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Abstract
We propose a mesh segmentation algorithm via recursive bisection where at each step, a sub-mesh embedded in
3D is first spectrally projected into the plane and then a contour is extracted from the planar embedding. We rely
on two operators to compute the projection: the well-known graph Laplacian and a geometric operator designed
to emphasize concavity. The two embeddings reveal distinctive shape semantics of the 3D model and complement
each other in capturing the structural or geometrical aspect of a segmentation. Transforming the shape analysis
problem to the 2D domain also facilitates our segmentability analysis and sampling tasks. We propose a novel
measure of the segmentability of a shape, which is used as the stopping criterion for our segmentation. The measure
is derived from simple area- and perimeter-based convexity measures. We achieve invariance to shape bending
through multi-dimensional scaling (MDS) based on the notion of inner distance. We also utilize inner distances
to develop a novel sampling scheme to extract two samples along a contour which correspond to two vertices
residing on different parts of the sub-mesh. The two samples are used to derive a spectral linear ordering of the
mesh faces. We obtain a final cut via a linear search over the face sequence based on part salience, where a choice
of weights for different factors of part salience is guided by the result from segmentability analysis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations

1. Introduction

The problem of segmenting a 3D shape into meaningful
parts has received a great deal of attention lately due to its
wide ranging applications in geometry processing [Sha06].
The challenges we face are at least two-fold. On one hand,
cognitive studies on the segmentability of a shape and the
process with which a human performs shape segmentation
are still on-going. While from the perspective of geometry
processing, translating the relevant results from cognitive re-
search into realizable segmentation algorithms and achiev-
ing robustness and efficiency amid complexities introduced
by 3D data have both proven to be non-trivial tasks.

In this paper, we propose a top-down mesh segmentation
algorithm which recursively bisects a mesh piece (sub-mesh)
based on part salience, a concept proposed from cognitive
studies [HS97]. The key characteristic of our approach is the
transformation of relevant 3D problems to 2D and 1D do-
mains, via spectral embedding, so that the solution to these
problems is reduced to contour and sequence analysis.

Part salience combines part size, protrusiveness and cut
strength to qualify the visual salience of a part on a shape.
However, no discussion on how the three factors should be
combined has been given so far. We stipulate that the answer
would depend on the nature of the segmentation in question;
this is one of the issues we address. A second consideration
is how to compute a salient cut for a sub-mesh. To this end,
we rely on a 1D embedding of the faces of the sub-mesh
which would allow us to perform a linear search along the
face sequence to detect the most salient cut.

A high-quality 1D mesh embedding should retain as much
information about the original mesh geometry as possible
and it should be quick to obtain. To accomplish this, we com-
pute a geometry-aware and locality-preserving spectral em-
bedding efficiently using the Nyström method as explained
in Section 5. Instead of finding samples for Nyström approx-
imation and determining the part segmentability (to serve as
a stopping criterion for segmentation) on the original mesh,
we spectrally project the sub-mesh, using its graph Laplacian
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Figure 1: An iteration of our algorithm consists of three steps. In Step 1, from the pool of sub-meshes to segment, the one with
the largest surface area is spectrally embedded in 2D with a contour extracted from the outline of the embedding. Step 2 tests
contour segmentability and, for a pass, computes two samples (shown as red and green dots), that are mapped to two faces on
the sub-mesh. These two faces are fed to Step 3, where the mesh faces are linearly arranged. A search along the sequence finds
the position with the highest salience score, resulting in a cut. The resulting sub-meshes are inserted back to the pool.

L, into a plane and perform segmentability analysis and sam-
pling over a contour extracted from the 2D projection. If the
contour does not pass the segmentability test, we compute a
second spectral projection based on a geometric operatorM
that emphasizes concavity and repeat the analysis.

Using the ACE method [Kor03], the projections are effi-
cient to compute. The extracted contours not only reveal the
global shape characteristics of the given sub-mesh, which
improves segmentation quality, they also simplify the shape
analysis tasks. Depending on the nature of the segmentation
at hand, either the L-embedding or the M-embedding will
be applied to compute part segmentability and sample loca-
tions, as we describe in Section 3; this will also in turn guide
the choice of weights applied to part salience measure.

In Section 4, we propose a method to estimate the seg-
mentability of a contour based on a quantification of convex-
ity. We combine the area [SHB93] and perimeter [ZR04] ra-
tios, which have been proposed as individual convexity mea-
sures, to define segmentability, as the two ratios can comple-
ment each other. A novel feature of our method is that it can
neutralize the effect of bending via multidimensional scal-
ing (MDS) derived from inner distance [LJ05], which, for a
given pair of contour vertices, is defined as the length of the
shortest path, inside the contour, between the two vertices.

Finally, we compute two samples along the extracted con-
tour, based on inner distance again. We show that this novel
sampling strategy can robustly detect two points residing on
different parts of the shape captured by the contour and in
turn, when mapped back onto the sub-mesh, the two samples
also reside on different parts. This would improve the quality
of our spectral bisection, where the two samples are used by
Nyström approximation to derive the 1D spectral embedding
for our salience-guided linear search. A graphical illustration
of the flow of our algorithm is given in Figure 1.

Our mesh segmentation algorithm requires no user inter-
vention and a few tunable parameters can be fixed through-
out. The main contributions we make are listed below.

• Use of spectral embeddings for shape analysis: A com-
mon feature of the low-dimensional embeddings used in

our work is their ability to reveal shape semantics. While
MDS based on inner distances more faithfully reflects the
concavity of a shape, the other two spectral embeddings
emphasize global and low-frequency shape information;
they also simplify the problem by reducing 3D data pro-
cessing to contour (2D) and sequence (1D) analyses.

• A novel shape segmentability measure: Adopted for au-
tomatic stopping in our segmentation algorithm, the mea-
sure is insensitive to bending and takes advantage of com-
plementary properties of existing convexity measures.

• A robust sampling scheme based on inner distance:
The ability of inner distances to capture part struc-
tures [LJ05] is confirmed in our solution to the sampling
problem. Our work highlights the usefulness of inner dis-
tance, as an alternative to surface-based distance measures
(e.g., geodesic distance), for shape analysis.

2. Related works

One of the earliest mesh segmentation algorithms, based on
watershed, is due to Mangan and Whitaker [MW99]. Since
then several different approaches have been developed, as
thoroughly covered in the recent survey by Shamir [Sha06].
In addition, a comparative study of several representative
techniques is given by Attene et al. [AFS06]. Thus we shall
not attempt to be exhaustive in discussing related works
in this section. For example, we will only focus on au-
tomatic algorithms, although semi-automatic approaches,
e.g., [JLCW06], have also been gaining popularity.

We refer to the mesh segmentation problem we wish to
solve as part-based [Sha06], where the aim is to appeal to
human perception and segment a given shape into its seman-
tic parts. In contrast, surface-type segmentation decomposes
a mesh into patches that fulfill certain application-dependent
criteria, e.g., planarity [Sha06], constant curvature [MW99],
or convexity [KS06, LA06]. Results based on convexity do
tend to agree with those from perceptual approaches due
to the connection between convexity and the minima rule,
which stipulates that part boundaries should be at negative
minima of principal curvatures [HR84].
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Although mesh segmentation via explicit boundary ex-
traction has been proposed, e.g., feature grouping [LA06]
and mesh scissoring [LLS∗05], region-based methods ap-
pear to be more common. Roughly speaking, a region-based
segmentation algorithm is either bottom-up, typically via re-
gion growing, e.g., [MW99, KS06, Pag03, ZTS02], or top-
down via recursive clustering, e.g., [KT03, KLT05, STK02,
ZL05,LJZ06]. Due to its local nature, region growing is sus-
ceptible to over-segmentation. Thus a merging step in post-
processing is often necessary; but this may still lead to coun-
terintuitive results. Top-down approaches based on global
shape characteristics and optimization can offer an effective
alternative, but they are often more expensive to execute.

Regardless of the type of a mesh segmentation algorithm,
the questions of whether a part should be further segmented
and which cut or obtained part is of higher quality are always
inevitable. The notion of part salience [HS97] has been uti-
lized by several algorithms, e.g., to reject counter-intuitive
cuts [LLS∗05], to find a locally optimal cut [ZL05], or to de-
rive a patch merging heuristic [Pag03]. The main difficulty
with applying part salience is that there is no easy way to
determine an appropriate weighting between its three con-
tributing factors. This has led to the consideration of con-
vexity as a measure of segmentability and part quality.

The best known convexity measure for a 2D shape P is
the ratio between the area (area is replaced by volume for
a closed mesh) enclosed by P and the area of the convex
hull CH(P) of P [SHB93]. The asymmetry of this measure
with respect to particular symmetric protrusion and intrusion
pairs has motivated Rosin and Mumford [RM04] to replace
the convex hull by a convex polygon Q that best fits the shape
P, in the sense of maximizing the overlap between P and Q.
However, the polygon Q is non-trivial to compute.

As boundary defects on a shape which do not impact
shape area can compromise the performance of the area ratio
as a convexity measure, boundary-oriented approaches have
been considered. A natural choice would be to use the ratio
between the perimeter of the convex hull of a shape P and the
perimeter of P to measure convexity [ZR04]. Boxer [Box93]
proposes to use either the maximum or average distance be-
tween the boundary of a shape and its convex hull instead.
Krayevoy and Sheffer [KS06] extend this idea to measure the
convexity of a mesh patch in their decomposition algorithm
and achieve automatic stopping by thresholding a measure
which combines convexity and compactness. It is worth not-
ing however that convexity and segmentability are related
but not quite the same concept. While convexity depends
heavily on the degree of concavities along the boundary of
a shape, segmentability is more structural and should ideally
be invariant to shape articulation.

Although most mesh segmentation algorithms operate on
the original mesh, a few transform-domain techniques have
been proposed. Katz et al. [KLT05] perform MDS based on
geodesic distances to help extract points near extremities of

articulated shapes. Spectral clustering via k-means [LZ04]
and recursive spectral bisection by searching through 1D
mesh face sequences [ZL05] have also been proposed. The
main advantage of using 1D embeddings is that any ef-
ficiently computable (but hard to optimize) segmentation
quality criteria, e.g., part salience [HS97], can be incorpo-
rated into a linear search. A downside however is that the
1D embeddings may not provide sufficiently rich informa-
tion for shape analysis. Moreover, the naive furthest point
sampling [LJZ06] or sampling schemes based on distances
to a small set of uniformly distributed mesh faces [ZL05] are
too ad-hoc and can produce non-robust results. These issues
are both addressed by our new approach.

3. 2D projections based on mesh Laplacians

A key observation we make is that there are two primary fac-
tors which can render a shape segmentable. The first is the
branching factor. That is, if a shape has branches, then it is
segmentable. We refer to segmentability caused by branch-
ing as structural segmentability. The second factor is due to
concavity over the boundary of a shape in the absence of
branching, where the induced segmentability is referred to
as geometrical segmentability.

To facilitate our segmentability analysis and sampling
tasks in terms of robustness and efficiency, we first project
a sub-mesh embedded in 3D into a plane and then extract a
2D contour from the projection. It is no surprise that a sig-
nificant amount of information may be lost when going from
3D to 2D. However, by carefully choosing the projection op-
erators, we are able to preserve, and even enhance, semantic
shape information useful for subsequent shape analysis. In
our approach, the structural and geometrical segmentability
information can be extracted from the input 3D mesh, sepa-
rately, by the two operators we have chosen.

3.1. Spectral projection via graph Laplacian L
Given a mesh with n vertices, we define its graph Laplacian
L ∈ Rn×n as L = D̂−Ŵ , where Ŵi j = 1 whenever (i, j) is
an edge, otherwise Ŵi j = 0; D̂ is a diagonal matrix of the row
sums of Ŵ . Let L= Ξ̂Λ̂Ξ̂T be the eigenvalue decomposition
of L, where the eigenvalues in Λ̂ are in ascending order. It
is well known that L is positive semi-definite, its smallest
eigenvalue λ̂1 = 0, and its corresponding eigenvector Ξ̂1 is
a constant vector. Since L is symmetric, its eigenvectors are
orthogonal and span the whole space Rn×n.

Let us represent the coordinates of the mesh vertices by
X ∈ Rn×3. Then X can be written as a linear combination
of the eigenvectors of L. Projecting X into the subspace
spanned by the k leading eigenvectors of L, we get

X̃ = Ξ̂(1...k)Ξ̂
T
(1...k)X ,

where Ξ̂(1...k) contains the first k columns of Ξ̂. This pro-
jection process can also be seen as applying an ideal low-
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(a) foot mesh (b) 2D L-embedding

Figure 2: 2D spectral embedding of a foot model with
branching. Coloring of the dots implies correspondence.

(a) cheese mesh (b) L-embedding (c) M-embedding

Figure 3: Segmentability of the cheese mesh is more strongly
revealed in the embedding via the geometric operator M.

pass filter (only allowing the leading k frequencies to “pass”)
to the mesh coordinate signal, akin to Laplacian smooth-
ing [Tau95]. Choosing k = 3, we obtain a planar shape, since
the first eigenvector is constant.

As a result of Laplacian smoothing, high-frequency in-
formation, e.g., surface fluctuations, in the original shape is
removed while low-frequency (high-level) shape character-
istics, e.g., branching, is retained and even enhanced by the
2D embedding; the latter is able to capture structural seg-
mentability. Figure 2 illustrates this phenomenon. The five
toes of the foot mesh, shown in (a), form branches. Plot
(b) shows its spectral 2D embedding via L. As we can ob-
serve, the “toe branches”, as low-frequency structures, are
extracted and enhanced in the embedding space.

3.2. The geometric operator M
Although smoothing using L is able to reveal the structural
segmentability of a shape, it may fail to capture geometri-
cal segmentability information since L is defined by mesh
connectivity only. Figure 3 depicts such a situation. We see
that although the original mesh (a) is clearly segmentable, its
2D L-embedding is not and this could introduce difficulty to
our contour analysis. To resolve this issue, we design a new
Laplacian operator, M = D−W , which is geometric. To
capture local surface geometry, we define for edge e = (i, j)

Wi j =

{
(|κi|+ |κ j|) · |〈~e,~z〉| · l if κi < 0 or κ j < 0
ε otherwise,

where κi and κ j , computed as in [CSM03], are the minimal
principal curvatures at vertices i and j, ~z is the normalized

average of the principal curvature directions for κi and κ j ,
~e is the (normalized) direction of e, and l is the length of
e normalized by the average length of all edges in the sub-
mesh. As before, D is a diagonal matrix of W ’s row sums.
When κi ≥ 0 and κ j ≥ 0, implying local convexity at e, we
set Wi j = ε = 0.1 to maintain vertex connectivity. If (i, j) is
not an edge, Wi j = 0. We see that if an edge has vertices with
negative minimal curvature and it roughly aligns with the
local minimal curvature direction, it carries a larger weight.
We now examine the effect of this scheme on the embedding.

Consider any matrix Y ∈ Rn×k, it can be shown that

1
2 ∑

i j
Wi j||yi− y j||2 = tr[Y T (D−W )Y ] = tr(Y TMY ), (1)

where Y = [yT
1 |yT

2 | . . . |yT
n ]T and each yi is seen as a k-

dimensional point. Let M = ΞΛΞT be an eigenvalue de-
composition. The first k eigenvectors of Ξ can be denoted, in
column or row vector format, by Ξ(1...k) = [ξ1|ξ2| . . . |ξk] =
[uT

1 |uT
2 | . . . |uT

n ]T . It is known that Y = Ξ(1...k), i.e., yi =
ui, i = 1 . . .k, minimizes (1), under the requirement that the
columns of Y are of unit length. Thus given a large weight
Wi j , ||ui−u j||2 tends to be relatively small.

As in Section 3.1, via Laplacian smoothing, we obtain the
embedding X̃ = Ξ(1...k)Ξ

T
(1...k)X of the mesh given by coor-

dinates X . It follows that the squared distance between two
embedded vertices, x̃i and x̃ j (two rows of X̃), is

||x̃i− x̃ j||2 = ||(ui−u j)ΞT
(1...k)X ||2≤ ||ui−u j||2||ΞT

(1...k)X ||2.
As ||ui − u j||2 is relatively small for large Wi j , ||x̃i − x̃ j||2
should also be relatively small, since ||ΞT

(1...k)X ||2 is a con-
stant. Thus for each pair of mesh vertices i and j, a larger
Wi j suggests that their embeddings will be closer to each
other. With the way the weights in W are defined, mesh ver-
tices from a continuous concave region will be pulled close
to each other in the embedding space, forming a constric-
tion. This is illustrated in Figure 3(c), where we see that the
segmentability of the cheese model is greatly enhanced in
the M-embedding, facilitating subsequent contour analysis.

For efficiency, we apply ACE [Kor03], a multi-level
method, to compute the second and third smallest eigenvec-
tors of L and M, which are necessary for the embedding.

4. Contour analysis

After a sub-mesh is embedded in 2D, we extract its outline
by rendering the mesh faces in black against a white back-
ground and tracing the boundary of the resulting binary im-
age. As the mesh is connected, so is the rendered region.
Ignoring interior holes, we obtain a single outer contour of
the region. Since the traced contour is jaggy, we smooth it
using truncated Fourier descriptors (FDs) [ZR72]. In our im-
plementation, low-frequency FDs are added one by one un-
til the normalized reconstruction error is below a threshold,
which is set to be 0.5% of the contour scale in all cases.

c© The Eurographics Association and Blackwell Publishing 2009.
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The next preprocessing step is to simplify the smoothed
contour, thus reducing the cost of computing the inner dis-
tances (defined in Section 4.2). Many contour simplifica-
tion algorithms are available. We adopt the greedy vertex re-
moval scheme of [LL99] based on a curvature cost and stop
when the contour has 50 vertices. In subsequent discussions,
we denote the smoothed and simplified contour by ζ.

4.1. Convexity and segmentability

The segmentability of a 2D shape is clearly related to its
convexity/concavity: the more concave a shape is, the more
segmentable it tends to be. Denote by A(ζ) the area enclosed
by a contour ζ; the perimeter and the convex hull are denoted
by P(ζ) and CH(ζ), respectively. The following convexity
measures are well-known and simple to compute:

C1(ζ) =
A(ζ)

A(CH(ζ))
, C2(ζ) =

P(CH(ζ))
P(ζ)

.

It is not hard to see that C1,C2 ∈ [0,1] and they are equal to
1 if and only if ζ is convex. Past research has shown that nei-
ther measure provides a completely satisfactory measure of
convexity: while C1 struggles with boundary defects that do
not impact on shape area, C2 is sensitive to noise. However,
they appear to complement each other [ZR04]. Motivated by
this, we propose to use the following simple extension,

C(ζ) = max{C1(ζ),C2(ζ)α},
where the exponent α ≥ 1 not only ensures that C ∈ (0,1]
and C = 1 if and only if ζ is convex, but also addresses pos-
sible differences in scale between C1 and C2. Throughout our
experiments, we have set α = 4.

For a telling example which illustrates the advantage of
using the new measure, consider rough outlines of the let-
ters I and R, shown in Figure 4. By C1, I will be deemed to
be more concave and thus more segmentable than R; this is
counterintuitive. With the new measure C, Cα

2 would prevail
over C1 for I and return a more reasonable result. The new
measure can also properly rank the convexity between the
outline of the letters I and C. The potentially large discrep-
ancies between C1 and C2, e.g., for I, explains our preference
of using the max operator over convex combination. The in-
ability of either C1 or C2 to properly capture the convexity
of a shape should not diminish the utility of the other.

C
1
 = 0.3878

C
2
 = 0.9823

C =0.9311

C
1
 = 0.7987

C
2
 = 0.8242

C = 0.7987

C
1
 = 0.3858

C
2
 = 0.7962

C = 0.4019

Figure 4: Three letter shapes and their respective area- and
perimeter-based convexity measures.

Despite a correlation between convexity and segmentabil-
ity, they are not exactly the same concept. Naturally, the re-

(a) C = 0.9557. (b) C = 0.9084.

(c) C = 0.7809.

Figure 5: The shapes in (a) and (b) can compromise the per-
formance of C for measuring segmentability. However, they
can be “stretched out” via MDS using inner distances, as
shown in (c) and (d), to lead to more intuitive results.

sult of part-based or semantic segmentation should be in-
variant to shape articulation and this should also hold for a
segmentability measure. However, the same cannot be said
about convexity/concavity. The effect of bending can com-
promise the performance of C as a measure of segmentabil-
ity, e.g., for shapes shown in Figure 5(a) and (b). It is worth
noting that the distance-based convexity measure [Box93]
would also give unreasonable result for the shape in (b).

Our proposed solution to the above problem involves a
normalization with respect to shape articulation. Specifi-
cally, we perform MDS based on a distance measure be-
tween contour vertices that is insensitive to bending. Unlike
the case for manifold meshes [LZ04], geodesic distances,
though bending-invariant, are no longer applicable for our
purpose in the contour setting. We thus resort to the use of
inner distances [LJ05], described in the next section. Since
the computation of inner distances and MDS involve extra
work, we will only go through these steps when the original
contour ζ is deemed not to be segmentable using C.

4.2. Inner distance and MDS embedding

The inner distance between two vertices u and v on the con-
tour ζ is the length of the shortest path between u and v
which lies interior to ζ. As shown in Figure 5 (a) and (b),
the red dotted lines depict the shortest paths between the
corresponding contour vertices inside the shape. Ling and
Jacob [LJ05] first propose the use of inner distances for re-
trieval of articulated shapes and they have shown that inner
distances are insensitive to shape articulation.

A natural way to compute pairwise inner distances be-
tween n contour vertices is to first construct a visibility graph
G = (V (G),E(G)), where (u,v) ∈ E(G) if and only if u is
visible to v inside the contour, and then run a shortest path
algorithm; this procedure has O(n3) complexity. There is
an optimal O(n) scheme for finding inner distances from a
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point, which would lead to a quadratic-time procedure to
compute all pairwise inner distances, but this scheme re-
lies on the linear-time polygon triangulation algorithm of
Chazelle [Cha91]. We have opted to implement the simplis-
tic O(n3) approach since each contour ζ we need to analyze
has only 50 vertices. Note that the concept of inner distances
can be easily extended to closed polygonal meshes, but un-
fortunately computing inner distances within a 3D polyhe-
dron becomes an NP-hard problem [dBvKOS97].

After constructing an n× n matrix of pairwise inner dis-
tances, we perform classical MDS [CC01] and embed the
contour into the plane. The inner distances are approximated
by Euclidean distances via MDS and as such, the contours
are normalized against bending. Two results of MDS using
inner distances are shown in Figure 5(c) and (d). Our con-
vexity measure C can then be applied to the new embedding.

4.3. Segmentability analysis procedure

To take into consideration of both the structural and geomet-
rical nature of segmentation, we conduct contour analysis on
embeddings derived from the graph and geometric Laplacian
in order. A pseudo code for our analysis procedure is given
below, where ζL and ζM are the contours obtained from the
L- and M-embeddings, respectively, S(ζ) = 1−C(ζ) is de-
fined to be the segmentability score of a contour ζ, and η is
a user-selected segmentability threshold value.

1. If S(ζL) > η, then perform sampling on ζL and return.
2. Compute embedding ζ∗L of ζL via MDS based on inner

distances. If S(ζ∗L) > η, then sample ζL and return.
3. If S(ζM) > η, then sample ζM and return.
4. Compute embedding ζ∗M of ζM via MDS based on inner

distances. If S(ζ∗M) > η, then sample ζM and return.

If all the thresholding tests above fail, then the sub-mesh
corresponding to the contours is deemed not to be seg-
mentable and our algorithm stops for that sub-mesh. Gen-
erally speaking, finding a robust stopping criterion for re-
cursive mesh segmentation is not easy. Previous attempts,
e.g., [KT03,ZL05], do not distinguish between structural and
geometrical segmentability. Although the latter accounts for
part salience, no weighting scheme for the three salience fac-
tors was given. An additional advantage of our approach is
efficiency, as the 3D problem is reduced to contour analysis.
Next, we describe our sampling procedure.

4.4. Sampling based on inner distance

Given a segmentable contour ζ, we wish to obtain two sam-
ple points from different parts of ζ. Before describing our
scheme, we first introduce the concept of integrated bending
score or IBS at a point along a contour with respect to the
whole contour. Given a point f on ζ, its IBS is defined as

R f =
Z

t∈ζ f

I f t

E f t
dt,

where ζ f = ζ−{ f} is formed by the union of the line seg-
ments of ζ with the absence of point f , and E f t and I f t de-
note the Euclidean and inner distances between two points f
and t, respectively. We compute the above integral per line
segment i j in ζ, namely, R f = ∑i j∈ζR f (i j).

To compute R f (i j), we first calculate the inner and Eu-
clidean distances from f to i and j; these are I f i, I f j,E f i,
and E f j . Note that we are only interested in IBS’s at contour
vertices, thus f , i, and j are all contour vertices. Due to the
complexity of inner distance computations, we have chosen
not to over-sample the line segment i j to compute R f (i j).
Instead, we rely on linear interpolation to estimate I f t and
E f t . Let l be the length of i j. We estimate R f (i j) as

R f (i j) =
Z l

0

I f i + t
l (I f j− I f i)

E f i + t
l (E f j−E f i)

dt.

After algebraic derivation, we arrive at

R f (i j) =
dbl +(ad−bc)[ln(c+dl)− ln(c)]

d2 ,

where a = I f il, b = I f j− I f i, c = E f il, and d = E f j−E f i.

Note that ideally, we would want to compute the IBS at
a point with respect to the original contour. Our approach is
aimed at achieving efficiency and it can introduce approx-
imation errors from both contour simplification and linear
interpolation. However, our experiments verify that these er-
rors are negligible for the purpose of sampling.

Intuitively, the IBS R f measures the extent a point f is
isolated inside the region enclosed by the contour ζ. Thus
our first sample s1 is simply selected as the contour vertex
which maximizes R f . This way s1 tends to reside on a pe-
ripheral part that is most isolated from the core of the shape
enclosed by ζ. The second sample s2 is then chosen as the
contour vertex with the largest inner distance from s1.

Past sampling schemes aimed at finding points from
different parts of a shape rely on measures which com-
bine geodesic and curvature-related distances, e.g., [KT03,
ZL05]. Using ratios as in our approach, we avoid the intro-
duction of a weight parameter. Quality-wise, we compare
our scheme with those based on farthest distances in Fig-
ure 6 using three increasingly harder test cases, to show the
advantage of our approach. Similar to the centricity measure
of Lee et al. [LLS∗05], the IBS utilizes more global infor-
mation, which we expect to produce more robust results.

5. Salience-guided spectral cut

Recall that given a sub-mesh, we first spectrally embed it
into the plane and perform contour analysis. If the sub-mesh
passes the segmentability test, two sample faces on the sub-
mesh, corresponding to the sample points computed along a
planar contour, are returned. Now the two sample faces are
used in Nyström approximation [FBCM04, ZL05] to derive
a linear sequence for the faces of the sub-mesh.
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Figure 6: Results of our sampling scheme: samples marked
by s1 and s2. In the right-most figure, we compare against
two variations of farthest-point sampling. The first finds two
points, marked by squares, that are mutually farthest away in
inner distance. The second scheme picks two points, shown
as triangles, that have the largest distance, computed as the
sum of magnitude of negative curvatures, along the contour.
Note that a point can traverse along a contour in two direc-
tions; the one giving the smaller distance is considered.

5.1. Spectral embedding using Nyström method

We follow the approach from [ZL05], which is inspired by
the normalized cut idea for image segmentation [SM97]. In-
stead of using the Fiedler vector of the normalized graph
Laplacian to compute a 1D embedding, as in [SM97], a nor-
malized affinity matrix N = Q−1/2AQ−1/2 is constructed
and the 1D embedding is given by a component-wise ra-
tio between the second and first largest eigenvectors of N ,
where we order the eigenvectors by the magnitude of the
corresponding eigenvalues. The matrix A is called the affin-
ity matrix where Ai j encodes a relation between faces i and j
of the sub-mesh; the matrix Q is a diagonal matrix of A’s row
sums. As in [ZL05], we model affinity Ai j by an exponen-
tial kernel applied to a distance measure [KT03] which com-
bines geodesic and angle distances between the two faces
over the mesh surface. For a large sub-mesh, computing A
and its eigenvectors is too time consuming. Therefore, we
resort to subsampling techniques using the Nyström method.

Using Nyström approximation, it is sufficient to utilize
two carefully chosen samples and compute only affinities
from the two samples. The eigenvectors will be computed
approximately via extrapolation. The computational com-
plexity is reduced from O(m2 logm) to O(m logm), where m
is the size of the sub-mesh. Details on a derivation and use
of the Nyström method can be found in [FBCM04, ZL05].

5.2. Finding a salient cut

Having obtained a 1D embedding of the mesh faces, we per-
form a linear search over the face sequence. Each bisection
of the sequence corresponds to a cut in the sub-mesh, re-
sulting in two parts. We compute a salience measure for the
part having a smaller surface area. The salience score for
a part is given as a weighted sum of appropriate measures
for part size, cut strength, and part protrusiveness, as given
in [ZL05]. These measures can all be updated in constant
time during the linear search. The cut which achieves the
highest salience score is chosen as the segmentation of the
sub-mesh and the resulting parts may be further processed.

To obtain high-quality segmentation, it is essential that the
two sample faces reside on different parts of the shape. As
we cannot define what a part is, we would not be able to
argue for the correctness of our sampling scheme. However,
experimentally, we have found our sampling scheme to work
robustly for a variety of shapes. The other key ingredient of
our scheme is the part salience score, which requires an ap-
propriate weighting between the three factors. Denote the
weights applied to part size, cut strength, and part protru-
siveness by ωs, ωc, and ωp, respectively. Through experi-
mental study, we observe that part size should take the least
weight. Depending on which operator, L or M, has passed
the segmentability test, either ωp or ωc should be empha-
sized more. Specifically, ifM (L) is used, it implies that the
current segmentability, if any, is caused by concavity (pro-
trusion), therefore ωc (ωp) should take more weight.

6. Experimental results

Except for the case shown in Figure 8, all the free parameters
of our algorithm are fixed: We set η = 0.1 as our threshold
value for segmentability tests and α = 4 for the convexity
measure C. The weights for part salience are: ωs = 0.1, ωc =
0.3, ωp = 0.6, when L is applied, and ωs = 0.1, ωc = 0.6,
ωp = 0.3 when M is applied.

We first show our algorithm at work in steps for the bunny
model. In the first five columns of Figure 7, the top row
shows the obtained segments in color. A brown part is the
current sub-mesh to segment, and its embedding, either via
L or M, is shown in the second row. Plots (k) and (l) are
the L- and M-embeddings of the bunny’s left ear. As nei-
ther of them passes the segmentability check, the ear is not
segmented. The final result is shown in Figure 11(g).

Figure 8: Low-frequency or structural segmentation of the
dinosaur with 112,384 faces, using L only. Shown on the
right is the first spectral embedding, where coloring of the
dots imply correspondence between 2D and 3D. Note that
two hands of the model are “absorbed” by the body in the
first embedding, but they will stand out in later iterations.

Properties of L and M : The ability of the operator L to
extract “low-frequency” structural information is desirable
in situations such as in Figure 8. It is counterintuitive to seg-
ment the dinosaur model along all the concavities over its
surface. If we only apply L for structural segmentability de-
tection, the segmentation stops as shown in the figure. Note
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(a) 1 part (c) 2 parts (e) 3 parts (g) 4 parts (i) 5 parts (k) L, 0.006

(b) L, 0.45 (d) L, 0.35 (f) M, 0.24 (h) M, 0.28 (j) M, 0.21 (l) M, 0.0008

Figure 7: (a-j): four iterations of our algorithm on the bunny. The colored dots represent the obtained samples, over the part to
segment. Segmentation results are given in top row and the second row shows the embeddings, via L orM, as indicated, along
with the final segmentability score. (k-l): embeddings of the left ear using L and M, both failing the segmentability test.

(a) 3 parts (b) via L (c) via M (d) 4 parts

Figure 9: The brown part in (a) is not segmentable via theL-
embedding (b). When the M-embedding (c) is considered,
the part is segmented, leading to the final result in (d).

that the protrusion and cut strength salience factors, ωp and
ωc, need to be tuned to obtain such a result. This is the only
case where the fixed parameters are modified. On the other
hand, M has its own importance too. Figure 9(a) shows the
segmentation result using L. The brown part fails the seg-
mentability test since its embedding, shown in (b), is quite
convex. However, the embedding produced by M enhances
bending and manifests itself with strong segmentability, re-
sulting in a better segmentation in (d).

More segmentation results are available in Figure 11,
where only the bunny, hand and claw models have bound-
aries. Models in the first row are only segmented using L,
where the goal is to show structural segmentability at work.
Note that for the children model, the skirt in green would
have been segmented by any scheme relying on concavity,
e.g., when geometrical segmentability using M is consid-
ered; this is not wrong from a geometric point of view but
it does not appeal to our intuition. With our algorithm, there
is the option of focusing on structural segmentability only
which may lead to a stopping configuration that better re-
flects the shape semantics. Note also that the trident tines in
the Neptune model are not considered segmentable as they
are relatively short compared with the whole trident, thus not

detected as a significant “low-frequency” information. For
the man model however, the toes and fingers are all detected
properly, as they are relatively large in their own subparts.

Models in the second row are segmented by combining
L and M. As our algorithm is top-down, it is less likely
to produce over-segmentation, which is typically present for
schemes based on local optimization, e.g., region growing.
This can be understood from the torso of the bunny and
the cheese in the mouse model, where many local concav-
ities exist. In practice, we have not observed that a high
genus would pose a problem for our algorithm. In Figure 11,
the children, oil pump and Neptune models all have genus
greater than 0 and our algorithm works robustly on them.

Timing: Our algorithm is quite efficient. Taking away the
computation of the eigenvectors of L andM, the asymptotic
complexity of our algorithm in each iteration is O(m logm)
for a sub-mesh of size m; this is necessary for computing
distances from the sample faces to the remaining faces. The
ACE method [Kor03] is designed to efficiently compute a
few eigenvectors of the graph Laplacian. In our experiments,
we find it to scale well for both L and M. Overall, on an
AMD Opteron 2.4GHz CPU machine with 8GB RAM, seg-
menting the frog model with 100K faces into 14 parts takes
a total of 86 seconds, where 47 seconds are spent computing
eigenvectors for spectral embedding. The hand model with
273K faces, the largest in our experiments, takes about 52
seconds to segment into 6 parts. Since only L is used, which
consists of integers only, ACE operates more quickly.

Current limitations: Unsatisfactory results may still be
generated by our algorithm. For example, in the oil pump
model in Figure 11(f), the big brown part is not adequately
segmented. Similarly, the eyes of the frog, in Figure 11(h),
do not pass the segmentability test either. However, by re-
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(a) (b) (c) (d) (e)

Figure 10: With the default segmentability threshold η =
0.1, we obtain the segmented rabbit in (a). With proper sam-
pling (c) and setting η = 0.03, we obtain a refined segmenta-
tion (b). Linear search over the Igea (268,686 faces) results
in a suboptimal cut (d) with our current salience measure,
while an optimal cut (e) is present along the sequence.

laxing the segmentability threshold η, our algorithm will be
able to produce the desirable segmentation. One such exam-
ple is given in Figure 10. In (a), the default parameters are
applied; while (b) is obtained by relaxing η from 0.1 to 0.03.
We believe the use of segmentability score, the abstraction
of segmentation strength, provides a better control than sim-
ply specifying a desirable number of parts, which is model
dependent. But the segmentability measure still requires fur-
ther study as we aim for total autonomy.

The current salience measure also leaves room for im-
provement. An example is the Igea model, which is hard to
segment due to the bumpy hair region. With the fixed weight-
ing scheme for part salience, the algorithm obtains the re-
sult shown in Figure 10(d), while the optimal one, manually
searched along the sequence, is shown in (e).

Robustness of sampling and 1D mesh embedding: De-
spite the limitations, we believe our sampling scheme and
the resulting 1D mesh embeddings used for linear search
are both robust. The successful segmentation of the rabbit
in Figure 10(b) with a relaxed η relies on proper sampling.
As shown in (c), even though the foot and tail are relatively
small features, our algorithm can correctly extract two sam-
ples from them. On the contrary, our experiment shows that
farthest point sampling based on combining geodesic and
angle distances would fail in this particular case. Our algo-
rithm is also able to segment out the eyes of the frog model in
Figure 11(h) nicely as two samples on the eyes can be identi-
fied. Finally, refer to the Igea models in Figure 10. Although
the current result, as shown in (d), is not satisfactory, the 1D
spectral embedding obtained does possess the optimal cut as
shown in (e); this is found via manual traversal.

7. Conclusion and future work

We present an automatic mesh segmentation algorithm
which iteratively bisects a sub-mesh. Although there are a
few free parameters to set, a fixed set of values have enabled
us to produce stable, meaningful segmentation results for a
variety of mesh models. Our algorithm is based on spectral

embeddings and 2D contour analysis. The main idea lies in
utilizing appropriately defined projection operators to retain
and even enhance structural and geometric information in a
low-dimensional space, 1D or 2D in our case, where our seg-
mentability analysis, sampling, and cut extraction problems
can be more efficiently and more effectively solved.

From results shown in Section 6, we see that our algo-
rithm excels at revealing structural composition of shapes
and identifying more prominent parts, and does so in a sta-
ble manner. Other segmentation paradigms, e.g., approxi-
mate convex decomposition [KS06, LA06], would produce
results of a different nature. Relaxing our thresholds for the
segmentability tests will allow for more refined shape par-
titioning, but at the expense of introducing less meaningful
parts. This motivates further study on segmentability, per-
haps with the incorporation of training and prior knowledge,
which should also be useful in selecting the weights for eval-
uating part salience. Our sampling scheme based on inner
distance is not only robust but also involves no free param-
eters, we would like to extend it to 3D where an efficient
approximation of inner distances would be essential.

Finally, more objective, or at least more systematic, ways
to evaluate mesh segmentation results are still lacking. In our
work, we have chosen test models that are well known to fa-
cilitate comparison of our results to those obtained by others.
However, it is still difficult to quantify or rank the quality of
the different approaches at this point. To address this issue,
we plan to develop a mesh segmentation benchmark.
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