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Abstract

In this paper, we introduce iterative mean and median
filtering schemes for smoothing noisy 3D shapes given as
triangle meshes. Our main idea consists of applying mean
and median filtering schemes to mesh normals and then up-
date the mesh vertex position in order to fit the mesh to the
modified normals.

We also give a quantitative evaluation of the proposed
mesh filtering schemes and compare them with conventional
mesh smoothing procedures such as the Laplacian smooth-
ing flow and the mean curvature flow.

We demonstrate that our mean and median mesh filtering
methods outperform the conventional Laplacian and mean
curvature flows in terms of accuracy and resistance to over-
smoothing.

1 Introduction

In many computer graphics applications, polygonal
meshes deliver a simple and flexible way to represent and
handle complex geometric objects. Dense triangle meshes
are standard output of modern shape acquisition techniques
such as laser scanning and isosurfacing volumetric data.
The surface of a computer graphics model reconstructed
from real-world data is often corrupted by noise. An im-
portant problem is to surpress noise while preserving desir-
able geometric features of the model. Many powerful noise
supressing techniques were proposed for signal and image
processing needs. However that techniques were developed
for regularly sampled data and cannot be directly extended
to meshes. In this paper, we introduce iterative mean and
median filtering schemes for smoothing noisy 3D shapes
approximated by triangle meshes. The main idea of our ap-
proach consists of applying mean and median filtering to
mesh normals and then updating the mesh vertex positions
in order to fit the mesh to the modified normals.

In image processing, the mean and median filters are
simple and very effective tools for noise suppressing. In
its simplest form, the mean filter replaces every pixel with

the arithmetic mean of the pixels contained in a window
around the pixel. The basic idea of the median filtering
consists of simultaneous replacing every pixel of an image
with the median of the pixels contained in a window around
the pixel. Mean filtering is usually used for suppressing
Gaussian noise while median filtering is a powerful tool for
removing impulsive noise [1, 8]. Recently iterative mean
and median filtering schemes and their modifications be-
came very popular because of their close connection with
PDE methods in image processing [11].

Figure 1. Top left: a triangle mesh representing a

two-holed torus with sharp edges. Top right: noise

is added. Bottom left: after smoothing by iterative

mean �lter. Bottom right: after smoothing by itera-

tive weighted median �lter.

Fig. 1 illustrates how iterative mean and median filter-
ing schemes developed in this paper smoothing a polygonal
model corrupted by additive random noise. Note that iter-
ative mean filtering does not produce mesh shrinkage and
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Figure 2. (a) Stanford Bunny with word \Hi" embossed. (b) Noise is added. (c)-(f) Oversmoothing by Laplacian ow

(c), mean curvature ow (d), iterative median �lter (e), iterative mean �lter (f). For each smoothing method, the

number of iterations used is equal to 10�(optimal number of iterations) where the optimal number of iterations is

de�ned according to minimal value of vertex-based L2 error. Bottom left: graphs of vertex-based L2 error between

original and smoothed models. Bottom right: graphs of normal-based L2 error between original and smoothed models.



note how good sharp features are restored by iterative me-
dian filtering.

We also give a quantitative evaluation of the proposed
mesh filtering schemes and compare them with conven-
tional mesh smoothing procedures such as the Laplacian
smoothing flow [12, 7] and the mean curvature flow [4, 3].
We use two L2 error metrics introduced in [9] and com-
paring two close meshes by measuring deviations between
corresponding mesh vertices and normals. It turns out that
the mean and median filtering methods proposed in the pa-
per produce significantly smaller oversmoothing then the
conventional Laplacian and mean curvature flows whereas
the best results obtained via mean and median filtering are
at least no worse than that produced by the Laplacian and
mean curvature flows. See Fig. 2 for details.

The paper is organized as follows. Section 2 describes
two conventional methods for smoothing triangle meshes:
the Laplacian [12, 7] and the mean curvature [4, 3] flows.
In Section 3, we introduce our iterative mean filter. In Sec-
tion 4, we present several median filtering schemes. Vertex-
based and normal-based L2 error metrics are described in
Section 5. We compare the considered smoothing methods
in Section 6 and conclude in Section 7.

2 Laplacian and Mean Curvature Flows

In this section, two conventional methods of polygonal
surface smoothing are considered: the Laplacian flow [12,
7] and the mean curvature flow [4, 3].

Consider a discrete mesh evolution process each step of
which updates mesh vertices according to

Pnew  Pold + �D(Pold): (1)

where D(P ) is a displacement vector, and � is a step-size
parameter.

The Laplacian mesh smoothing flow is obtained from (1)
if the displacement vector D(P ) is defined by the so-called
umbrella operator [7]

U(P ) =
1

n

X
i2N1(P )

Qi � P; (2)

where P is a mesh vertex, N1(P ) = fQ0; Q1; : : : ; Qn�1g
is the 1-ring of mesh vertices neighboring with P , as seen
in Fig. 3.

The explicit vertex updating scheme corresponding to
the mean curvature flow is given by (1) where the displace-
ment vector D(P ) is equal to the mean curvature vector
[4, 3]

Hn(P ) =
3

4A

X
i2N1(P )

(cot�i + cot�i)(Qi � P ): (3)

Here A is the sum of the areas of the triangles surrounding
P , �i and �i are the angles opposite to the edge QiP , as
seen in Fig. 4.
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Figure 3. Left: 1-ring of neighbors of vertex P . Right:

updating vertex position by umbrella operator.
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Figure 4. Angles �i and �i are used to estimate the

mean curvature vector at P .

For closed meshes, in order to eliminate mesh shrinking
and following [4] we keep the volume of the evolving mesh
constant by rescaling the mesh after each step of the mesh
evolution process.

3 Mean Filter for Averaging Face Normals

Consider an oriented triangle mesh. Let T be a mesh
triangle, n(T ) be the unit normal of T , A(T ) be the area
of T , and C(T ) be the centroid of T . Denote by N (T ) the
set of all mesh triangles that have a common edge or vertex
with T . One iteration of the iterative mesh mean filtering
scheme consists of the following three successive steps.

Step 1. For each mesh triangle T , compute the triangle nor-
mal n(T ) and perform the following area-weighted av-
eraging normals:

m(T ) =
1P
A(S)

X
S2N (T )

A(S)n(S): (4)

See the left image of Fig. 5.

Step 2. For each mesh triangle T , normalize the averaged
normals m(T ):

m(T ) �
m(T )

km(T )k
:



Step 3. For each mesh vertex P , perform the vertex updat-
ing procedure

Pnew  � Pold +
1P
A(T )

X
A(T )v(T ) (5)

with v(T ) =
h��!
PC �m(T )

i
m(T ); (6)

where the sums are taken over all triangles T adjacent

to P , v(T ) is the projection of the vector
��!
PC onto

the m(T ) direction, as exposed by the right image of
Fig. 5.
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Figure 5. Left: mesh triangles T and S, their normals

n(T ) and n(S), and \di�used normals". m(T ) and
m(S). Right: updating mesh vertex position.

Area weighted averaging normals in Step 1 and normal-
izing Step 2 define a new unit vector field fmg defined at
the mesh triangles. The mesh updating Step 3 attempts to
find a mesh whose normals are close to the unit vector field
fmg.

Now the complete smoothing procedure consists of
applying Step1+ Step2+ Step3 a sufficient number
of times. It turns out that the mesh evolution process
(Step1+ Step2+ Step3)n converges quickly as n !
1 and in practice 10 � 30 iterations is quite enough to
achieve a steady-state.

The iterative mean filter considered above is a simplified
version of a nonlinear diffusion of normals proposed in [10]
and used for crease enhancing. A similar mesh smoothing
method was very recently proposed in [14].

4 Median Filtering Face Normals

The median filtering procedure described in this sec-
tion differs from the mean filtering scheme of Section 3 by
Step 1 only.

Instead of averaging mesh normals n(S) let us apply
the classical median filtering [6] to the angles '(S; T ) =
6
�
n(S); n(T )

�
between n(S) and n(T ). Let n(Smedian)

correspond to the median angle, then we set m(T ) =
n(Smedian). We call this variation of mesh median filtering
by angle median filtering.

Another median filtering procedure is obtained if we ap-
ply the classical median filtering to estimated directional
curvatures k(S; T ) = '(S; T )=jC(T )C(S)j, where C(T )
and C(S) are the centroids of the triangles T and S, re-
spectively. Let us call this procedure by curvature median
filtering.

The median filtering schemes enhance shape creases.
According to our experiments, the angle median filtering
scheme has a stronger crease enhancing effect than the the
curvature median filtering scheme, see Fig. 6.

Weighted median filtering. The weighted median filter-
ing scheme [1] described below is a simple and useful mod-
ification of the basic median filter.

Consider a set of samples (x0; : : : ; xn�1) and positive
weights (w0; : : : ; wn�1). The output of the weighted me-
dian filter x̂ is defined by

x̂ = Median(w0 � x0; : : : ; wn�1 � xn�1); (7)

where
wi � xi = xi; xi; : : : ; xi| {z }

wi times

: (8)

It is evident that elements with large weights are more
frequently selected by the weighted median filter.

Let us divide the set of neighboring triangles N (T ) of a
given triangle T in two subsets: Ne(T ), the set of mesh
triangles sharing an edge with T , and Nv(T ), the set of
mesh triangles touching T at one vertex. We assign weight
2 to the triangles of Ne(T ) and weight 1 to the triangles of
Nv(T ), as seen in Fig. 7.

5 L
2-Error Estimation

In order to compare the proposed mean and median mesh
smoothing schemes with conventional smoothing methods
we introduce two error metrics.

Consider an ideal mesh M and a mesh M 0 obtained
from M by adding noise and applying several iterations of
a smoothing process. Consider a vertex P 0 of the smoothed
mesh M 0. Let us set dist(P 0;M) equal to the distance be-
tween P 0 and a triangle of the ideal mesh M closest to P 0.
Our vertex-basedL2 error metric is given by

"v =
1

3A(M 0)

X
P 02M 0

A(P 0) dist(P 0;M)2 (9)

where A(P 0) is the sum of areas of all triangles of M 0 inci-
dent with P 0 and A(M 0) is the total area of M 0.

Our normal-basedL2 error metric is defined in a similar
way. Consider a triangle T 0 of the mesh M 0 and let us find
a triangle T of M closest to T 0. Let n(T ) and n(T 0) be
the orientation unit normals of T and T 0 respectively. The
normal-based error metric is given by
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Figure 6. (a) A Moai statue model digitized by a 3-D laser scanning system (Minolta Vivid 700). (b) Smoothed by

�fty iterations of the mean �lter. (c) Smoothed by �fty iterations of the angle median �lter. (d) Smoothed by �fty

iterations of the curvature median �lter.
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Figure 7. Allocating weights to triangles from N (T ).

"f =
1

A(M 0)

X
T 02M 0

A(T 0)jn(T )� n(T 0)j2 (10)

where A(T 0) is the area of T 0.

6 Comparison of Smoothing Methods

The developed mean and median filtering schemes show
better performance with respect to the vertex-based and
normal-basedL2 error metrics than the Laplacian and mean
curvature flows.

According to our experiments, iterative mean filtering
outperforms slightly iterative median filtering for uniform
meshes without sharp features, as seen in Fig. 8. However
for highly nonuniform meshes with sharp creases the iter-

ative median filtering scheme demonstrate a better perfor-
mance than the iterative mean filtering scheme, as seen in
Fig. 9.

A comparison of the mean filter and simple/weighted
and angle/curvature median filtering schemes is presented
by Fig. 10. The tested two-holed torus model has sharp fea-
tures and therefore median filtering is preferable. The best
smoothing effect according to visual appearance and the er-
ror metrics is achieved by the weighted median filters.

7 Conclusion and Future Work

In this paper, we have presented new methods for tri-
angle mesh denoising: iterative mean and median filtering
schemes. We have also compared the proposed mesh fil-
tering schemes with conventional mesh smoothing proce-
dures such as the Laplacian smoothing flow and the mean
curvature flow. The comparison has demonstrated that the
proposed methods outperformed the conventional ones in
terms of accuracy and resistance to oversmoothing.

One interesting direction for future research consists of
developing an error metric corresponding to our visual per-
ception of 3D shapes better than the proposed vertex-based
and normal-based L2 error metrics. A comparison of the
proposed methods with advanced mesh smoothing tech-
niques developed recently [12, 5, 15, 2, 13, 14] also remains
a task for future research.
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Figure 8. Rocker-arm model is represented by a rela-

tively uniform mesh. Mean �ltering is the best choice

for the model with noise added.
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Figure 9. Flower model is represented by a highly

non-uniform mesh and has sharp features. Angle me-

dian �ltering demonstrates the best performance for

smoothing the model with noise added.
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Figure 10. Smoothing a noisy two-holed torus. vertex-based L2 error. (a) Original at-shaded model. (b) Original

wireframe model. (c) Noisy is added. (d) Smoothed by mean �ltering. (e) Smoothed by angle median �ltering. (f)

Smoothed by curvature median �ltering. (g) Smoothed by weighted angle median �ltering. (h) Smoothed by weighted

curvature median �ltering.
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