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Meshfree and particle methods in biomechanics: 

Prospects and challenges 

Abstract 

The use of meshfree and particle methods in the field of bioengineering and biomechanics 

has significantly increased. This may be attributed to their unique abilities to overcome most 

of the inherent limitations of mesh-based methods in dealing with problems involving large 

deformation and complex geometry that are common in bioengineering and computational 

biomechanics in particular. This review article is intended to identify, highlight and 

summarize research works on topics that are of substantial interest in the field of 

computational biomechanics in which meshfree or particle methods have been employed for 

analysis, simulation or/and modeling of biological systems such as soft matters, cells, 

biological soft and hard tissues and organs. We also anticipate that this review will serve as a 

useful resource and guide to researchers who intend to extend their work into these research 

areas. This review article includes 333 references. 

Highlights 

 We present an up to date review of meshfree and particle methods, including their 

advantages and limitations. 

 We comprehensively discuss past and recent applications of meshfree and particle 

methods in bioengineering and biomechanics. 

 We identify research areas, directions, and opportunities for the application of meshfree 

and particle methods in bioengineering and biomechanics. 
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1 Introduction 

According to Kojić et al. [1], bioengineering is defined as a broad field of scientific, 

biological, medical and engineering disciplines in which living systems, processes and 

materials are investigated together with non-living subjects, environments, and materials, in 

order to advance fundamental knowledge and improve lives. Advances in the field of 

bioengineering over the years have meaningfully transformed medical and health care, 

leading to an improved quality of life for human beings. These advances include X-ray, 

electrocardiogram, heart valve replacement, artificial kidneys, hips and knees, image-guided 

surgery, computer aided tomography (CT), magnetic resonance imaging (MRI), genomic 

sequencing and microarrays, laser surgery, ultrasound, and so on. It can be seen from this list 

that the scope of bioengineering is indeed very broad. This scope includes many areas of 

specialty, such as biomechanics, biomaterials, bioinstrumentation, bioimaging, 

bioinformatics, and so on. 

As the title of this paper suggests, our focus lies within the field of biomechanics, which is an 

integral (not to mention the foremost) subset of bioengineering, involving the study of the 

structure and function of biological systems such as humans, animals, plants, organs, and 

cells by means of mechanics or mechanical methods. Therefore, we conclude that 

biomechanics is closely related to engineering since it essentially adopts basic and advanced 

engineering principles and methods, including applied mechanics, continuum mechanics, 

structural analysis, kinematics and dynamics, to analyze biological systems, while 

simultaneously bearing in mind that biological systems are much more complex than man-

built systems.  

Past, current and potential applications of mechanical concepts to real life problems are 

evident in the form of soft matter mechanics, kinesiology, human and animal movement, cell 

mechanics, tissue engineering, cancer biomechanics, bone remodeling, musculoskeletal and 

orthopedic biomechanics, cardiovascular biomechanics, ergonomics, occupational 

biomechanics, sports biomechanics and rehabilitation, allometry, and the so-called injury 

biomechanics. Over the past three decades, the use of numerical methods in bioengineering 

has gained significant attention compared to experimental techniques. These methods have 
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proven to be the most economical choice and offer the possibility of investigating locations 

not accessible to experimental devices.  

Many problems in the field of biomechanics may be solved computationally using mesh-

based methods such as the finite element method (FEM). However, finite element (FE) 

techniques, much like many other mesh-based methods, suffer from certain drawbacks in the 

modeling and simulation of biological systems such as soft tissue and cell deformation, 

minimally invasive surgical simulation as well as modeling of microvascular blood flow.  

Some of the well-documented limitations of mesh-based methods are summarily itemized as 

follows. Firstly, all contact between tool and tissue must correspond to nodal points; hence, to 

prevent loss of accuracy, the density of the nodal points must be relatively high. This requires 

the application of extensive computational resources, in turn leading to high computational 

cost. Secondly, mesh distortion and entanglement during the large deformation of soft 

materials such as muscles, internal organs, skin, and cells results in reduced accuracy. 

Although remeshing algorithm may be employed to overcome this limitation, it often leads to 

increased computational cost and effort.  

Furthermore, in situations where local stresses/strains are extremely large or during an 

explicit simulation of fluid flow, such as is found with hemodynamics, the swallow process, 

and cardiovascular activities, the creation of excellent quality meshes for use within the 

problem domain is a prerequisite with FEM, which ultimately leads to a loss of manpower 

time etc. Lastly, it is extremely difficult to represent complex geometry with unstructured 

mesh, which is necessary for the prediction of the complex remodeling process of biological 

tissues and the rupture of such biomaterial. In addition, the accuracy and smoothness of the 

stress fields obtained with meshless methods are very useful and convenient. Since most 

problems in computational biomechanics involve highly complex irregular geometries, large 

strains and deformation, the need for meshfree and particle methods, which circumvents most 

of the aforementioned limitations of mesh-based methods, cannot be overemphasized. 

2 Overview of Meshfree and Particle Methods 

As new phenomena and problems continue to emerge in the world of science and 

engineering, the need for more reliable and accurate computational techniques cannot be 

overstated. For some biomechanical problems, the limitations of conventional mesh-based 

computational techniques, such as finite difference method (FDM), finite element method 
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(FEM) and finite volume method (FVM), become more obvious. For instance, finite elements 

based on a Lagrangian description of the kinematics are usually problematic. The results 

obtained are generally less accurate and lose their physical meaning due to the severe 

distortion of the FE meshes. This (alongside many other reasons) has motivated researchers 

to explore and develop new computational techniques, especially the so-called meshfree (or 

meshless) method. 

The most distinctive feature of meshfree methods is that they do not use predefined meshes, 

at least for field variable interpolation, while the major difference between meshfree methods 

and conventional numerical methods is the manner in which the shape function is formulated. 

However, once the shape function has been obtained, meshfree methods, boundary element 

method (BEM) and FEM all use the same technique both to form the system equations and to 

acquire a solution to the problem under consideration. Generally, a meshfree method involves 

an algorithm that satisfies both of the following statements: (a) definition of the shape 

functions depends only on the node positions, and (b) evaluation of the nodal connectivity is 

bounded in time and depends exclusively on the total number of nodes in the domain. 

The earliest documented form of the meshfree method, known as smoothed particle 

hydrodynamics (SPH), was first used in astronomical research [2]. Monaghan [3, 4] gave the 

method a more precise definition by explaining it as a kernel estimate, which revealed the 

inherent characteristic of the meshfree method to be its kernel node basis. In addition to 

astrophysics, the method also found use in fields such as civil and mechanical engineering, 

materials science, impact, penetration, and large deformation in solid mechanics, as well as 

many other engineering disciplines [5, 6].  

Soon after, in 1992, a diffuse element method (DEM) was introduced by Nayroles et al. [7]. 

This method uses the moving least squares (MLS) approximation and its solution procedure 

is associated only with boundary information and node displacements; hence, the use of mesh 

and elements connectivity is no longer required. The MLS approximation was first used by 

Lancaster and Salkauskas [8] in curve-fitting applications. If the polynomial basis used in 

MLS approximation consists of only a constant, the method reduces to a weighted averaging 

technique, but if the weight functions are singular at the nodes with which they are 

prescribed, the MLS approximation becomes an interpolation, which implies that the 

approximation passes through the nodal data.  
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Belytschko and his co-workers [9] made some modifications to the diffuse element method in 

order to obtain better accuracy. These modifications are as follows: the derivatives of the 

shape functions were evaluated exactly, Lagrange multipliers were introduced to the potential 

energy functional to enforce the essential boundary conditions, and the integration procedure 

was improved by using a regular cell structure, independent of the nodes. The resulting 

method was named the element-free Galerkin (EFG) method. 

Over the years, the EFG has been used widely in continuum mechanics for various class of 

problems since it has proven to be a powerful numerical method. Instead of using domain 

meshing, as in the finite element method, EFG uses uniform or scattered node distribution in 

the problem domain. Numerical integrations are popularly performed using the Gauss 

quadrature method, which requires the use of background cells, and hence makes the method 

not ‘truly’ meshfree. While the method of SPH finds application in fluid mechanics, the 

methods of DEM and EFG are more oriented to solid mechanics. Compared to SPH, these 

methods offer good accuracy and stability, but are complex and ‘more’ computationally 

expensive. 

As only node information is needed, EFG has many distinct advantages when compared with 

the traditional finite element method in solving various engineering mechanics problems, 

such as the structural and fracture mechanics, the behavior of materials, multiphase coupling, 

large deformation, and so on. Due to its superior properties, the EFG method has been widely 

used in many static and dynamic fracture mechanics problems [10–12], the modeling of 

material discontinuity [13], and with thin plates and shells [14, 15]. 

A subtle disadvantage of the EFG method is that the final algebraic equation system is 

sometimes ill-conditioned due to the MLS approximation used for the shape function 

construction [16]. As it is difficult to determine which of the algebraic equations is ill-

conditioned, a good solution or even a correct numerical solution may be impossible to 

obtain. In addition, the need to find the inverse of the moment matrix leads to an increase in 

computation time. To overcome these problems, the improved moving least squares (IMLS) 

approximation has been developed to obtain the approximation function. Here, an orthogonal 

function system with a weight function is used as the basis function [17–19]. With the IMLS 

approximation, the algebraic equation system is not ill-conditioned and the inverse of the 

moment matrix can be obtained without an increase in computational cost due to the 

sparseness of the matrix. 
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As there are fewer coefficients in the IMLS approximation than in the MLS approximation, 

fewer nodes may be employed to discretize the entire domain in the improved element-free 

Galerkin (EFG) method than with the conventional EFG method, which normally results in 

higher computation speed. Furthermore, the IEFG method has greater computational 

precision than the EFG method when the same numbers of nodes are distributed on the 

domain. Its accuracy and convergence have been tested for various categories of problems 

ranging from the biological population [20], where the degenerate parabolic equations arising 

from the spatial diffusion of biological populations are solved, 2D and 3D potential problems 

[18, 19], 2D fracture problems [17], and elastodynamics problems [21]. 

In 1998, Atluri and Zhu proposed two new meshfree methods based on the MLS 

approximation: the local Petrov-Galerkin (MLPG) method [22] and the local boundary 

integral equation (LBIE) method [23]. The advantage of these methods was the simplification 

of the integration process. Recently, Mirzaei and his co-workers proposed a new low-cost 

meshfree method, known as direct meshless local Petrov–Galerkin (DMLPG), which ignores 

the role of trial space and constructs the final stiffness matrix through direct approximations 

for local weak forms and boundary conditions [24, 25]. Liew et al. [26, 27] integrated the 

superiority of differential quadrature techniques and the MLS approximation to form the 

moving least-squares differential quadrature (MLSDQ) method.  

Another successful and well-used meshfree method is the reproducing kernel particle method 

(RKPM) [28]. The RKPM improves the SPH method by introducing a correction function 

into the kernel function to satisfy the reproducing conditions. This modification allows the 

kernel or the weighting function to reproduce polynomials exactly to a specific order, thereby 

fulfilling the requirement of consistency conditions. The RKPM was proven to be equal to 

the MLS approximation when the correct function is the linear basis function [29]. Chen et al. 

[30] proposed a stabilized conforming nodal integration for Galerkin meshfree methods since 

integration by Gauss quadrature and direct nodal integration adds considerable complexity to 

solution procedures and leads to numerical instability due to the under-integration and 

vanishing derivatives of shape functions at the nodes, respectively. 

Chen and his colleagues subsequently extended the use of RKPM to elastic and plastic 

analyses and the study of nonlinear, large deformation problems such as rubber 

hyperelasticity and metal forming analysis [31–33]. More recently, Liew et al. [34–36], Wang 

et al. [37], Cheng and Liew [38] and Zhao et al. [39] also employed the RKPM to undertake 

various analyses of laminated composite cylindrical panels and rotating cylindrical shells, 
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rectangular, laminated composite plates, the modeling of the human proximal femur and two-

dimensional unsteady heat conduction problems. 

Many other variants of meshfree methods can be found in the literature. Sulsky et al. [40] 

developed a particle-in-cell (PIC) method to study solid mechanics in the free Lagrangian 

description, which was also extended to form the material point method (MPM) [41]. A 

partition of the unity finite element method (PUFEM) was introduced by Babuška et al. [42] 

and further methods, such as the finite point [43], were also devised. The finite point method 

(FPM) [44, 45] uses the weighted least square interpolation for an approximation of the 

problem unknowns and uses a stabilization technique in the collocation point method for 

numerical integration. The radial basis function (RBF) method [46, 47] is another unique 

approximation method based on the strong form formulation, whereby the use of background 

cells for numerical integration is avoided. Instead, it uses the radial basis functions to 

approximate the field variables within the entire domain. Since its introduction, the RBF 

method has been applied extensively in multiquadric-biharmonic methods [48] and structural 

mechanics problems [49–51].  

The set of meshfree methods reviewed above, based on MLS approximations, generally do 

not satisfy the Kronecker delta property, and hence essential boundary conditions cannot be 

directly imposed as in the conventional FEM method. Therefore, they are termed 

approximant meshfree methods, while another set of meshfree methods that do satisfy this 

property are known as the interpolant meshfree methods. These sets of interpolant meshfree 

methods are, in no particular order, now described. The point interpolation method (PIM) was 

initially proposed by Liu in 2001 [52, 53]. Due to its superior properties, such as its ease of 

implementation, flexibility and satisfaction of the Kronecker delta function property, the PIM 

approach and its variants, such as the radial point interpolation method (RPIM) [54] and the 

smoothed Hermite radial point interpolation method (SHRPIM) [55] have since been applied 

to solve a wide range of problems in the field of computational mechanics.  

Sukumar and his co-workers proposed the natural element method (NEM) [56] and natural 

neighbor Galerkin method (NNGM) [57] as new variants of the meshfree method. Here, the 

trial and test functions are constructed using natural neighbor Sibson interpolants, 

representing a multivariate data interpolation scheme that was initially used in data fitting. 

These meshfree methods are constructed using popular geometrical and mathematical 

concepts such as the Voronoi diagram [58] and the Delaunay tessellation [59]. More recently, 
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the natural neighbor radial point interpolation method (NNRPIM) has been derived out of a 

combination between the NEM and the RPIM [60].  

Sukumar [61, 62] further advanced the prospects of meshfree methods by formulating 

maximum entropy approximation polygonal interpolants for solving computational 

mechanics problems; the Kronecker delta property is satisfied weakly at the boundary and 

hence the essential boundary conditions can also be imposed, as in the FEM approach. New 

modifications of the maximum entropy approach, such as the local maximum entropy 

approximation was proposed by Arroyo and Ortiz [63] and a higher order method based on 

the local maximum entropy method was developed by Gonźalez et al. [64], while the 

numerical integration of the weak forms is performed using a similar approach, as in the EFG 

and DEM methods. Other interesting meshfree methods expounded in the literature include 

the point assembly method [65], the meshless finite element method (MFEM) [66] and the 

natural radial element method (NREM) [67]. 

Another class of meshfree methods that are generally referred to as particle methods is briefly 

described here. The discrete element method (DSEM) [68], dissipative particle dynamics 

(DPD) [69], moving-particle semi-implicit (MPS) [70], and generalized finite difference 

(GFD) [71] all provide outstanding results in terms of handling, with relative ease, complex 

moving boundaries with scalar and other complexities. The DPD and MPS methods, which 

originated in the field of molecular dynamics, where each particle moves according to 

Newton’s second law, have been used to simulate systems of particles. These methods have 

been used extensively in the literature for the solving of a lot of biomechanics related 

problems. 

Some of the main characteristics, advantages, and drawbacks of meshfree methods are briefly 

summarized below:  

a. The shape (or interpolation) functions of meshfree methods can easily have higher- 

order continuity since the shape functions are mostly constructed by embedding a 

highly smooth window (or weight) function with a large support domain size. 

Contrary to this, even the need to construct a 1
C  continuous shape function in the 

mesh-based methods can cause a serious problem. 

b. As far as maintaining the same order of consistency is concerned, numerical results 

reveal that the convergence of meshfree methods is often considerably better than that 

of mesh-based methods such as FEM.   
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c. Meshfree methods possess nonlocal properties, as every evaluated point in the domain 

is covered by the multiple shape functions of the node and this property is determined 

by the size of the compact support domain. In addition, the adoption of a compact 

support domain can substantially reduce the bandwidth of the meshfree method. 

Hence, meshfree methods can achieve much higher precision levels than mesh-based 

methods when used to solve large deformation problems in engineering.  

d. Since the meshfree shape function is independent of meshes, it can avoid the 

burdensome work of meshing and re-meshing associated with FEM when applied to 

the study of finite deformation, fracture and crack propagation problems. 

e. Although the meshfree methods possess superior properties over mesh-based 

methods, they are often more computationally expensive due to their shape function 

construction cost. Additionally, the enforcement of boundary condition in 

approximant meshfree method is not straightforward as in the FE technique since they 

do not satisfy the Kronecker delta property. 

In this review, the mathematical formulation, numerical implementation and programming of 

these meshfree and particle methods are omitted since the focus of this article is on their 

applications in bioengineering and biomechanics. However, such details can be found in the 

following literature [72–75] and the references cited therein. 

3 Applications 

Since the first appearance of the meshfree and particle methods in the literature, their 

applications have spanned many areas of science and engineering. In this section, we 

comprehensive discuss their applications in the field of biomechanics, covering key areas 

such as biological tissues, bone remodeling, heart and cardiovascular mechanics, cell 

mechanics, blood flow dynamics, human swimming locomotion and bird flights, and some 

emerging areas such as developmental biology. 

3.1 Biological Soft Tissues 

Biological soft tissues are multiphasic materials, consisting of various amounts of living cells, 

extracellular matrices and interstitial fluid, with a considerable amount of water. The most 

prominent attribute of biological soft tissues is their high elasticity; hence, they are popularly 

referred to as hyperelastic. Another important characteristic is their anisotropic behavior 
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(although some may be purely isotropic), which depends on the degree of concentration and 

structural arrangement of their principal constituents, such as elastin, collagen, and so on. 

Owing to their strong nonlinearity, their ability to undergo finite deformation, their isotropic 

or anisotropic nature, and their viscoelastic or hyperelastic behaviors, the choice of an 

accurate material constitutive model can be very challenging. Examples of the biological soft 

tissues to be considered in this section include the liver, collagen scaffolding, kidney and 

skin. 

One of the foremost studies on the application of meshfree methods to biological soft tissue 

simulation was performed by De and his co-worker [76, 77]. In their studies, they presented a 

novel meshfree modeling technique, called the method of finite spheres, by which they 

computed the underlying virtual-based medical simulation by enabling the user to interact 

with physically-based tissue and organ models in real-time using both visual and haptic 

sensory modalities. Their approach was then applied to study the real simulation of 3D liver 

tissue palpation assuming a linear elastic behavior by monitoring the tissue deformation and 

tool tip reaction force. Zhu et al. [78] implemented a point-based simulation framework for 

minimally invasive surgery using the SPH method. 

The MPM approach was employed for the nonlinear modeling of a 3D vascularized scaffold 

under tension, consisting of growing microvascular fragments embedded in a collagen gel 

constructed from volumetric confocal image data and discretized with over 13.6 million 

material points [79]. Since the material properties of collagen gels are nonlinear and 

viscoelastic, and since there are no available data for the material properties of individual 

microvessel fragments, an uncoupled compressible neo-Hookean hyperelastic constitutive 

model was used to represent both the collagen and the microvessels. Sensitivity studies on the 

effects of grid resolution, material properties, and computational algorithm were also 

performed. 

In a bid to understand the factors that control the extent of tissue damage due to material 

failure in soft tissues, which may provide a means by which to improve the diagnosis and 

treatment of soft tissue injuries, the MPM was used to study the failure of soft tissues 

subjected to large deformation using an anisotropic neo-Hookean hyperelastic constitutive 

model. Furthermore, the authors adopted a constitutive model that incorporated a strain-based 

failure criterion. The efficiency of the proposed approach was investigated using simulations 

of simple tensile mechanical, slab penetration tests considering the scenario of a penetrating 

injury due to a projectile such as a bullet [80]. Liu and his colleagues [81] also simulated the 
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stress wave propagation and subsequent failure evolution of hard-soft material interaction 

under impact loading by applying force to layers of different materials using the MPM 

approach.  

Lim and De [82, 83] improved upon their previous studies [76, 77] to account for the 

geometrically nonlinear tissue response in the human kidney by performing real-time surgery 

simulations. The problem geometry was obtained by way of image segmentation using the 

point collocation-based method of finite spheres in which MLS functions are compactly 

supported on spherical subdomains and a point collocation technique is employed as the 

weighted residual scheme. In order to overcome the problems of needle insertion inaccuracy, 

difficult motion planning and the need for remeshing during real-time minimally invasive 

surgical simulation, Xu et al. [84] presented a meshfree framework for bevel-tip flexible 

needle insertion through soft tissue by using two separated sets of nodes to represent the 

needle and the soft tissue. In their simulation, additional nodes were added to the tissue by 

exactly following the needle’s kinematics or dynamics during insertion, while the interactions 

between the needle and tissue were calculated and simulated through their influence domains. 

Reasonable results were obtained. However, the problem was grossly simplified as only 

elastic, isotropic and linear soft tissue with a simple geometry was considered.  

Zhu et al. [85] also proposed a hybrid particle and surface-based method to model the elastic 

behaviors of organs with complex surfaces in the surgical environment using the SPH 

method, due to the simulation resolution issues associated with using pure particle-based 

methods. Hieber et al. [86] proposed a remeshed SPH approach to achieve improved 

accuracy in the simulation of the mechanical behavior of human liver and kidney, using a 

linear viscoelastic material model. In their study, they also established a unified formulation 

of fluid-structure interaction based on particle methods. For the sake of improved accuracy, 

better real-time, stability and ease in performing virtual real-time surgery simulation, several 

other modified or hybrid meshfree and particle methods have been proposed in the literature 

[87–89].  

By means of a meshless total Lagrangian adaptive dynamic relaxation (MTLADR) algorithm, 

which is an extension of the MTLED algorithm (to be introduced later), Jin and her co-

workers performed the 2D [90] and 3D [91] modeling of soft tissue cutting in surgical 

simulation. They predicted the steady-state deformation of soft tissue at all stages of cutting, 

while cutting-induced discontinuities were modeled solely through changes in nodal domains 

of influence. The accuracy and computational cost effectiveness of the proposed algorithm 
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were compared with that of the established nonlinear solution procedure using the 

commercial FE code, ABAQUS. Abdi et al. [92] studied the dynamic and real-time large 

deformations of a 3D linear viscoelastic model of human spleen subjected to a time-varying 

compressive force exerted by a surgical grasper within a meshfree EFG based algorithm with 

a 3D linear basis function, a cubic spline weight function, and MLS shape functions whose 

essential boundary condition was imposed using the penalty method.  

Cao et al. [93] proposed a meshless model based on the multi-subdomain radial basis 

function and the method of fundamental solution (RBF–MFS) to explore bioheat transfer 

problems such as the prediction of temperature distribution in skin tissue, involving different 

materials and/or multi-connected regions, like normal tissue, tissue with tumor and burnt 

tissue. A schematic of the 2D calculation geometry is presented in Fig. 1 below. The well-

known Pennes equation, which involves the effects of blood perfusion and metabolic heat 

generation, is used to simulate the thermal behavior of biological tissue [93]: 

Conduction of heat Internal heatHeat transport between the 
in tissue due to tissue and microcirculatory

temperature gradiant  blood perfusion

( , )
[ ( , )] [ ( , )]

b b b a m

u t
c k u t c u u t Q

t
r w r

¶ = Ñ × Ñ + - +
¶

x
x x

 Spatial heating 
generation due caused by external 
to metabolism heat sources

( , )
r

Q t+ x  (1) 

where ,cr  and k are the density, specific heat, and thermal conductivity of the tissue, 

respectively; ,
b b

w r  and 
b

c  represent blood perfusion, density and specific heat of blood, 

respectively. , ( , )
a

u u tx  and 
m

Q  denote the constant arterial temperature, tissue temperature, 

metabolic heat generation, and heat source due to spatial heating, respectively.  
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Fig. 1 Illustration of the computational domain for a 2D skin model built on a rectangular area [93]. 

The following boundary conditions and initial condition are applied to the four boundaries, as 

shown in Fig. 1: 

 Dirichlet boundary condition: ( , ) ( , )
u

u t u t= Î Gx x
 
 (2) 

 Newman boundary condition: ( , ) ( , )
q

q t q t= Î Gx x  (3) 

 Convective condition: ( , ) [ ( , ) ]
e e c

q t h u t u= - Î Gx x
 
 (4) 

 Initial condition: 
0

( , 0)u u= Î Wx  (5) 

where  represents the boundary normal heat flux defined as q k u n= - ¶ ¶  and n is the 

unit outward normal to the boundary G of the domain of interest W. 
e

u  denotes 

environmental temperature. The time variable can be handled using the Laplace transform or 

the finite difference approach.  

Tao and his colleagues solved various linear transient skin bioheat transfer problems using 

the meshfree method by combining the Laplace transform method and the RBF-MFS method 

in order to reduce the overall computation time [94]. Other approaches were also formed 

from the coupling of the method of fundamental solution (MFS) and either the dual 

reciprocity method (DRM) [95] or the operator splitting method (OSM) [96], to solve 

nonlinear steady state and transient bioheat transfer problems using a 2D nonlinear skin 

model with a temperature-dependent blood perfusion rate within the RBF meshfree 
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framework. For details on the nonlinear skin bioheat model, interested readers can refer to 

[95, 96] and the references therein. 

Jamil and Ng [97] proposed a new meshless radial basis collocation method (RBCM) for the 

heterogeneous conduction and simulation of the temperature inside biological tissues using 

an approximation function developed using inverse multiquadratic (IMQ) radial basis 

functions (RBFs). A weighted collocation method was used to overcome problems due to the 

nonlocality of the RBFs and errors at the boundaries, domain, and interfaces in order to 

obtain exponential convergence. Bourantas et al. [98, 99] extended the Pennes bioheat 

equation to incorporate water evaporation, tissue damage, and temperature-dependent tissue 

properties during tumor ablation, while the conductivity of the tissue was treated as a local 

function in order to simulate local variability due to the existence of the usually unclear 

interfacing of healthy and pathological segments. The meshless point collocation was 

implemented to solve the resulting transient bioheat problems for 2D and 3D problems.  

In [100], the authors implemented an SPH approach to solve the non-linear Pennes bioheat 

transfer equation for skin tissue. Here, the Cattaneo and Vernotte (CV) model was 

incorporated to overcome the paradox of an infinite sound speed, using the dual-phase-lag 

(DPL) model for the heat flux vector, while capturing the non-linear behavior of the model 

using the temperature-dependent conductivity. Erhart et al. [101] proposed an evolutionary-

based inverse approach for the identification of non-linear heat generation rates in living 

tissues by using a localized meshless method to analyze Pennes’ bioheat equation, while the 

rates of heat generation within the domain of interest were obtained using genetic algorithm 

optimization. A patient-specific meshfree approach was proposed in [102] for numerical 

modeling of the mechanical deformation of tissues in the female pelvic floor during 

childbirth. 

Pyo et al. [103] implemented a physically-based nonrigid registration method using the SPH 

for hepatic metastasis volume-preserving registration between follow-up liver computed 

tomography (CT) images by discretizing the liver and hepatic metastasis as a set of particles 

carrying their individual physical properties, where the hepatic metastasis represented 

particles were stiffer, as shown in Fig. 2. In their studies, an automatic liver segmentation 

method based on a level-set algorithm was adopted to achieve optimal estimation of the 

initial liver shape, and faster and more robust segmentation of the liver, while the metastasis 

candidate regions were automatically detected in the source image instead of segmentation, 
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due to the ambiguous boundary of, and large variability in, the shape, size, and location of the 

liver. 

 

Fig. 2 Particles placed in the initial shape of the liver (left), and its magnified view (right). Particles of a fixed 

size are regularly placed in the liver. Light-gray-lined, black-lined and black-filled particles represent normal 

liver particles, metastasis particles and boundary particles, respectively [103]. 

Naeeni and Haghpanahi [104] extended the application of meshfree methods to elastography 

(i.e. the measurement and visualization of the mechanical properties of human organs by 

applying a mechanical stimulation and then imaging the resulting local displacements), by 

way of studying the deformation of an elastic non-homogenous phantom using the EFG 

method in the plane strain state with respect to experimental conditions. The numerical 

results were validated experimentally in order to calculate the deformation of the phantom 

surface via a digital imaging processing technique in MATLAB and were in perfect 

agreement. Wachowiak et al. [105] studied the deformation of soft tissues using the compact 

support radial basis functions (CSRBFs). Data obtained from the 3D prostrate imaging of 

needle insertion during the implantation of radioactive seeds for brachytherapy were used to 

demonstrate the efficacy of the proposed method.  

A physical-based meshless method for soft tissue deformation has also been proposed [106]. 

An et al. [107] recently employed a CSRBF-based meshless method for photon propagation 

model of fluorescence molecular tomography, which is a powerful imaging modality for the 

research of cancer diagnosis, disease treatment and drug discovery. In order to analyze the 

performance of their proposed meshless method, the authors designed some numerical mouse 

studies to validate the simulated surface fluorescence distribution, and in vivo mouse studies 

to evaluate the tomographic reconstruction. Aras et al. [108] proposed an analytic meshless 

enrichment function for handling material discontinuities such as cuts in interactive surgical 
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simulation. Zhou et al. [109] recently proposed a 3D RBF model based on Marquardt’s 

algorithm for numerical modeling of the real-time deformation of human soft tissues. 

In [110], the authors used a 3D SPH formulation to simulate the penetration impact of a steel 

sphere on soft tissue composed of 20% ballistic gelatin material. Nooshabadia et al. [111] and 

Dehghan et al. [112] employed the EFG method in comparison with FEM for the large 

deformation of kidney, liver and gallbladder during interaction with surgical tools/grasper. 

The two studies concluded that the meshfree method performed better than the FEM. A 

similar study on the large deformation behavior of liver during surgery was carried in [113] 

using a new deformation model which incorporates Kelvin viscoelasticity into the RPIM 

formulation. Palyanov and his co-workers [114] recently presented an open source software 

package called Sibernetic based on the predictive–corrective incompressible SPH method 

designed for the physical simulation of biomechanical matter (membranes, elastic matter, 

contractile matter) and environments (liquids, solids and elastic matter with variable physical 

properties).   

Grabski et al. [115] formulated the identification of the time-dependent blood perfusion 

coefficient as an inverse problem in which the bio-heat conduction problem is transformed 

into the classical heat conduction problem. The transformed inverse problem was then solved 

using the MFS approach together with the Tikhonov regularization. A real-time dissection (or 

cutting) approach for organs such as liver, spleen and gallbladder using hybrid coupling of 

geometric metaballs and physics driven meshfree method based on MLS shape functions was 

recently presented by Pan et al. [116]. A combined application of continuum damage theory 

and SPH technique was proposed by Rausch and his co-workers [117] to model the damage 

and failure of soft tissues. Soleimani et al. [118] presented a 3D computational model to 

examine biofilms in a multi-physics framework using the SPH technique based on a 

continuum approach. The authors employed the SPH technique since it is uniquely robust in 

capturing the interface-related processes of biofilm formation.  

3.2 Bone Remodeling and Dental Studies 

Bone is an inelastic organ, which forms the vertebral skeleton; it is responsible for supporting 

and protecting several other internal organs of the body. It also acts as “factory” where red 

and white blood cells are produced, while also enhancing movement and storing essential 

minerals. Generally, bones are known to have complex structures, both internally and 

externally. They are formed in various forms and sizes according to their required and 
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specific functions. Despite their lightweight, they are strong, hard and perform various 

functions. From the biomechanics point of view [119], bone remodeling is a complex 

behavior, which entails the ability of bone to change and grow in order to adapt itself to the 

applied load history. This behavior is believed to occur as a combination of two unique 

processes: the bone’s ability to change its tissue density according to mechanical demands 

(internal bone remodeling) and the bone’s ability to change its shape for enhanced adaptation 

to mechanical loads (external bone remodeling). 

In 1892, Julius Wolff [120] first observed the relationship between bone structure and applied 

loads, and concluded that it was mainly associated with the evolution of apparent density. 

Following Wolff’s pioneering work, this variable (i.e. apparent density) and relationship have 

since been used by many models in the literature to represent the bone remodeling state. It 

has also been observed that, depending on the model used, the mechanical stimulus 

responsible for change may differ, while many of the diverse stimuli have been defined as a 

function of strain, stress or strain energy [121]. Garcia et al. [119] performed the numerical 

two-dimensional simulation of proximal femur internal bone modeling using a new damage 

mechanics-based model, which comprised a generalization of standard continuum damage 

mechanics (CDM) to living materials [121]. Here, the authors proposed a modified natural 

element method (NEM), called the α-NEM, which allowed the actual shape of the geometry 

to be obtained from a set point without specifying the boundary of the domain. 

Liew et al. [34] employed a meshfree method based on the reproducing kernel particle 

approximation for the simulation of the human proximal femur. Their formulation considered 

treatments of nonconvex boundaries and material discontinuities in the bone structure, and a 

pre-processor was developed for the generation of discretized scatter particle models. Fig. 3 

below shows the geometry, boundary, and loading conditions of a human proximal femur 

model (left) and one of the meshless analysis models discretized with 316 nodes (right). 
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Fig. 3 Geometry, boundary and loading conditions of a human proximal femur (left) and a meshless analysis 

model discretized with nodes (right) [34]. 

 

Numerical examples have been used to study certain stress distribution phenomena in the 

human proximal femur with a consideration of the detrimental effects of infarction, aging, 

and stress variations. Using the femur bone, the hypotheses that low strain fields arise due to 

age-related pore distributions causing bone absorption, and due to bone remodeling features 

at the particle level, have been studied using the SPH approach [122, 123]. Based on their 

previous studies [119], Doblaré et al. [124] analyzed the convenience and possible 

advantages of using meshless methods in numerical simulations within the field of 

biomechanics. With an interest in NEM, they considered its application to the simulation of 

adaptive bone remodeling based on the CDM principles by identifying the local “damage” 

variable with bone tissue porosity, by way of a simulation of hyperelastic tendons under large 

strains and a simulation of poroelastic articular cartilage. From their studies, it was concluded 

that the meshfree method performed with a greater degree of accuracy than traditional FE 

simulations. A decrease in bone strength as a result of a decrease in bone mass and a 

deterioration of bone microstructure due to osteoporosis (a skeletal disease), and as a result of 

a fracture of the trabecular bone, have been studied using a 3D meshless model generated 

directly from CT imaging data [125].   
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Taddei et al. [126] also implemented a meshless cell method (MCM) approach for subject-

specific strain prediction in bones from CT data, which compares well with results obtained 

from experimental studies. The entire process of microcrack propagation in the cortical bone, 

including the propagation of microcracks towards the osteon, around the osteon and out of 

the osteon, with or without the healing property of the bone, was studied by Deng et al. [127]. 

This was achieved by using a meshfree method to solve a nonlocal elastic theory derived 

from the atomistic nonlocal nonlinear multiscale field theory. Uscilowska and Fraska [128], 

using the MFS-based meshfree method and a procedure based on Picard iteration, estimated 

the torsional stiffness of long bones while considering the bone as a functionally graded 

material (FGM), whose shear modulus is a function of geometrical variables. 

Belinha and his co-workers [129–131] proposed a novel anisotropic material law for the 

mechanical behavior of bone tissues based on experimental data, which permits the 

correlation of the apparent bone density with the obtained level of stress. By using the 

proposed material law, a biomechanical model for predicting bone density distribution was 

developed, based on the assumption that the bone structure is a gradually self-optimizing 

anisotropic biological material that maximizes its own structural stiffness. Meanwhile, the 

NNRPIM, a variant of the PIM meshfree method, was used to obtain the strain and stress 

fields required in the iterative remodeling process of the femur, calcaneus bones and 

implants. Following the success recorded in their previous studies using the NNRPIM 

meshfree method, they more recently studied bone density distribution in the vicinity of 

femoral implants using a topology optimization model based on deformation energy methods 

[132]. The bone tissue remodeling algorithm is presented in Fig. 4 below. 
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Fig. 4 Bone remodeling algorithm based on the NNRPIM meshless method (modified after [131]). 

Owing to the complexity involved in the bone healing process and the limitations of meshing 

and remeshing in the FEM, Grivas and his co-workers implemented a meshless Local 

Boundary Integral Equation (LBIE) method for cell proliferation predictions in bone healing 

by solving a cell diffusion problem [133]. They also analyzed the nonlinear Fisher transient 

diffusion equation [134] for the 2D modeling of a fractured bone by incorporating initial cell 

concentrations at the periosteum, the marrow, and between the bone and the callus (at the 

fractured end). Yang [135, 136] utilized high-resolution medical images to develop an image-

based strong form collocation procedure using a gradient reproducing kernel approximation, 

for the biomaterial modeling of bone fracture, the bone remodeling process and the design of 

bone-implant systems, as well as the microstructure modeling of trabecular bone. 

More recently, interest in the application of various numerical methods (meshfree methods 

included) to dentistry and food processing has grown significantly. Cleary and his colleagues 

[137–139] modeled the process of fluid flow and the breakage of various kinds and shapes of 

food by teeth in the oral cavity using a coupled SPH-biomechanical model. In their works, 
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realistic 3D geometries and motions of the jaws and tongue were incorporated into 

simulations of fluid flow, biting, and the chewing of foodstuffs. Saliva and liquid food were 

represented as a Newtonian fluid, and the solid foodstuffs were represented as either 

elastoplastic or brittle elastic solids. In another study, a 3D dynamic SPH mastication model 

was proposed to predict how consumers perceive food, based on food breakdown and release 

of flavor processes [140]. Ho et al. [141] performed a 3D swallowing simulation using the 

SPH method while the haptic rendering of dental filling materials using the SPH technique 

has also been implemented [142]. 

Andrade et al. [143] performed the elastic-static modeling of dental implants using an 

NNRPIM meshless method for possible application to bone using a 2D model composed of 

the occlusal material, a metal framework, an abutment and implant screw, and cortical and 

trabecular bone. The model was subjected to vertical and horizontal loads with displacement 

boundary conditions in the boundary of the bone. Fig. 5 below shows the 2D model of the 

dental implant, the boundary and loading condition as well as the meshless node 

discretization of the model. 

 

Fig. 5 Schematic diagram showing (a) a 2D model of a dental implant, (b) boundary and loading conditions, 

and (c) meshfree node distribution [143]. 

The results obtained from their studies show that a higher level of cortical bone stiffness 

provides lower effective stresses in the cortical bone and higher stresses in the implant. In 
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addition, a higher level of occlusal material stiffness provides lower effective stresses in the 

implant, in the abutment, in the metal framework and in the cortical bone. Although the 

results obtained are undoubtedly insightful, it is believed that more conditions, such as bone 

material anisotropy, inelasticity, and so on, should be considered for a more realistic 

simulation of implants in the in-situ condition.  

Furthermore, Belinha et al. [144–146] predicted bone density distributions on the mandible 

and maxillary bones as a result of the presence of dental implants, by means of a topology 

optimization model built on the deformation energy method using Carter’s remodeling 

algorithm [147] within the NNRPIM meshless technique framework. Also, using the 

NNRPIM meshless method, Duarte et al. [148, 149] studied a prosthetic system consisting of 

two implants connected with a bar using a 2D linear elastic stress-strain model. The 

anisotropic behavior of the cortical bone was simplified and implemented as an isotropic 

condition; however, the obtained results were similar to those reported in the literature using 

FEM in terms of showing that a stiffer bar material induces higher stresses on the bone tissue 

and lower stresses on the implants. Yamaguchi et al. [150] compared the dynamic two-

dimensional FEA and moving particle simulation (MGPS) while assuming a plane strain 

condition in the modeling of human enamel on a reduced scale. The MGPS was able to 

produce results that were highly correlated to FEA, with the possibility of further 

development and application to more complex biomechanics problems. 

Recently, Moreira and his co-workers [151, 152] numerically analyzed the maxillary central 

incisor using the NNPRIM method, by performing a complete elastostatic analysis of the 

incisor/maxillary structure and then a non-linear iterative bone tissue remodeling analysis of 

the maxillary bone surrounding the central incisive, based on Carter’s model. The 

computational model used in their studies was obtained from a computerized axial 

tomography (CAT) scan, which was then discretized using irregular nodes. Tavares et al. 

[153, 154] performed a numerical analysis of tooth restoration using the NNRPIM meshless 

method based on a 2D model constructed from a clinical X-ray image of an upper molar tooth 

with a restoration. They observed that transverse loads from activities within the oral cavity 

induce high shear stresses in the intervention zone, leading to a recurring failure of the 

restoration. In a more recent study, Belinha et al. [155] numerically examined the remodeling 

of the bone tissue surrounding the femoral stem, aiming to predict the necrosis of the femoral 

head and understand the mechanical solicitations causing the pathology, using the NNRPIM 
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meshless method. The NNRPIM technique has also been employed to study the free vibration 

behavior of the cupula in the inner ear [156]. 

3.3 Cartilage, Muscles and Ligament Modeling  

Unlike the FEM, meshfree methods based on MLS approximation and multi-quadric (MQ) 

functions possess high continuity, hence the computation of higher order derivatives does not 

require extra interpolations. This is another significant advantage of the meshfree method, 

which cannot be ignored. In 2002, Hon et al. [157] presented an efficient meshfree numerical 

algorithm using the multi-quadric radial basis function (MQ-RBF) with a direct collocation 

method to simulate a two-dimensional triphasic (i.e. consisting of three phases: solid, water 

and ion) model of charges and hydrated soft tissues. The intrinsic incompressibility of the 

continuity equation was considered and solved directly without the use of any penalty 

function. Numerical studies on the reaction of articular cartilage in a synovial joint subjected 

to mechanical loading and electrochemical effects were carried out under plane stress, plane 

strain, and axisymmetric conditions to show the accuracy of the proposed method. The results 

obtained show a great deal of accuracy. However, for the axisymmetric case using a domain 

decomposition method, an ill-conditioning problem arises due to the full matrix resulting 

from the use of the global RBF method. 

Marai et al. [158] proposed a meshless incompressible height-field cartilage model to capture 

the physical properties important for estimating the shape, contact area and the deformation 

magnitude of cartilage at each articulation. They used a non-invasive method for estimating 

individual-specific cartilage maps directly from in vivo kinematic data and computed 

tomography (CT) volume images. They further proposed an algorithm by which to compute 

cartilage surface deformations. Boyer and his colleagues implemented a 3D fibril-reinforced 

poroviscoelastic model using the SPH method to simulate articular cartilage within the hip 

joint [159] and cartilage deformation [160]. Recently, Cyr and Maletsky [161] implemented a 

multi-dimensional description of knee laxity, which is a product of the individual ligament 

structures that provide constraint for multiple degrees of freedom, using a meshfree radial 

basis function method. 

Chen et al. [162] established a 3D image based model of skeletal muscles using the nonlinear 

RKPM meshfree method formulation for hyperelasticity. The authors constructed their 

simulation model using pixel data obtained from medical images while the material 

properties and muscle fiber direction used as input at each pixel point were obtained by way 
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of diffusion tensor imaging (DTI). Lastly, they adopted a multiphase multichannel level set-

based segmentation framework for individual muscle segmentation using magnetic resonance 

images (MRIs) and DTI. Valizadeh et al. [163] implemented a 3D patient-specific leg-muscle 

pixel-based model using a coupled isogeometric analysis (IGA) and the RKPM meshfree 

discretization approach. It is noteworthy that the coupled IGA-RKPM approach was able to 

preserve the geometric exactness of IGA, circumvent the need for global volumetric 

parameterization of the problem domain, and achieve arbitrary-order approximation accuracy 

while maintaining the higher-order smoothness of the discretization. 

Pena et al. [164] employed a 3D finite-strain damage model to study the finite deformation of 

visco-hyperelastic isotropic fibrous (or fiber reinforced) soft tissue within the NEM approach. 

One significant contribution of this study is the implementation of a constitutive model that 

can account for the anisotropic behavior of fibred materials, isothermal processes using 

unique decoupled representations of the strain-energy density function, anisotropic 

viscoelastic-damage effects, and the material and geometric elements of the consistent 

stiffness matrix. The accuracy and validity of the model were tested using various standard 

tests before being applied to the study of damage in a human ligament whose geometry was 

formed using cross-sectional contours which were manually digitalized from nuclear 

magnetic resonance images and whose curves were imported into a commercial code I-

DEAS.  

Following the approach reported in [164], Doweidar et al. [165] performed a comparison of 

implicit and explicit natural element methods in large strain problems through the modeling 

of the human lateral collateral ligament and knee (i.e. hyperelastic quasi-static fibered 

materials under large strains). The surface geometries of the ligaments were reconstructed 

from a set of MRI images while those of the femur, fibula, and tibia were reconstructed from 

CT images. They concluded that the implicit NEM solver could encounter numerical 

difficulties in converging to the correct solution when solving problems involving large 

element deformation, highly non-linear elasticity, stress concentration or changing contact 

between surfaces, which increases the computational cost in terms of computing the tangent 

stiffness matrix and solving the system of equations. In the explicit approach, the natural 

element equations are reformulated, such that they are solved directly without iterations. This 

implies that the explicit method is more robust in finding solutions and requires less memory 

to handle large and complicated models. 
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Boselli and his colleagues [166, 167] employed a combination of the multilayer MFS 

approach and the force coupling method for numerical investigation of the fluid dynamics of 

benign paroxysmal positional vertigo or canalithiasis conditions affecting the semicircular 

canals of the inner ear by solving the Stoke flow equations with finite-size particles. In [168], 

the authors employed a block greedy-QR algorithm that exploits the robustness of the 

multilayer MFS approach in a multilevel fashion and alleviates the over-head of multiple 

source layers thereby allowing the multilayer MFS to outperform the monolayer MFS. 

3.4 Heart and Cardiovascular Mechanics 

In recent years, there has been a considerable increase in the number of research papers 

focusing on employing the numerous potentials and advantages of meshfree methods in heart 

mechanics and other cardiovascular related studies. These studies are briefly reviewed in this 

section, with a particular interest in their contributions to the field of computational 

cardiovascular mechanics. The relevance and advantages of meshfree methods to medical 

image analysis problems, such as physically motivated multi-frame motion analysis, nonrigid 

motion recovery and inter-object image registration, were studied by Liu and Shi [169]. They 

implemented the EFG method using the cubic spline weight function and imposed essential 

boundary conditions via the penalty method, to analyze a biomechanically constrained multi-

frame heart motion through optimal state-space estimation using two varieties of data 

constraints: the magnetic resonance (MR) tagging images and the MR phase contrast images. 

The result obtained shows that the meshfree method is more computationally effective and 

accurate than the well-known FEM.  

Similar to [169], the authors in [170] investigated the use of anisotropic spatial constraints in 

enforcing spatial regulations on myocardial behavior as well as the spatial filtering of image 

data measurements. Other related studies, such as the applicability of the composite material 

model to the myocardium in a cardiac motion recovery experiment (where the matrix is the 

collagen and the reinforcements are the muscle fibers [171]) and the shape recovery and 

motion tracking of the left ventricles [172], have also been reported. Shi and his co-workers, 

using the EFG meshfree method, undertook an individualized active cardiac dynamics and 

image analysis based on the cardiac physiome model for the imaging of 3D cardiac electrical 

activities from body surface potential maps (BSPM) [173]. This approach was further used 

for the recovery of subject-specific deformation from MRI, and in integrating functional and 

structural images for simultaneous cardiac segmentation and deformation recovery. 
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Wang and Ruby extended the application of the meshfree method of fundamental solution 

(MFS) to potential inverse electrocardiography (PIE) problems involving the reconstruction 

of epicardial potentials from measured body surface electrocardiograms and heart-torsion 

geometry [174, 175].  Li et al. [176] implemented a meshless FEM approach for the solving 

of the electrocardiogram (ECG) forward problem. A coupled meshfree-BEM approach was 

proposed by Wang et al. [177] for electrocardiographic simulations involving personalized 

heart-torso structures, volumetric myocardial transmembrane potential (TMP) dynamics and 

TMP-to-body surface potential (BSP) mapping. This approach was then used to study normal 

cardiac conditions, different bundle branch block (BBB) conditions (by removing 

corresponding sites of earliest excitation in the ventricles), and ectopic activities (i.e. 

ventricular pacing). 

A fast motion tracking method based on the meshfree kernel method for tagged MRI-based 

quantitative cardiac analysis was proposed by Chen et al. [178]. Chen and his colleagues also 

implemented a 3D cardiac motion and strain estimation approach, integrating the robust point 

matching (RPM) and meshfree deformable models [179–181] by using tagged MR images. A 

similar study involving 3D cardiac motion reconstruction from CT data and tagged MR 

images has also been performed [182, 183]. Stabilized beating heart surface motion 

estimation, necessary for robotic surgery, has also been studied [184, 185]. In [186], the 

authors proposed a voxel-based adaptive meshfree method for cardiac electrophysiology 

simulation by solving the modified FitzHugh-Nagumo (FHN) equations. Pashaei et al. [187] 

proposed a fast estimation of electrical activation time in the ventricular wall by 

approximating the path and elapsed time that an electrophysiological signal would need to 

travel over two points in any given 3D geometry. The EFG method has also been proposed to 

simulate the propagation of myocardial electrical activation in canine ventricular and human 

heart models, constructed from a digitized virtual Chinese dataset without explicit mesh 

constraints using an FHN monodomain model [188]. 

The mechanical behavior of mitral valve opening was studied by way of a particle-based SPH 

approach using the fluid-structure interaction (FSI) model [189]. Yu et al. [190] implemented 

a multiscale model of calcium dynamics in ventricular myocytes with realistic transverse 

tubules using both the meshfree method and FEM at different scales. Here, the meshfree 

method was used to predict spatial-temporal calcium concentration in a large domain while 

the FEM was implemented to treat the system of nonlinear reaction–diffusion equations on 
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the geometrical model. This system of equations has also been computed in a similar study 

using the local radial basis function collocation method (LRBFCM) [191]. 

The use of SPH has been extended to the study of the pulsatile flow in the heart’s left 

ventricles [192], and to the evaluation of shear stress accumulation in blood components in 

normal and dysfunctional bileaflet mechanical heart valves [193]. More recently, Skatulla 

and his co-workers studied how gel injections influence the mechanics and performance of 

the left ventricle with myocardial infarction during a full heartbeat using the EFG method 

[194]. They also proposed an EFG based reduced order method (ROM) called the proper 

orthogonal decomposition with interpolation (PODI) in a bid to reduce the huge overall 

computation time associated with complex and nonlinear [195, 196] and patient-specific 

[197] real-time simulations in cardiac mechanics. Lluch et al. [198] employed the SPH 

method for image-based cardiac electrophysiological modeling by solving the macroscopic 

biophysical mono-domain model Mitchel-Schaeffer together with a diffusion term on a left 

ventricle. 

Sack et al. [199] employed the EFG method for the simulations of the left ventricle 

undergoing passive filling by modeling the cardiac tissue with fibers as one-dimensional 

Cosserat continua instead of using the anisotropic strain energy functions which do not 

elucidate on the complex heterogeneous material composition of cardiac tissues. A meshfree 

MFS method involving the combination of live confocal imaging and computational fluid 

dynamics was employed by Boselli and Vermot [200] to analyze the wall dynamics, the flow 

field, the wall shear stress and overcome difficulties related to live imaging of blood flow in 

the developing zebrafish heart. In a more recent study, Mao et al. [201] presented a fully-

coupled fluid-structure interaction study for transcatheter aortic valve dynamics using SPH 

technique. The approach presented by the authors is able to assess the hemodynamics 

responses of bio-prosthetic heart valves (BHVs) and blood flow in the left ventricle. 

3.5 Brain Mechanics 

There is no doubt that the brain is one of the most delicate, complex, and important organs in 

living animals and humans. Even slight damage to the brain due to injury as a result of 

impact, exposure to radioactive radiation, and so on, could lead to loss of life or sanity. In this 

section, we review various studies involving the use of meshfree methods in relation to the 

brain’s electric and magnetic potential distributions, deformation, real-time surgical 

simulations, and indentation.   
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In 2005, von Ellenrieder et al. [202] proposed a finite points mixed method (FPMM) which 

used a collocation technique to discretize the quasi-static Maxwell equations and compute the 

electroencephalography (EEG) forward problem solution. This was undertaken in order to 

obtain the electric potential distribution generated by a source of electric activity inside the 

brain, using both a three-layer model representing the brain, skull and scalp and a more 

detailed and accurate M layers model which included cerebrospinal fluid and differences 

between gray and white matter. The results obtained show that the meshless method 

performed better than BEM and FEM in terms of order of accuracy, the sparseness of 

assembled matrices, computation cost, and so on. This study was based on previous work by 

the authors, who aimed to understand the effect of perturbations in the geometry of the head 

model on the accuracy of EEG source parameter estimation [203].  

Peng et al. [204] recently studied the effect of head models and dipole source parameters on 

EEG fields using a point least squares (PLS) based meshless method. Similar to the EEG 

forward problem, the magnetoencephalography (MEG) forward problem, which involves 

computing the scalp potential and magnetic field distribution generated by a set of current 

sources and analyzing the complex activation patterns in the human brain, was studied using 

the SPH method, by Ala and co-workers [205, 206] and the MFS method via the method of 

particular solutions (MOPS) [207]. In their studies, the three-layered and multilayered model 

was used, the magnetic field was computed by way of the Biot–Savart law and numerical 

experiments were carried out in a realistic single-shell head geometry. They also formulated 

the coupled M/EEG forward problem by means of Maxwell’s equations [208]. The results 

obtained were shown to be in satisfactory agreement with analytical solutions. A novel 

approach for estimating the electric potential and the spatial current density distribution in the 

brain due to transcranial stimulation using the method of fundamental solutions (MFS) has 

recently been proposed [209]. 

Horton et al. [210–212], Miller et al. [213, 214] and Zhang et al. [215] implemented an 

algorithm based on the EFG method, total Lagrangian explicit dynamics and geometrically 

nonlinear formulation, which they called a meshless total Lagrangian explicit dynamics 

(MTLED) algorithm. The MTLED algorithm was designed for use in real-time surgical 

simulation, the subject-specific biomechanical simulation of brain indentation, and brain 

image registration. The implementation steps and procedure for this approach are reproduced 

in Fig. 6. The validity of the algorithm was exemplified by a simplified 3D simulation of a 

craniotomy induced brain shift, including the brain, ventricles, tumor, subarachnoid space 
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and skull, computation of the reaction force acting on a biopsy needle, and the indentation of 

brain tissue. Brain geometry was constructed from MRI images and discretized with nodes, 

while background cells were used for the numerical integration and explicit time integration 

was performed via the central difference method. The results obtained compared well with 

those obtained using LS-DYNA (commercial FEM software).  

 

Fig. 6 Summarized implementation procedure of the MTLED algorithm (modified [212]). 

In a similar study, Berger et al. [216] coupled the FEM and meshfree methods for the 

modeling of brain deformation in response to tumor growth. Using the MTLED algorithm, 

Chowdhury et al. [217] implemented a modified moving least squares approximation for 
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predicting soft tissue deformation using a regularized weight function with almost 

interpolating properties, and hence making the imposition of the essential boundary condition 

easier. The improved algorithm was used for the simulation of 2D brain deformation. In order 

to overcome the problems associated with brain atlas to patient registration in the presence of 

tumors, Diaz and Boulanger [218] proposed a novel method that brings closer the atlas and 

the patient’s image by simulating the mechanical behavior of brain deformation under a 

tumor pressure. In their study, a meshfree total Lagrangian explicit dynamic (MTLED) 

algorithm was implemented to deal with the tumor mass-effect simulation, and a new tumor 

growth model for the simulation, which uses the shape of the segmented tumor from multi- 

modal MRI data instead of assuming an unrealistic regular shape. In a more recent study, 

Marques et al. [219] presented a brain impact stress analysis using advanced discretization 

meshless techniques in which the realistic geometry of the brain was constructed from 

medical images. 

3.6 Arteries, Blood Flow and Transport in Capillaries 

It is a well-known and established fact that three-dimensional blood flow is governed by the 

Navier-Stokes (N-S) equations, together with the continuity equation, while mass transfer 

through the arterial wall and within the blood lumen, when coupled with the blood flow, can 

be modeled using the convection-diffusion equation. In this section, we review previous 

works where meshfree or particle methods have been employed to study artery related issues, 

such as atherosclerosis, blood flow and red blood cell (RBC) dynamics, and mass 

transportation in microcapillaries. 

Tang and his colleagues [220] implemented MRI-based 2D and 3D models, coupled with 

multi-component plaque structure and fluid-structure interactions, to predict plaque 

progression and prevent potential rupture using the MLPG meshfree method. In their studies, 

blood flow was assumed to be laminar, Newtonian, viscous, and incompressible, the artery 

wall and plaque material were assumed to be hyperelastic, isotropic, incompressible and 

homogeneous while the NS equations with arbitrary Lagrangian-Eulerian (ALE) formulations 

were used as the governing equations. They concluded that plaque progression has a negative 

correlation with structural stress and flow shear stress conditions. Similar studies were also 

carried out using the meshless GFD method with and without fluid-structure interactions 

[221–223]. The authors also studied 3D viscous flow in stenotic tubes/arteries while 

incorporating the effect of large wall deformation and collapse [224], and the effect of 
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stenosis asymmetry, on steady blood flow and artery compression using a 3D FSI interaction 

model by solving the governing models (the N-S equations and hyperelastic Mooney-Rivlin 

model), by means of the GFD method [225, 226]. 

More recently, Belinha et al. [227] implemented a 2D elastoplastic model to analyze the 

biomechanical behavior of atherosclerotic plaque tissue in an artery using the NNRPIM 

meshless method. Sinnott and his colleagues [228] studied how arterial pressures affect the 

consideration of internal carotid artery angle as a risk factor for the carotid atherosclerotic 

disease. This was achieved by using the SPH meshfree method to simulate Newtonian flow 

through clinical, rigid walled, carotid bifurcation, and it was observed that varying the angle 

without changing boundary pressure conditions produces minimal change in flow and wall 

shear stress (WSS). In addition, the importance of the internal carotid artery (ICA) in 

maintaining a well-behaved flow was identified.  

El Zahab et al. [229] developed a localized collocation meshless method (LCMM) to model 

laminar incompressible blood flow in the interconnection between a bypass graft and an 

artery. Using the same method, coupled with the genetic algorithm, they further studied how 

blood flow in the synthetic bypass graft end-to-side distal anastomosis (ETSDA) can be 

improved by optimizing ETSDA shape [230, 231]. Tanaka and Takano [232] developed a 

microscopic blood model in which plasma fluid was discretized by SPH particles, and RBC 

was expressed by internal SPH particles surrounded by elastic membrane particles. To verify 

their model, they numerically analyzed two popular phenomena of blood flow: the tank-tread 

motion of an RBC under a constant shear field and the axial migration or pinch effect of 

RBCs in Poiseuille flow.  

The authors in [233] proposed a physical meshless soft tissue model possessing viscoelastic 

creep characteristics and a range-based SPH method with variable smoothing length for 

simulation of blood flow effect in the virtual surgery training system. They also simulated 

kidney soft tissue cutting experiment using the proposed model and method. The results of 

their studies show significant improvement in the cutting and simulation effect in terms of the 

viscoelasticity of the soft tissue cutting and the pressure and viscous force of blood flow. 

Jichuan et al. [234] proposed a software component approach for GPU physics-based 

simulation of blood flow, internal fluidic structure and hand circulation by using an improved 

SPH method for the fluid dynamics of blood flow and an FE modeler for the interaction with 

arterial wall. Caballero et al. [235] investigated the capability of the SPH technique to 

simulate the bulk blood flow dynamics in two realistic left ventricular (LV) models. 
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Tsubota et al. [236] studied the motion of RBCs in 2D blood flow using the MPS method. 

The cases considered in their study included the motion and deformation of a single RBC 

between parallel plates, primary thrombogenesis caused by platelet aggregation, and the 

collective behavior of multiple RBCs. Chui and Heng [237] also proposed a particle-based 

rheologic modeling method for virtual catheterization training applications. They simulated 

the effect of blood rheology through an SPH formulation of non-Newtonian flow, and a pure 

Lagrange particle formulation for fluid-structure interaction was proposed for the simulating 

of blood-vessel interaction by modeling the vessel wall structure as virtual particles. SPH has 

also been used to simulate how malaria parasites reduce the deformability of infected red 

blood cells [238] and to model the near-wall dynamics of leukocytes in flow [239]. Although 

the SPH approach has been widely employed for modeling blood flow, the difficulty of 

discretizing complex continuum geometries into pseudo-particles was recently overcome by 

mean of a multiblock approach [240] in which the whole problem domain is divided into 

simpler blocks, which are then discretized into evenly sized pseudo-particles. 

The DPD particle method has been employed by various researchers and research group to 

investigate blood flow in circulation and devices [241–244] and RBC dynamics [245–252] as 

well as lipid bilayer-cytoskeleton [253]. Similar studies on blood flow, RBC dynamics and 

thrombus formulation have also been carried out using the SPH method [254–259], the 

modified particle binary level set (MPBLS) method [260], multi-particle collision (MPC) 

dynamics based on meshless membrane model [261] and the MPS method [262, 263]. Ariane 

et al. [264] propose a mesh-free and discrete (particle-based) multi-physics approach for 

modeling the hydrodynamics in flexible biological valves. 

In a bid to further understand the rheology of RBC aggregation, Liu and Liu [265] introduced 

a new three-dimensional model that coupled NS equations with cell interactions to investigate 

RBC aggregation and its effect on blood rheology. In their studies, the RKPM meshfree 

technique was used to model the RBCs in order to overcome the challenges associated with 

the large deformation of RBCs. The efficiency of their model was validated with studies on 

the peeling force of an RBC rouleau, the effects of shear-rate dependent viscosity on cell 

aggregation, the effect of RBC deformability on blood viscosity and the Fahraeus–Lindqvist 

effect. More recently, Ghehsareh et al. [266] presented numerical solutions of a mathematical 

model of blood flow in the deforming (expanding and contracting) porous channel using the 

integration radial basis function collocation method. 
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3.7 Cell mechanics 

Cellular systems, which are also referred to as nature’s building blocks, are one of the most 

studied systems since these unique microscopic units control the overall macroscopic 

behavior of both animals and plants. From a biomechanics point of view, plant cells are 

intuitively slightly simpler than animal cells due to their high degree of immobility within the 

organism. In this section, we present a summary of some key studies and investigations in the 

literature relating to cell mechanics, in which meshfree or/and particle methods are employed. 

In [267], Van Liedekerke and his colleagues employed the SPH method to simulate and study 

the micromechanics of single-plant parenchyma cells and aggregates. The micromechanics of 

biological cells was investigated by the same authors [268] through the coupling of SPH (to 

model the cell fluid) with the discrete element method (DSEM), in order to model the 

viscoelastic cell wall as an isotropic incompressible neo-Hookean solid. In their studies, cell 

wall hydraulic conductivity (permeability) was built in through a constitutive relation in the 

SPH formulation, the force transmission and stresses in the biological parenchyma cells were 

predicted and the mechanics (both during and after cell failure) was also modeled.  

Following the works of Van Liedekerke, Karunasena and his co-workers [269, 270] 

simulated the microscale large deformation behavior of different plant food materials and 

plant cell shrinkage during drying using a coupled SPH-DSEM approach. To predict various 

macroscopic properties in the transverse plane of wood – namely, spruce earlywood, spruce 

latewood and poplar – a combination of three approaches was used by Perré and his 

colleagues [271]. In their study, the authors implemented the lattice Boltzmann method 

(LBM), MPM and peridynamic approaches to predict thermal conductivity and mass 

diffusivity, compute rigidity and compression at large deformation, and predict the fracture 

pathway in the cellular arrangement, respectively. 

Nakamura et al. [272] analyzed RBC deformation behavior in various flow fields, such as the 

Couette flow, unsteady shear flows and stenosed flows, so as to determine whether the extent 

of RBC deformation given by a deformation index can be correlated with the external fluid 

shear stress, by implementing a spring-based model and solving the motion equation defined 

for each node with a given mass. The mechanics of platelet aggregation in hemodynamic 

flows was modeled using a combination of the immersed boundary method and parametric 

radial basis function (IB-RBF) by tracking the motion and behavior of a collection of 
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individual platelets as they interacted with the suspending fluid, one another and the vessel 

walls [273]. 

Liew and his co-workers employed an atomistic-continuum model to study the elastic 

properties, buckling and post-buckling, vibration and dynamic behaviors of microtubules 

[274–278]. Wang et al. [279, 280] also implemented a nanoscale quasi-continuum (QC) 

model for exploring the mechanical behaviors of human erythrocyte membranes using the 

higher order Cauchy-Born rule and meshfree method. A 3D multiscale Cauchy-Born 

meshfree model was proposed by Ademiloye and co-workers [281, 282] as an improvement 

to the 2D QC model employed in [279, 280, 283] for numerical modeling of the 

deformability of RBC membrane  parasitized by Plasmodium falciparum. This methodology 

and its semi-analytical variant has been employed to examined the large deformation 

behavior [284, 285] of healthy RBC membrane, biomechanical properties of malaria-infected 

RBC membrane [286] as well as the effects of thermal treatments on healthy RBC membrane 

deformability [287] and its biomechanical responses under various loading conditions [288, 

289]. 

Zeng and his co-workers [290–292] developed a multiscale soft matter model as a 

generalization of the Fluid Mosaic Model [293], and as an extension of Helfrich’s membrane 

model [294] for stem cells, in order to model soft contact and adhesion between cells and 

their extracellular substrates using a Lagrange-type meshfree Galerkin formulation. To 

validate the proposed model, the response of cells in four different stiffness substrates and in 

a stiffness-varying substrate, as well as conformation change due to substrate elasticity and 

three-dimensional (3D) cell spreading, were investigated. More recently, Pothapragada et al. 

[295] developed a phenomenological 3D coarse-grained molecular dynamics (CGMD) 

particle-based platelet model to describe the filopodia formation and imitate the complex 

shape change observed during early stage platelet activation. Heck et al. [296] proposed a 

viscoelastic SPH technique with extended boundary conditions for numerical modeling of 

extracellular matrix in contact with a migrating cell. 

3.8 Human Swimming Locomotion and Bird Flights 

Cohen and his colleagues employed the SPH method to perform numerical simulations of 

dolphin kick [297] and fixed glide pose towing [298] swimming drills. The authors also 

studied the locomotion of marine animals such as dolphins and sharks [299], the pitching 

effects of buoyancy during free-style, backstroke, butterfly and breaststroke swimming 
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techniques [300], the role of hand during freestyle swimming drill [301], as well as the 

prediction of loading on the body during elite platform diving [302]. In their pioneering work, 

McCarthy et al. [303] investigated the impact of a bird on an aircraft wing leading edge 

structure using the PAM-CRASH software. They showed that the SPH technique was able to 

capture the breakup of the bird into debris particle after the collision.  

In a similar study, Guida et al. [304] employed an SPH-Lagrangian approach to study the 

impact of bird-strike on the leading edge wing of aircraft by modeling the bird geometry with 

SPH nodes and the impacted structure using Lagrangian elements. The authors further 

investigated the impact, failure after impact and high strength at impact properties of glass 

fibre laminate combination sandwich composite. However, the bird geometry (i.e. 

hemispherical-ended cylinder) used for their simulations [303, 304] is unrealistic.  

Grimaldi et al. [305] presented a study on aircraft windshield-surround structure with an 

innovative configuration that satisfies the bird-strike requirement according to the European 

and US aviation regulations 25.631 on the ‘‘Bird-strike Damage’’ using a coupled FE-SPH 

approach.  In addition, the authors presented a parametric analysis on the square windshield 

model to investigate the effect of the target geometry, the impact angle, and the plate 

curvature on the impact response of the windshield structure with the aim of defining possible 

guidelines for the design of a bird-proof airplane windshield. The effects of using realistic 

and substitute bird models as well as the influence of bird geometry on aircraft impacts from 

various orientations were studied by Hedayati and Ziaei-Rad [306]. The authors concluded 

that impact from bird bottom side is the most damaging scenario, while the tail side impact is 

the less dangerous one.  

Vignjevic et al. [307] employed the particle to node and the particle to surface contact 

algorithms for the treatment of contact between the bird, modeled using SPH particles and the 

aircraft blade (modeled as FE mesh) in a bird-strike analysis. The influence of bird shape, 

bird impact location and impact timing were then investigated in their parametric study. It has 

also been reported in the open literature that during bird strikes, the geometry configuration 

of bird severely affects the displacement and the von Mises stress of some rotary engine 

primary compressor blades and if the bird strikes the “up” sites, some blades may develop 

plastic deformation which will adversely affect the safety work of the engine [308].  

Jun et al. [309] studied the dynamic plastic responses of the sidewall structure of an aircraft 

nose using the coupled SPH-FE method in PAM-CRASH software. Zhang and Fei [310] 
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employed the SPH method to investigate the effect of bird geometry and impact orientation in 

bird striking on a rotary jet-engine fan. The authors implemented a more realistic bird model 

in terms of bird geometry and material constitutive model. They concluded that bird 

geometry and impact orientation had a significant effect on the impact force, impact duration 

and kinetic energy loss of the bird.  

3.9 Other Applications 

The use of a point-cloud method (a form of meshfree method based on the nodal 

discretization of a problem domain) for image-based stress analysis in biological systems, 

such as aorta inflation and skull impact, was demonstrated by Qian and Lu [311].  A 3D 

material point human head model constructed from CT scanned images was used to study the 

dynamic response of the human head under the impact of a 3D cylindrical lead projectile 

[312], while the penetration of projectile into the human head was studied using SPH method 

[313]. Recently, a discrete particle-based method capable of representing the entire boiling 

process, including nucleation, bubble formation, growth, bursting, vapor and steam formation 

at the fluid-free surface was proposed using the meshfree SPH method [314]. 

Huafeng and Liu [315] applied the EFG method to several image analysis problems involving 

domain evolution and domain mapping, such as object segmentation and multi-frame cardiac 

motion analysis. Chen et al. [316, 317] proposed a 3D object-constrained meshless 

deformable algorithm for prostrate segmentation and registration in image-guided 

radiotherapy (IGRT) using CT, on board cone beam CT images and certain recent dose 

delivery technologies, such as intensity modulated radiation therapy (IMRT). A coupled RBF 

interpolation and statistical shape model were used to establish a comparison between 

ultrasound (US) and magnetic resonance (MR) based 3D prostate shapes [318]. In this study, 

the authors first used RBF interpolation to construct a 3D point distribution model for each 

prostate, before a modified principal axis transformation was utilized for the rigid registration 

of the US and MR images of the same prostate in preparation for shape comparison. Lastly, 

statistical shape models were used to capture the segmented 3D prostate geometries for 

successive cross-modality comparison.  

A point-based simulation and cutting of herniated disc soft-tissue in the context of interactive 

surgery simulation was implemented by Haq and his co-workers [319] using the MLS 

approximation scheme. In their study, an intrinsic meshless distance-based enrichment 

technique capable of handling discontinuities was implemented to perform the cutting 
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operation smoothly. Using the MTLED algorithm, combined with fuzzy tissue classification 

(which relies on the Fuzzy C-Means algorithm to compute and assign material properties 

using fuzzy membership functions for the specified image intensity clusters for each voxel in 

the image), Li et al. [320, 321] presented a patient-specific meshless model for whole-body 

image registration. An et al. [322], in their recent article, proposed a meshless reconstruction 

method capable of reducing position error, for fluorescence molecular tomography (FMT), 

based on the compactly supported radial basis function.  

By combining RBFs with partial differential equation-based nonlinear level set evolution 

equation, Li and Li [323] presented a meshless numerical algorithm for image segmentation 

that is robust to initialization and more computationally efficient. Aggarwal et al. [324] 

recently proposed an RKPM meshfree method for large deformation mechanics of protein 

structure by studying the mechanics and conformational change of proteins and their 

assemblies. The authors simulated the atomic force microscopy (AFM) indentation of cowpea 

chlorotic mottle virus (CCMV) native capsid by defining meshfree nodes at the α-carbon 

positions of the atomic coordinates and analyzed the conformational change of protein 

assemblies and discussed the importance of coarse-graining methods. A local meshless 

collocation method for solving the partial differential equations arising from modeling of 

wound healing processes was presented by the authors in [325]. 

A degenerate parabolic equation arising in the spatial diffusion of the biological population 

has also been analyzed using the element free kp-Ritz method [326] and IMLS-Ritz meshfree 

method [20].  The authors in [327] investigated the relationships between peristaltic 

contraction, relaxation, and fluid transport in the human colon using the SPH method, by 

coupling the flow of luminal content and wall flexure. Recently, Montanino et al. [328] 

presented a meshfree approach for modeling the cornea-aqueous humor interaction during air 

puff test. Dehghan and co-workers [329, 330] simulated the behavior of cancer cell invasion 

of surrounding tissue as well as the process of tumor growth using meshless techniques. Fu et 

al. [331] proposed a domain-type meshless collocation method, called method of approximate 

particular solutions (MAPS), for numerical investigation on the effect of tumor on the 

thermal behavior inside the skin tissue. The Galerkin-based meshfree method has also been 

employed by the authors in [332, 333] for numerical simulation of reaction-diffusion systems 

in developmental biology, which is one of the emerging areas of interest in computational 

biomechanics.  
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4 Concluding Remarks and Prospects 

This review aims to assist researchers working with meshfree and particle methods within the 

fields of bioengineering and computational biomechanics by providing them with the key 

references for use in their research, as well as ideas for future research areas considered to be 

of paramount importance. The above-mentioned aims were achieved with the comprehensive 

review of applications of meshfree and particle methods in bioengineering and biomechanics. 

We made an extensive effort to include all the important contributions in the current areas of 

interest highlighting the most pertinent literature available to researchers studying and 

working in the field of computational biomechanics. 

We observed that the meshfree and particle methods have been widely employed for various 

problems in computational biomechanics; however, the use of conventional meshfree 

methods such as EFG, RKPM and MLPG in biofluid mechanics and FSI related studies is 

limited. The superior performance of these methods in handling problems involving large 

deformation and complex geometry without loss of accuracy can be harnessed to investigate 

and solve important problems in emerging areas in computational biomechanics. These 

emerging areas and areas with significant research opportunities include fetal and neonatal 

skeletal development, tumor growth and cancer metastasis, brain concussion and 

morphogenesis, intrathecal cerebrospinal fluid dynamics, multiscale biomechanics, in silico 

regenerative mechanics, data-driven modeling, rupture mechanics, 3D printing and 

mechanics of medical devices. 

Considering the enormous advantages of meshfree and particle methods, coupled with the 

constantly increasing interest in bioengineering and biomechanics, we are confident that this 

fascinating and potentially useful area of research will continue to aid in the improvement of 

human health through its novel and insightful contribution to the world of science and 

technology. 
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Figure Legend 

Fig. 1 Illustration of the computational domain for a 2D skin model built on a rectangular area [93]. 

Fig. 2 Particles placed in the initial shape of the liver (left), and its magnified view (right). Particles of a fixed 

size are regularly placed in the liver. Light-gray-lined, black-lined and black-filled particles represent normal 

liver particles, metastasis particles and boundary particles, respectively [103]. 

Fig. 3 Geometry, boundary and loading conditions of a human proximal femur (left) and a meshless analysis 

model discretized with nodes (right) [34]. 

Fig. 4 Bone remodeling algorithm based on the NNRPIM meshless method (modified after [131]). 

Fig. 5 Schematic diagram showing (a) a 2D model of a dental implant, (b) boundary and loading conditions, 

and (c) meshfree node distribution [143]. 

Fig. 6 Summarized implementation procedure of the MTLED algorithm (modified [212]). 


