(t) E 91L(0- We suppose that V\ J] for V E 91L is uniformly Lipschitz as a map
into L2(Q). Further we suppose that each V E 9H is such that the jump in V at T,
V\T, is orthogonal to 91l(7}),7'= \,...,M- 1.

The continuous-time Galerkin approximation U of u is defined to be an element
of 911 such that

(2.6)
(U(0)-u(Q),x) = 0,       Xe 911(0),

(U„ x) + B(U, x) = (/, X) + (g,x),       X G 9lt(0, 0<t<T.
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MESH MODIFICATION FOR EVOLUTION EQUATIONS 89

Under the above assumptions it is easy to see that U exists and that U is C ' on
each/;.

2.2. A Symmetric Error Estimate. For functions xp: [0, T] — Hl(Q) that are
piecewise smooth let

IH^III2 =  H\\2L°°(0,T; L2(Q)) +  H *P H Í2(0,T; ff'(8))
(2.7) M

+ 2  /H(0ll*-'<a,*<,))^
7=1    ^

where

(2-8) ll^lljr-|(a,9K'»=    SUP    (*»x)-
llxll »'=1
xe9H(r)

The seminorm in the sum in (2.7) makes the norm ||| • ||| depend on the space 91L.
It would be preferable if we could use a norm that was independent of 911. At
present, doing so seems to require an " inverse assumption" on the spaces 9H(0 and
that is something I want to avoid here. The H~l(Q, 911(0) seminorm is clearly no
bigger than the H '(ß) norm, where the H '(ß) norm is defined by duality to all of
//'(ß) instead of just the subspace 911(0.

The norm ||| • ||| is naturally associated with the error involved in (2.6). In this
norm the Galerkin process does as well as it is possible to do (up to a constant
factor) given that the approximate solution must be in 9H. This fact is expressed in
the theorem below.

Theorem 2.1. There is a constant C, dependent on Q and the functions a, b, and v
but independent of u and 91L, such that if u and U solve (2.1) and (2.6), respectively,
then

(2.9) |||W- U\\\<CM{\\\u- K|||: KG 911}.

Proof. Let V be in 911, and define & = U — V and r\ — u — V. Then for t E Jj

(2.10) (#„x) + /3(#,x) = (t}„x) + 5(tj,x),     xe 9lt(0-
Use x — # to see that for some positive constant a

(2.11) jt\\n2 + q\\n2„Ha) < c[N,H*-(a,*<,)) + NHir'(O) + "d"2]-

Next note that fory > 1

(2.12) ll*(2}-,-0)||2- \\&(Tj_x)\\2>0,
becausefl(7}_,) is the L2(ß)-projection into 91l(7;_,) of #(7}_, - 0).

From (2.11) and (2.12) it follows easily that

(2.13) IUIIÍm7-;z.^„+^IIÍ=,o.r;//'W»^C{l^lll2+lld(0)ll2}-
Next,the fact that

&=U-V=U-u + u- V=U-u + i\
when combined with the choice of i/(0) gives

(2.14) ll*(0)|| «||îï(0)||;
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just inner product with 0(0) in the first part of (2.6) and apply the Cauchy
inequality. Thus (2.13) becomes

(2.15) ll*H i-(p.r.t*(0))+ Il0ll^,o,r;//'(S2),<C|||T,|||2.
The relation (2.10) implies that

II *, II «-'(0.911.(0) ^ C[lldll//'(Í2) +  NJw-'íO.SKO) +  Il'lu//'(O)]-
This together with (2.15) gives

ll|0|l|2^C|||TJ|||2.

Now the triangle inequality and taking the infimum over V complete the proof.    D
Most parabolic Galerkin error bounds give asymptotic rates of convergence. Such

results almost always put a stronger norm on the solution u than on the error and
express the difference in the strength of the two norms as h to some power, where h
measures the size of the elements. Thus, while these asymptotic results may be
properly balanced, they are almost never symmetric in the sense of Theorem 2.1.

One other symmetric error estimate can be found in my work with Jim Douglas,
Jr., [8, Theorem 3.2]. There are also some results by A. Schatz, V. Thomée and L.
Wahlbin that are asymptotic in nature but almost capture a symmetric result [21,
relation 0.15]. Schatz, Thomée and Wahlbin show, under appropriate hypotheses,
that the solution of a parabolic Galerkin process approximates the solution of the
parabolic problem as well as possible up to a certain factor in the L2 and L00 norms.
If the factor were a constant this would be a symmetric or quasi-optimal result;
however the constant involves a logarithm of the parameter h.

2.3. Discrete-Time Error Estimates. In some ways these discrete-time procedures
are more elementary than the continuous-time process introduced before. There is
however a time truncation term which makes the error estimates nonsymmetric.

Let t = {tj)f=0, with 0 = t0 < r, < • • • < tK = T, be a partition of [0, T], and
denote by Ai, the difference ?, — /,_,. Assume for each / = 0,1,... ,K, that 91L is a•*      j j      j   * j j
finite-dimensional subspace of //'(ß). The discrete-time solutions will be sequences
{1/y/jLo where U, G %,j = 0,...,K.

The two discrete-time procedures treated here are based on the first and second
order correct backward difference formulas. For the first order correct backward
difference the sequence {C/} will satisfy

(i/0 - M(0), x) = o,     xe9lL0,
(2.16) (dlUj,x) + B(tj;Uj,x)

= (A-.(/)'X)+ (*,(■,o)'x),     xe%,j=i....,K,
where

(2.17) Wj = (Vj-Uj-x)/toj.

It is immediate that for Ai- sufficiently small (2.16) has a unique solution; it
suffices to have Afy- < e0, where for 0 < t < T and xp G //'(ß)

(2.18) e0"'(*.*) + B(f,xp,xp)>0.
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MESH MODIFICATION FOR EVOLUTION EQUATIONS 91

I assume that the Ar7-'s are all sufficiently small that (2.16) defines the sequence {c/}.
Adopt the notation Uj(x) = u(x, tj). Then

(2.19) (Mj,x) + B(tj;uj,x)
= (f(-,tJ) + Pj,x) + (g(-,tJ),x),      xe91L,,

where

(2.20) pJ(x) = è,uJ(x)-^(x,tJ).

In analogy with the previous section we define a norm ||| • |||T for all functions
xP(x, t) defined for tjj = 0,...,K and x G ß such that \p(-, tj) = \pj G //'(fi). The
convenient definition is

K K

(2.21) |||^lll2 = oma^||^.||2+ 2  IIfyW2H\a>A(, + 2  H^llw-'iO.»^.

This norm depends not only on the partition t of [0, 7], but also on the sequence
{9H7}jL| of spaces.

The following result gives a close analogue to Theorem 2.1 for this discrete-time
case.

Theorem 2.2. There exist constants C and e > 0, dependent on Q and on the
functions a, b, and v but independent on u, r, and {9H }, such that if u and {c/}*=0
solve (2.1) and (2.16), respectively, then

\u- i/|||T<C inf{|||«-F|||T:K={^.},^G9R7}

(2-22) ,  K y/2
+ \ 1  IIPyll!r'(0.*y)A/,

\7 = 1 /

provided A t ■< e for j — 1,..., K.

Proof. Let V = {^}jL0 where v, e %•» and define 0/ = Vj ~ V} and tj, = Uj - Vy
Then, for y = \,...,K,

(2.23) (9,0,, x) + B(tj-, 0,, x) = (9,tl. » Pj, x) + B(t-, «,., x),       X e 911,.
Use x = 0,- in (2.23), and apply the identity

(2.24) (8<dy,^)=^_[||#y||2-11^,112] +^i||a^||2

to get

(2.25) i3,(H0yll2) + B{8j, 0,.) < c[||3,ii, - p,.||„ 1(S2,,%) + llTj7ll//1(S2)]ll0yll//1(n).

This relationship then gives, via the discrete Gronwall lemma,

(2.26) max   ||#y||2 + 2   Il0y II^^Af, < c[|||t,|||2 + ||#0||2].
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92 TODD DUPONT

Note that it is this step that gives the Ai ■ < e constraint. In (2.26) the || 0O ||2 term is
treated using II0OII < || tj0 || to remove it from (2.26). Then (2.23) is used to get

(2.27)
l9f0/H//-|<a.9it,)< c |0yll//'(i2) + H9r*í II H-'(0,91,)

+ HP/llw-'(a,9iLy) + II"1?!! //'(«)]-

Next (2.26), with || 0O ||2 removed, and (2.27) imply that

(2.28) III0|||T2<C
K

I1IHT+   1    H P7 II H-'(0. *,)*/;
7=1

Finally the triangle inequality and taking the infimum over V = {V¡} complete the
proof.    □

The analysis of the first order correct backward difference scheme is very natural
but the fact that the spaces are allowed to change every step restricts the types of
argument that can be used. For example, a Crank-Nicolson difference scheme is most
naturally treated using a test function V that is the average of elements of 9TL and
91L _,; this is not possible in this context. Also //'(fi)-norm estimates can be derived
when the 91L's are fixed by using a time-difference test function; this is not possible
in general when the 91L 's vary.

The second order correct backward difference method is

(2.29)

where

(82Uj,V) + B(tj-, Uj,V)

= (f(-,tj), V) + (g(-,tj),v),        V G 911,,; > 2,

(2.30) 82Uj = d,Uj + Atj+JAtjim ' o,i/y-,).

For this scheme only the constant stepsize case will be considered here. Also the
choice of U0 and Ux will not be specified.

Note that u satisfies

{2.31) (82Uj,x) + B(tj;Uj,x) = (f(-,tj) + Pj,x)+(g(-,tj),x),       X G %,

where

(2.32) Pj(x) = 82Uj(x)-^(x,tj).

For smooth functions u the time truncation p will be 0(at-(Atj + Aíy_,)). Define
the analogue to ||| ■ m T for this case:

K K

|||C|||2,2=   max   ||^.||2+ 2  Hj\\2HHa)àtj+ 2   ll^llfr-'íO,*.)^.
.1    z J    *•

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MESH MODIFICATION FOR EVOLUTION EQUATIONS 93

Theorem 2.3. Suppose that Ai = Ai = T/Kforj > 1. There exist constants C and
£ > 0 such that for u and {Uj} solutions of (2.1) and (2.29), respectively,

|ii- i/|||T,2<C

(2.33)

provided At < e.

inf{|||M-F|||T,2:F=(^},^G9H;.)

1/2

+     2  llp,ll/V-(û,9fcy)A/ + IIí/0 - «0II2 + lit/, - «,
I 7=2

Proo/. As before let 0, = Uj — Vj and tj, = w, - J^, where ^ G 91t,- Note that the
following identity is true:

(520y, 0,)Ar = 2(0, - 0,_„ 0,) - K0, - »j-2, 0y)

= ll0yll2-||0,_1ll2+ll0y-0,_1ll2

-i[ll0,ll2-||0,_2ll2+ll0,.-0,_2ll2].

This can now be summed on y to give, for m s* 3,

2 (s20,,#,)Ar = ii0ji2-ii#1ii2 + 2 ii0y-0y-
7 = 2 2

(2.34) I0jl2+H0m-,II2-Il0,ll2-Il0ol

+ 2 II*,--*,--
2

Since

it follows that

I*,- - 0,-2 II2 < 2[|| 0, - 0,_, ||2 + ||0y_, - 0y_21|2],

2  (o20,,0,)A/>ll|0,
7 = 2

ml|2-il|0m_1l|2 + il|0m-0m_1H2

|ll*,ll2 + ill0oll2-^ll0,-0oll2-

Next use

to get that

(2-35)

lll0JI2-ill*m-,ll2 + ^ll*m-*_,ll2=ll*m-^*m-,ll2

2  (ô2d,,d,)A/>il|dm||2-[ll|^1||2 + |||d0||2].
7 = 2
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94 TODD DUPONT

The inequality (2.35), together with the same estimates used for Theorem 2.2,
implies that

K

max   ||0,||2+  2   II*,-II//-(a)Ar

(2.36) =s C i*0ii2 + ii*,ii2+ 2 NJW
7 = 2

+
K

2    ( 11*21./II lf-'<Q.«L,) +   llpyllfr'(0,91ly))Aí
7 = 2

Estimate the ô20   term exactly as the 3,0, was bounded, and use the triangle
inequality to complete the proof.    D

3. Some Applications and Extensions. The results and arguments of the previous
section are used here to get asymptotic error estimates and give an indication of the
situation for some nonlinear equations. Attention is restricted to the continuous-time
case in this section.

The results of Section 2 can be used to give asymptotic error bounds provided that
additional structure is imposed on the finite-dimensional spaces. The constraints
needed on the rate of change of the spaces seem quite reasonable. In the case of
nonlinear equations with smooth solutions the results of Section 2.2 can be proved
without major revision. A mild restriction is needed on fi to be able to treat
nonlinear boundary conditions.

3.1. Some Asymptotic Error Bounds. If the function spaces used in a Galerkin
process are changed in a very wild manner, one might guess that the approximate
solutions could converge extremely slowly, if at all. In fact, Section 4 of this paper
gives an example for which they converge to the wrong function as the number of
parameters is increased. The results of the previous section allow us to make some
positive statements about asymptotic convergence in the presence of mesh changes.

The easiest result that follows from Theorem 2.1 is that the convergence rate due
to a fixed underlying function space is not degraded because of the extra freedom
that is added and/or removed from the computational spaces, no matter how
uncontrolled these changes are. One way of expressing this is as follows: Suppose
that 911 is a finite-dimensional subspace of //'(fi) and that for each t G [0, T]
9lt C 911(0- Let W: [0, T] -* 911 be the continuous-time Galerkin approximation to
m with 911(0 = 9^. Then
(3.1) |l/-if|<C|ffr-tf|,
where U is the solution of (2.6) and C is the constant in Theorem 2.1.

While this particular result does not show any improvement over a fixed-mesh
Galerkin procedure, it does indicate that one can safely play with the use of
time-varying spaces to try to improve accuracy provided a good degree of error
control is left in a fixed subspace.

As discussed in the introduction, one situation in which time-varying meshes seem
useful is that in which the solution has a sharp front that propagates across the
region. In this type of problem one reasonable rule to use is "add freedom before it
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MESH MODIFICATION FOR EVOLUTION EQUATIONS 95

is needed and remove it after it is no longer needed." With this approach the spaces
91L(0 are fixed on the intervals /, = [2}_„ 7}); let 9H, be the 91(0 on J}. It seems
fundamental to this technique that the solution at time Tj can be approximated well
in the space 91L, = 911, n 91L,+,. Roughly speaking, if the spaces are chosen so that
the extra freedom is kept slightly longer than it is really needed to approximate the
solution by some element of the space, then the parabolic Galerkin approximation
will be a faithful representation of the solution.

To make the foregoing remarks more precise suppose that the approximation
properties of the spaces 91c, are known to satisfy the following conditions. There are
constants C, and r, r is a positive integer, such that for each j — \,...,M, there is a
map Vj\ Jj -* 911, such that

(3.2) max [||« - F,||„,(a) + h~2\\u - Vj\\H-,(a) + \\u, - I,,,ll„ .(ß)] < Cxhr.

Here h should be thought of as a small parameter that measures the number of
unknowns in the spaces rather than the maximum mesh spacing. Suppose in
addition that

(3.3) 7} - 7,_, >2A2
and that on Jj = [7, — h2, T}, + h2] there is a mapping Vj into 91L satisfying (3.2) on
Jj instead of Th-

under the above assumptions the solution U of (2.6) satisfies

(3.4) mU - u\\\ <C2CXhr,

where C2 depends only on T and the C of Theorem 2.1.
To verify this result one needs to construct a function V G 9lt for which the ||| • |||

norm of the error is bounded by Chr. This is easily done by going linearly from K to
Vj on the interval [7, - h2, 7,] and linearly from Vj to VJ+, on [TJt Tj + A2]. Since for
each time V(t) is either a VXt) or a convex combination of a Vj(t) and a Vk(t), both
of which approximate u well, it is clear that the L2(fi) and //'(ß) parts of ||| u — V\\\
are bounded by Chr. The time-derivative part of \\\u — V\\\ is only slightly more
complicated. On [Tj — A2, 7!], for example,

H",-   KK ■ '(0,911,)^ II Ut~  ^Hh-'(O)

(3.5) <max{||«,- VJtt\\„-.<„>, II«,- VjßrrHO)} +*"2«^-^IIjt'(Q)
<CAr.

The result (3.4) is very much like P. Jamet's result in [12], but (3.4) is derived
under somewhat different hypotheses.

The special case of piecewise linear functions might seem not to be allowed for by
(3.2) since the interpolant does not get H '(fi) accuracy that is of a better order
than its L2(fi) accuracy. This apparent difficulty can be overcome by constructing
the functions K on macro elements in which one (interior) degree of freedom is used
to match the average value over the macro. Then, provided the mesh is locally
quasi-uniform, (3.2) is reasonable.

3.2. Nonlinear Equations. The error estimates of Section 2.2 can be carried over to
the context of certain nonlinear equations with smooth solutions in very much the
same way they were proved in [8].
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Suppose that (2.1) is replaced by

(3.6) u, + v • {a(x, t, u)vu) —f(x, t, u, Vu),       a(x, t, «)-¿p = g(x, t, u),

where a, f, and g are smooth functions of their arguments. Suppose that a is
uniformly bounded above and below by positive constants and that a, f, and g are
uniformly Lipschitz with respect to u. Also suppose that / is uniformly Lipschitz
with respect to Vu. Let

(3.7) B(t,<p;\p,£) = (a(x,t,<p)Vxp- Vèdx.

For this problem the continuous-time Galerkin solution is defined to be U G 911
satisfying

(«(0) - (7(0), x) = 0,      Xe9t(0),
(U„X) + B(t,U;U,x)

= (f(-,t,u,vu),x) + (g{-,t,u),x),      xe91t(0.
The space 91L is the space introduced in Section 2.1.

In order to treat the nonlinearity on the boundary, the argument below uses a
trace inequality. Suppose that fi is such that for each e > 0 there is a C(e) such that
fori//G//'(fi)

(3.9) HWhm< ^11]^ + C(e)H\\2.
We assume that 3fi is locally Lipschitz and that fi is bounded; this implies (3.9).

The analogue of Theorem 2.1 holds in this case provided we restrict the infimum
to V 's in 91L that have bounded gradients.

Forp > 2 and L > 0 let

(3.10) 9H>.l= {>e91t: \\V(t)\\1yi+(a)<L,0<t<T}.
Theorem 3.1. Suppose that, for some p > d (recall that fi C Rd) with p > 2, each

91L(0 's a subspace of W'^ifi). Let L > 0 be given. Then there exists a constant C
such that

(3.11) \\\u- i/|||«Cinf{|||w- F|||: KE91t„iL}.

Proof. Let V be in 9H L, and define 0 = U — V and tj = u — V. Then the
analogue of (2.10) is

(*„x) + B(t,U;*,x)
(3 12) ={ri„x) + B(t,u;ri,x)+[B{t,u; V,x)-B(t,U; V,X)]

+ (f(-,t,U,vU)-f(-,t,u,Vu),x)
+ (g(-,t,U)-g(-,t,u),X),       XG91L(0-

As before use x = 0- The first two terms on the right-hand side of (3.12) are
bounded as in the proof of Theorem 2.1. The difference of the/'s is treated easily
using the Lipschitz continuity of /to get

(3.13)    (f(-,t,U,VU) -f(-,t,u,Vu),&)<£n\\2Hi + C[||0||2+ IItjII2,,].
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The boundary term in (3.12) is bounded using the trace inequality (3.9) to get

(g(-,i,c/)-g(-,/,«),0)<C[||0||£2(aa)+lhl|£2(98)]||0||L2(3a)

ell#llî*(o, + c[||*||2+Nllkw].(3.14)

Let q be defined by

!g

1+1+1=1.
p      q      2

Then
/, ,*\ 111113.15) - = --->---.v q      2      p     2      d

Hence for e > 0 there is C(e) such that for xp E //'(fi)

(3.16) 11*11^(0) < «11*11 «.(Oï + Cie)!!*«.
Now use the Lipschitz continuity of a(x, t, u) with respect to u to get that

t B(t,u; V,$)-B(t,U; V,*)<C\\u- tf IUa)IIK||^.,(a)||0||H,
(3.17)

<e||*ll^. + C(e,L-)[||#||2+||iI||^.].
The inequalities (3.13), (3.14), and (3.17) used with (3.12) with x = * then give

(for suitable choices of e) the inequality (2.11). The remainder of the proof is almost
exactly like that of Theorem 2.1.    D

4. A Counterexample. To illustrate that changing the mesh in a completely
uncontrolled way can cause convergence to the wrong answer a single example
suffices.

For simplicity this counterexample is constructed for a periodic problem in one
space dimension. The first-order-correct backward-difference formulation will be
used but the same result can be demonstrated for the continuous-time Galerkin
process.

Let u(x, t) for t > 0 be the solution of the problem

(4.1) u(x,0) = sin(2'ïïx),       x G R,
u(- ,t)    1-periodic in R.

For j = 0,1,2.let 911, be the 1-periodic piecewise linear functions over the mesh
x¡ - (i + {j)Ax, i = 0, ± 1, ±2,..., where Ax = 1/iV. Let 7, =/Ai for At > 0 given.
Let Uj G 91L, be such that

(4-2) (9íí/,,X)+(¿c/,|f)=0,        XE91L,.,
where the inner product is taken over (0,1), say. Just as in Section 2.3, take U0 to be
the L2(fi)-projection of the initial data.

First note that the average value of each Uj is zero since x = 1 is a possible test
function and (U0,1) = 0. With x = Uj (4.2) gives that

¿-[Ilt}ll2-lli5-,lla]+257lli5-^,ll2+ ¿q o.
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where the L2 norm is taken over (0,1). This gives that

(4.3) WUjW2 - \\Uj_x\\2 + \\Uj - Uj_x\\2 <0.

If 9lt. is the space of possibly discontinuous 1-periodic piecewise linear functions
over the same mesh as the space 911,, then

(4.4) \\Uj-Uj_i\\>\\UJ-Wj_x\\,
where W,._, is the L2-projection of U¡ into 91t,-.,. For the points x, in the mesh for
911,. let

d2Uj(x,) = (Ax)~2(U(xi + Ax) - 2U(x¡) + U(x, - Ax)).

A computation shows that

(4.5) lit/,- ^_,ll2 = ^-(Ax)42 (32c/,(x,))2Ax.
iyA /=i

Because Uj has average value zero and is 1-periodic, another calculation shows
that

(4-6) Ht/yll2^-j-2  (32i/,(x,.))2Ax.
í= i

Thus,

(4.7) ||Uj- ^_1||2>4(Ax)4||i/,||2.

This relation, (4.4), and (4.3) imply that

(4.8) llt/,H2<-l—--Ilc/._,||2.
1 + 4(Ax)

Hence

(4.9) ||[/,||2<i[l + 4(Ax)4]^.

Now fix any t > 0. Then

(4.10) max ||C/,||2<i[l + 4(Ax)T'/A'.
j\t>t

If Ar and Ax tend to zero in such a way that (Ax)4/A? -> oo, then for any / > 0

(4.11) max ||f/||2^0.
jAt>t

This scheme for changing the mesh is clearly not a good one to use. It does point
out that changing meshes results in dissipation. In this case the mesh change seems
to look something like the operator

8 -*
«A*>»(¿

5. First Order Equations. For an equation of the form

(5.1) u, + v(x,t)ux + b(x,t)u= f(x,t),       0<x<l,i<0,

where v(x, t) > 0, with initial-boundary conditions

(5.2) u(x,0) = u0(x),       0*£x:*£l,        u(0, t) = g0(t),       t > 0,
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there is a natural Galerkin method (and several that are less than natural). The
purpose of this section is to indicate that the corresponding natural method based on
changing function spaces has the same types of properties as its fixed function space
prototype.

Let the problem (5.1)—(5.2) be transformed so that g0 = 0; this will in general
involve changing/and the meaning of u. Now suppose that (5.1)—(5.2) has a weak
formulation as follows: Find u: [0, T] -» %, where % is the subspace of //'(0,1)
consisting of all xp(x) with xp(0), such that

(5.3)      («,,X) + *(«,X) = (/,X).       xe%,i>0,       u(-,t) = u0.
Here

B{u, x) = f [vuxx + bux\ dx.

There are two important properties of the bilinear form B:

(5.4a) B(<p,<p)<C\\<p\\2,       q>E%,

(5.4b)        5(<p,*)<C||<p||„.(0>I)||,HI,       <pG//'(0,l),*GL2(0,l).

With these two properties the analysis for changing function spaces is very much like
that expounded by B. Swartz and B. Wendroff [22].

Suppose now that fi C Rd is a domain and that DC is a given subspace of //'(fi).
Suppose that u: [0, T] -» % is continuously differentiable. (This is more than
minimal but we cannot get useful convergence results for minimally smooth func-
tions here.) And suppose that B(t; -, •) is a bilinear form on % X % such that (5.4a)
and (5.4b) hold for each t E [0, T] and the constant C can be taken to be
independent of t. Suppose that u satisfies

(5.5) {ut,x) + B(u,x) = (f,x)>       XG5C,
where/is a continuous map of [0, T] into L2(ß). Let

(5.6) u0(x) = u(x,0),       x E fi.

Now suppose that the spaces 91L(0 of Section (2.1) are subspaces of %. Define
t/G 911 by

{u„x) + B(u,x) = {f,x),     xe9it(0,íG[o,r],
(U(0)-u0,x)=0,       x g 911(0).

In this case we get an error estimate that is analogous to Theorem 2.1 but which is
not symmetric; at this level of generality this is as it should be [9]. Let, for all
sufficiently regular maps xp of [0, T] into //'(fi),

(5-8) [[$]]  = H,W L\0,T; L2(Sl)) +  H'/'lli.l(0,7-;//1(ñ))-

Theorem 5.1. There exists a constant C such that for u and U solutions of (5.5) and
(5.7), respectively,
(5.9) ||«-c/||Lco(0(7.;LJ(O))<Ciiif{[[«-F]]:FE91l}.

Proof. Take V E 911, and let ê = U - V and tj = u - V. Then

(5.10) (0„x) + *(*,x) = U,x) + *(îi,x),     xe9lt(0,o<r<r.
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Take x = 0 to see that

d,„011)11011 ^ -5(0,0) + (tj„ 0) + t3(tj, 0)

<C[||0||  + ||T,i|| + ||1,||ff,(a)]||0||.

Hence for || 011 ̂ 0

(5.11) ¿II0||<C[||0|| + ||tj,|| + ||tj||„,(í2)].

Integrate this over each./,, use (2.12), (2.15), and Gronwall's lemma to get

(5.12) ll0IÍL»(o,r;£*(a))<C[[T,]].
The conclusion now follows from the triangle inequality and the fact that

llTjlli.«(0.7-;Z/(a))<C[h]]-

6. A Moving Finite Element. K. Miller has defined a class of methods for
systematically moving the mesh associated with a finite element function space.
These procedures, which he calls MFE's or moving finite element methods, seem
experimentally to be quite effective for problems with sharp fronts [17], [18], [11], [2].

This section presents some preliminary steps toward understanding these tech-
niques. In particular, the results of this section are concerned with the one space-di-
mensional problem in which the underlying function space consists of piecewise
polynomial functions.

6.1. One-Dimensional Description. Take fi to be the interval (0,1). Suppose for
simplicity that a(x, t) of (2.1) does not depend on /. The space 9H(0 will be all
continuous piecewise polynomial functions of degree at most r defined over a mesh
{5,(0}" o> where
(6.1) si(t) = S(ih,t)
and h = \/N. The function S(y, t) will be defined as part of the MFE, but it will be
a continuous piecewise linear function over a mesh {ih}*L0.

Let ß be a continuously differentiable function from R+ (the positive reals) to
R+ . Suppose that

(6.2) lim/3(x) = +00.

The function ß is a penalty term used to control the mesh, and for the sake of
generality we only give the assumptions we use in the proof.

The formal motivation for the MFE method treated here is to choose the time
derivatives of the approximate solution U(t) G 911(0 and S so as to minimize

11(7,+ et/-/||2+||S>, + /3'(Sv)||2
at each time. Here £ is the spatial operator associated with (2.1 ). This must be purely
formal because of the fact that £t/ is not usually in L2(fi) when U is a continuous
piecewise polynomial function. The function ß' is, of course, the derivative of ß with
respect to its argument.

For each t G [0, T]

S(y,t)=y + S(y,t),
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where S(-, t) G 91t0. The space 91L0 is the collection of all continuous piecewise
linear functions over the uniform partition {/A} which vanish at y = 0 and y = 1.
For each t for which S(-, t) is one-to-one, S~x will denote the inverse of S as map of
[0, l]toÄ.

The bilinear form B(t; -, •) from Section 2 is to be extended to functions that are
only piecewise smooth. For such functions <p and xp take

N        s
(6.3) B(t; <p,xp)=  2 / '  («<PA + »<PA + by*) dx.

1=1      s,-\

The notation used earlier for the jump in a function
(6.4) xp\Sj = xp(sJ + 0)-xp(sJ-0)

will be used in this section too.
The initial conditions for U and S will be

(6.5) (t/(0)-«(0),x)=0,       Xe91L(0),       S(y,0)=y,      y G [0,1].
(The particular choice of S( ■, 0) being the identity is convenient, but any " tame"
strictly monotone increasing map of [0,1] onto [0,1] would do as well.)

The evolution of U and S is governed by the following set of orthogonalities:

(6.6a)    (U„xP) + B(t;U,xP) = {f(-,t),xp) + {g(-,t),xp),       xp G 911(0,

(U„-Uxx) + B(t;U,-Uxx)-\   2 a(Sj)(Uxf\Sjx(Sj)
(6.6b) j=l

+ (SY, + ß'(Sy), x„) = (/(-, 0, - UxX),      x G 9H0,
where X(y) = x{S(y, t)).

One way to motivate (6.6) is to note that in the case of a fixed mesh, say
S(y, 0 —y, the usual Galerkin orthogonalities are expressed by (6.6a). (K. Miller
was, to my knowledge, the first to observe that these can be formally derived from a
minimization at each time.) The use of the S r-terms in the minimization is to
prevent singularity of the evolution equations in certain cases. If the approximate
solution is a single polynomial of degree <ron two adjacent subintervals, then the
solution is not changed if the interior boundary between the two subintervals is
moved; this would give singular equations without the Syt + ß'(Sy)-term. The
S^-term is called a viscosity term by Miller and Miller since it keeps the adjacent
knots moving at about the same speed. The ß'(Sv)-tcTm is called a spring-force-term
and it keeps the knots from coalescing.

6.2. A Fundamental Stability Result. It is easily seen that the relations (6.6) are
equivalent to a system of ordinary differential equations that has a solution locally
in time, but it is not obvious that a solution exists for all t G [0, T].

Theorem 6.1. The solution (U, S) of (6.6) exists for all t E [0, T], and, at each t,
S(-, t) is a strictly monotone map of [0,1 ] onto [0,1 ]. Further there is a constant C such
that
(6.7) Hi/(-,0ll27'(a,+ (]ß(Sy(y,t))dy<C,       0<t<T,

and

(6-8) IISv/ll/,2(o,r;£2(a)) + Hi/Jlz.2(o,T;z.2(a)) ** c-
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Proof. Suppose that S(-, t) is a strictly monotone increasing function of [0,1] onto
[0,1] for t G [0, í,]. Then either ¿, = T or the system (6.6) has a solution that exists
on some interval [0, ¡2), where t2 > ¡,, and if t2 is taken sufficiently close to tx, the
mapping S(-, t) will be strictly monotone for t < t2.

For/ = \,...,N and k = 0,... ,r, let
f7M = c/(^ ,(0 + (j,(0 - j,_,(0)*A. 0-

Take U,v G 911(0 to have the values Ujk at the points sJk = Sj_x + (j, — í _,)Jfc/r.
Set

(6.9) I/, = I/,K + l/,H.

Then it is an easy exercise to see that on each interval (s,_i, s.)

(6.10) U,"{x, t) = -Ux(x, t)S,(ST\x, t), t).
Take x in (6.6a) to be U,v and take x in (6.6b) to be S,. Then add these two

relations to get that

1   N~]
(6.11) {U" U,) + B{t' U' U,) ~ 2   .? aWU*f ksJ + (Sv + ß'(Sy)> Sv<)

= (f{-,t),Ui) + (g(.,t),U,).

Now write

(6.12) B(t;<p,xP) = Bx(<p,xP) + B0(t;<p,xP),
where

N
(6.13) Bx(<p,xp)= 2 *,,,-(*,*)

7=1

and

(6.14) BXJ=f'a{x)(<p1#x + v*)dx.
*y-l

Note that

\ ^BhJ(U, U) = BXj(U, U,) + ^a(sj){Ux(Sj))2s; + \{U{'¡íf''j(6.15) l dt

-ia(*,-i)(%-i))2*;-i-*(ü(*y-i))V;-i-
Hence,

(6.16) I |t31(c/,í/) = /31(í/, U,)-\ Nla(Sj)(Ux)2\Sjs'.
7=1

Thus it follows that

m\\2 + IISV,H2 +¿[iB,(l/, Í/) + (j8(Sy), l)]

(6.17) =(f{-,t),U,) + (g(-,t),U,)-B0(t;U,U,)

<illl/,||a + C[l + 111/11?] +^<g(-,0,t/>-
In deriving (6.17) we used the fact that g, and/are bounded.
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The inequality (6.17) together with Gronwall's lemma and the fact that a(x) > a
> 0 imply there is a constant C such that on any interval [0, t2] for which the
solution exists

max (ß(Sy), l) < C.
[o,/2l

This implies that on no subinterval ((/ — 1)A, /A) is Sy equal to zero. Hence, since Sv
varies continuously in time on each subinterval, we see that Sv is, in fact, uniformly
positive. This then implies that if t2 < T, the interval of definition of (U, S) can be
extended. The bounds claimed also follow from the estimate that showed that Sy
stays positive.    D

The primary reason for allowing the mesh to change with time is to cluster much
of the flexibility of the space 911(0 in those areas where u is rough. Thus it is
desirable for Sv(-, t) to be quite small in a part of its domain if the solution is very
sharply changing. Hence to allow for this possibility ß should probably be chosen so
that it is small until Sy becomes extremely small.

The penalty term Sy, + ß'(Sy) has been included to give a nondegenerate prob-
lem, but it can also be used to control the movement of the mesh.

Suppose now that, instead of being defined on R+ , ß is only defined on an
interval (ß, ß), where ß > 0. Take ß to be a continuously differentiable nonnegative
function on (ß, ß) that goes to +oo as its argument goes to ß or to ß. Then, we
need to have ß< 1 and ß > 1 so that the initial value of (ß(Sy), 1) is finite.

For the remainder of this section the conditions that

(6.18) lim/j(x) = +00, lim ß(x) = +oo,
x^ß x^ß

will be assumed to hold. Under these new conditions on ß Theorem 6.1 remains
valid. Note that for ß as above j, - s _, =s A/3. If, for example, ß — 2, then one half
the points i, can be tightly grouped about a single area of roughness while the
longest subinterval is no more than twice that of a uniform fixed mesh.

6.3. Application of the Basic Results. The stability result, Theorem 6.1, tells us
enough about the mesh {j.} that we can derive asymptotic error bounds. The order
of convergence is what one would expect from a fixed-mesh procedure.

Theorem 6.2. Suppose that u, the solution of(2.\), is sufficiently smooth. Then

(6.19) \\\u- U\\\<Chr.
Proof. The estimation of the L°°(0, T; L2(fi)) and L2(0, T; //'(fi)) norms is

routine, but the calculation of the time-derivative error is not so trivial.
Let sjk(t) - S((j - 1 + k/r)h, t), for k = 0,... ,r. Take W(x, t) G 911(0 to be

the interpolant of u based on the points sjk. Define

(6.20) Wjk(t)=W(sjk(t),t) = u(sjk(t),t).

Then

Wjk{t) = u,(sJk(t), t) + ux(sjk(t), t)s¡k(t)

= «,(*,*('). t) + ux(sjk(t), t)S,(s-x(sjk(t), t), t).
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Just as for U, we can decompose W, as follows

(6.22) w,= W,v+ W,H,

where W,v G 911(0 has the values W'h at each sjk. Then, as before, the //-component
is in general discontinuous and is given by

(6.23) W,H(x, t) = -Wx(x, t)St(S~x(x, t), t).

Letting § denote the subinterval by subinterval interpolation operator we see that

(6.24) W, = 9(11,) + i{uxS,(S-1)) - ${u)xS,(S-x) = i(ut) + p.

At the points sJk the polynomial p satisfies

(6.25) p = S,(S-{)[ux-($u)x}.

Hence, if « G L°°(0, T; Hr+ '(fi)), we see that

(6.26) \\p\\L\o,T;LHQ))<Chr.

Of course the 4(w,) term in (6.24) is easily compared to u,, and the result follows.
D

The smoothness required on u is not minimal in the above argument. One should
probably use an //'-type projection of u instead of the interpolant, but that would
complicate the argument.

6.4. Some Remarks on Moving Finite Element Methods. The estimates of the
previous subsection indicate that the MFE method would work as well as a
fixed-grid method on a smooth problem, but they do not indicate why the procedure
is as effective as it seems to be on sharp front problems.

The function space 91L0 can be replaced by one that has fewer parameters than
N — 1 for manipulating the mesh. For example, we could move every second
meshpoint using the given evolution law and move the other points by an affine
relation to their neighbors; this corresponds exactly to replacing 91L0 by the space of
piecewise linear functions on a mesh {2ih}^Q if N is even.

For problems with an underlying flow, the boundary conditions that say the
transformation S takes the boundary to itself seem wrong. This is a point that I
expect to study and report on later.

7. Sobolev Equations. Evolution equations that have a second order elliptic
operator applied to the time derivative and some other second order operator
applied in the spatial variables are frequently called Sobolev equations. Such
equations have been studied as models for various important physical phenomena,
from unidirectional water waves [3] to flow in a fractured oil reservoir [10].

The mesh modification error estimates of Section 2 carry over in part to the
context of Sobolev equations. This will be illustrated by looking at an abstract
continuous-time Galerkin method and then specializing it to a particular Sobolev
equation.

For simplicity this section deals only with linear equations, but this analysis can
be extended, as in Section 3.2, to nonlinear problems that are sufficiently general to
include the equations such as the so-called BBM equation presented in [3]. Such
equations can have solitary-wave solutions that move without changing shape (each
at a speed that is related to its size). Since these "elementary" solutions are of
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significant interest, moving-mesh solution techniques seem to be very natural for
these equations. Although the analysis of this section is an easy extension of that
done for the parabolic case, it seems useful to have it as a basis for using methods of
the type treated here on the scientifically important problems referred to above.

Let B and t3, be continuous bilinear forms on a Hubert space //. Denote by (-, •)
and II • II the inner product and norm on //. Suppose that the form /?, is coercive
and symmetric, and that u: [0, T] -* H is a C1 function satisfying

(v.i) Bx(u„x) + B(u,x) = {f,x),     xe/v,
where/is a continuous map of [0, T] into H.

As in Section 2, let 0 = T0 < Tx < • • • < TM = T partition [0, T], and take
Jj = [Tj_x, Tj). Suppose that, for each /, 911(0 is a finite-dimensional subspace of //.
In addition assume that fory = l,...,M there are Lipschitz continuous maps 4){■
Jj^ H, 1= 1,... ,Nj such that the set {^,,(0)^1 is a basis for 91t-(0 wnen t G /,
and such that the matrix (Bx(\pjj, xpjk)) = (blk), when continuously extended to Jj, is
nonsingular for each ; G /. In analogy with Section 2 define 91L to be the space of all
maps V: [0, T) -> H such that

(7.2a) K(0g9H(0,       0</<r,
(7.2b) F is Lipschitz on./,,      j=\,...,M,

(7.2c)        V^ = K(7>) " V{T> ~ 0) satlsfiesÄ.(Fl^' x) = 0,

XG9H(7;.),/=1,...,M-1.

The Galerkin solution is U G 9H such that

Bx(U„X) + B(U,x) = {f,x),      x£9H(0,o</<r,
Bt(u(0) - u(o), x) = o,     xe 911(0),

where the time derivatives in (7.3) are one-sided at r = 7,. It is straightforward that
U exists. Define for all xp E H

[xp]=Bx(xp,xpY/2

and

[*]/.,=      sup     Bx(xp,x)/[x],
0^xe9H(r)

where the subscript / is to remind us that the seminorm is defined by duality with
respect to the finite-dimensional space 911(0- Then define for all sufficiently regular
xP:[0,T)-*H

(7.4) llalli =   sup   [xp] + ¡T[xP,]f,tdt.
o*i<r ^o

Theorem 7.1. There exists a constant C such that if u solves (7.1) and U solves (7.3),
then

(7.5) |||i/-«|||<Cinf{|||F-«i||: V G 911}.
Proof. Take V E 911. Let 0 = U - V and tj = u - V. Then

(7.6) Bx(»„X) + B(fi,X) = Bl(r)l,X) + B(V,X),        X G 9H(í).
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Take x = 0 to get

[*]-£[*] = -*(*. *) + ß>U> *) + 5(l> #)(7.7) dt
<C[*]{[*] + [tj] + U,],,,}.

The relation (7.7) and the fact that

(7.8) [0(7,)] ^[#(7,-0)]
give the inequality

(7.9) max   [0(0] < C F {[V] + fo,]/fl} dt + [0(0)].
0<f«?" •'0

But then (7.6) implies that

(7.10) ll|0HI<cf {[tj]+ [%]f,t}dt.

The triangle inequality then completes the proof.    D
Now take fi to be R". Let

5i(<P» Tp)= I (vt + ax(x)vcp ■ Vxp) dx,
ß

(7.11)
B(<p, xp) = 1 (a(x) V<p • V^ + v(x) ■ V<pxp + b(x)cpxp) dx.

Let H = //'(fi), and assume that ax(x) is bounded above and below by positive
constants. Also assume that a, v, and b are bounded.

Now suppose that u: [0, T] -» //'(/?") satisfies

(7.12) [1 - V • a,v]w, - V • aV« + v • Vu + bu = 0
in the sense that

(7.13) B,(tt„x)+5(«,X)=0    forx G Hx(R"),t G[0, T).
Then Theorem 7.1 says that if the space 9H contains anything close to u, then U is

close to m.
Note that in this example the L2(fi)-projection at the points 7, was replaced by

projection with respect to a bilinear form that behaves like the //'(fi)-inner product.
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