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Abstract. The paper deals with the convergence problem of the SPH (Smoothed Particle Hydrodynamics)
meshfree method for the solution of fluid dynamics tasks. In the introductory part, fundamental aspects of mesh-
free methods, their definition, computational approaches and classification are discussed. In the following part,
the methods of local integral representation, where SPH belongs are analyzed and specifically the method RKPM
(Reproducing Kernel Particle Method) is described. In the contribution, also the influence of boundary conditions
on the SPH approximation consistence is analyzed, which has a direct impact on the convergence of the method.
A classical boundary condition in the form of virtual particles does not ensure a sufficient order of consistence
near the boundary of the definition domain of the task. This problem is solved by using ghost particles as a
boundary condition, which was implemented into the SPH code as part of this work. Further, several numerical
aspects linked with the SPH method are described. In the concluding part, results are presented of the application
of the SPH method with ghost particles to the 2D shock tube example. Also results of tests of several parameters
and modifications of the SPH code are shown.

1 Introduction

Currently, fluid dynamics problems are solved mostly by
traditional numerical methods, such as FDM, FVM or FEM.
The common feature of these methods is the use of a la-
grangian mesh or eulerian grid in the domain discretiza-
tion process. However, for some types of problems these
methods are suited poorly. Problems in question are espe-
cially those with an extreme deformation, a moving bound-
ary or a free surface. The complications arising while solv-
ing these problems result from the use of a mesh or a grid.

And so the idea of meshfree methods evolves naturally,
first being used in 1977 by Lucy L.B. [1] and Gingold R.A.
& Monaghan J.J. [2]. Specifically, it was the SPH method
applied to astrophysical problems of modeling the move-
ment of stars and space objects.

The main idea of meshfree methods lies in modeling
of the domain through field nodes without any informa-
tion about relations between these nodes. Consequently,
function approximation is performed with the help of field
nodes in support domains.

2 Meshfree methods

A definition of meshfree methods according to [3] is fol-
lowing: a method used to create a system of algebraic equa-
tions for the entire domain without using a predefined mesh
for the domain discretization is defined as a meshfree me-
thod.
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2.1 Solution procedure

The procedure of meshfree methods consists of four basic
steps:

– domain representation
– function approximation
– formation of system equations
– solving the global equations

2.1.1 Domain representation

First, the domain and its boundary is modeled (not dis-
cretized!) using sets of arbitrarily distributed nodes (see
figure 1) in the domain and its boundary. The nodal dis-
tribution is usually not uniform. The density of nodes de-
pends on the accuracy requirement of the analysis. Because
the nodes carry the values of a field variable (e.g. density,
velocity, etc), they are often called field nodes. Further in
the text, a field variable will be refered to as a field func-
tion.

field nodes

Ω

Fig. 1. Domain representation
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2.1.2 Function approximation

The field function u at any point at x = (x, y) within the do-
main is approximated using the values at its nodes within
the “small” local domain of the point x, i.e.

u(x) =
n∑

i=1

ϕi(x) ui (1)

where n is the number of nodes included in a local domain
of the point at x, ui is the nodal field function at the i−th
node in the local domain, and ϕi(x) is the shape function
of the i−th node. The “small” local domain of x will be
called the support domain of x and denoted Ωx. The size
of support domain defines the number of field nodes ap-
proximating x. Some possible shapes of support domains
are shown in figure 2.
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Fig. 2. Support domains (spherical is the most common one)

2.1.3 Formation of system equations

System equations can be formulated using the shape func-
tions and strong or weak formulation. These equations are
assembled into the global system matrices for the entire
problem domain. For static problems, the global system
equations are a set of algebraic equations. For general dy-
namics problems, it is a set of differential equations.

2.1.4 Solving the global equations

The last step depends on the type of equations (algebraic,
differential, etc). Note that the global equations for compu-
tational fluid dynamics problems are basically nonlinear.

2.2 Classification

Meshfree methods will be classified according to the func-
tion approximation schemes [3]. Finite integral representa-
tion methods include SPH - Smoothed Particle Hydrody-
namics method and RKPM - Reproducing Kernel Particle
Method. Finite series representation methods include MLS
- Moving Least Square, PIM - Point Interpolation Method,
and FPM - Finite Point Method. The last category is called
the finite differential representation methods and includes
GFDM - General Finite Difference Method.

This paper details two of these methods - SPH and
RKPM - that fall into the first category listed above.

3 SPH method

The smoothed particle hydrodynamics method belongs to
basic meshfree methods. It is used for solving partial dif-
ferential equations. A system of ordinary differential equa-
tions is produced after approximation of unknown func-
tions (field function) and their spatial derivatives. This sys-
tem is most often solved by explicit numerical methods.

3.1 Formulation

Function approximation of the field function u(x) is based
on an integral representation of the function and is given
by the equation

<u(x)> =
∫
Ωx

u(ξ)W(x − ξ, h) dξ (2)

where W
(
x − ξj, h

)
is the weight function (smoothing func-

tion, kernel function), h being the smoothing length, which
defines the size of the support domain Ωx, i.e. the smooth-
ing length determines the number of particles approximat-
ing the function at x. The weight function is usually chosen
to be an even function and it satisfies number of conditions,
e.g. the normality condition∫

Ωx

W(x − ξ, h) dξ = 1. (3)

Equation (2) is usually referred to as kernel approximation,
or SPH approximation of function u(x).

For practical calculation, the equation (2) must be dis-
cretized as follows

<u (x)> =
n∑

j=1

u
(
ξj

)
W
(
x − ξj, h

) mj

ρj
(4)

where mj and ρj are mass and density of the j−th particle
in Ωx. Equation (4) is called a particle approximation of
field function u(x).

Note that the approximation (4) corresponds to the ap-
proximation (1) introduced for a general meshfree method.
The shape function in this case has the form of

ϕj(x) = W
(
x − ξj, h

) mj

ρj
. (5)

Approximation of the spatial derivatives of the field
function can be obtained by replacing the function u(x) in
equation (2) with its spatial derivative ∇ · u(x). Using the
per-partes, the Green theorem and a discretization we ob-
tain a particle approximation of the spatial derivative of the
field function in the form of

<∇ · u(x)> =
n∑

j=1

u(ξj)∇xW(x − ξj, h)
mj

ρj
(6)

where ∇xW(x − ξ j, h) is the spatial derivative of the weight
function with respect to the variable x.

We can observe that an approximation of the spatial
derivative of a field function is determined using only field
function values and derivatives of the weight function.
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3.2 Consistency

To ensure the convergence of meshfree method, it is nec-
essary that the method satisfies certain order of consis-
tency. Consistency is closely related to the reproduction of
polynomials.

If an approximation can exactly reproduce polynomials
of degree k, i.e.

< f (x)> = f (x) (7)

where f (x) is a polynomial of degree k, than we say that the
approximation has k-th order of consistency, i.e. Ck consis-
tency.

Specifically, consistency of the SPH approximation (4)
is given by the following definition. The SPH approxima-
tion has Ck consistency if and only if weight functions sat-
isfy the condition∫

Ωx

ξlW(x − ξ, h) dξ = xl for l = 0, 1, . . . , k. (8)

It can be shown that C0 consistency follows directly
from the normality condition (3), which is a necessary con-
dition for the weight functions. Thus the SPH approxima-
tion has always C0 consistency.

Furthermore, we can prove the theorem, which says
that the SPH approximation has C1 consistency if and only
if has C0 consistency and also the appropriate weight func-
tion is an even function.

We see that the order of consistency depends only on
the properties of weight functions.

3.3 Boundary treatment

The issue of boundary conditions is generally very diffi-
cult in the SPH method. We answer the question of prop-
erly defining the boundary condition that prevented par-
ticles from escaping out of the domain. Furthermore, we
discuss consistency near the boundary of the domain (near
boundary area).

3.3.1 Virtual particles

The first approach is the use of virtual particles. These par-
ticles are situated on the boundary and by repulsive force
acting on the particles in the near boundary area (near
boundary particles). Hence, virtual particles prevent an un-
physical penetration through the boundary.

∂Ω

virtual particles

Fig. 3. Virtual particles

Unfortunately, this approach violates the condition for
C1 consistency of the SPH approximation in the near boun-
dary area. This fact is due to the undesirable “cutting off”

of the weight function support, see figure 4. Thus, the ap-
propriate weight function is not an even function.

x

W

i j

Wi Wj
∂Ω

Fig. 4. Example of a 1D task, particle j is situated in the near
boundary area

3.3.2 Ghost particles

A much better way is to use ghost particles as a boundary
condition. In contrast to virtual particles, this approach cre-
ates a dynamic wall that is constructed at each time step.
Ghost particles are formed symmetrically (according to the
boundary) to the near boundary particles as “twin” parti-
cles, see figure 5.

∂Ω

ghost particles
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Fig. 5. Ghost particles, velocities are formed symmetrically (slip
wall)

Using ghost particles ensures C1 consistency of the
SPH approximation, because the shape functions of the
near boundary particles can be even functions.

3.4 RKPM method

The reproducing kernel particle method belongs to the cat-
egory of finite integral methods, and is a modification of
the SPH method. This method adds the so-called correc-
tion function to the SPH formulation to ensure certain or-
der of consistency. The particle approximation of the func-
tion u(x) is defined as

<u(x)> =
n∑

j=1

u(ξ j)C(x, ξ j)W(x − ξ j, h)
m j

ρ j
(9)

where C(x, ξ) is the correction function.
Note that the approximation (9) corresponds to the ap-

proximation (1), where the shape function has the form of

ϕj(x) = C(x, ξ)W
(
x − ξj, h

) mj

ρj
. (10)
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4 Shock tube 2D problem

In this section we show the results of the shock tube prob-
lem in 2-dimensions (2D) depending on the boundary con-
ditions described in section 3.3.

The shock tube problem is a good numerical bench-
mark that shows the ability of numerical methods to deal
with discontinuities. In addition, we know the exact so-
lution of this problem in 1D and therefore we can com-
pare it with the results of the 2D task. These results were
obtained using a program based on the SPH method. The
program was written in the Fortran programming language
(Intel(R) Visual Fortran Compiler Professional 11.1.067)
in the MS Visual Studio 2008 IDE for .NET Framework v.
3.5. The basis was the source code from the book [4]. Post-
processing, i.e. graphs of particular variables was realized
using the matlab software v. 7.11.0 (R2010b).

4.1 Description of the shock tube 2D problem

It is the examination of the phenomenon which occurs in
the rectangular container after removal of an imaginary
barrier. This barrier separates two different (density, pres-
sure and energy) fluids. After removing the barrier, we will
observe the spread of a shock wave, a rarefaction wave and
a contact discontinuity.

4.2 Initial settings

The initial conditions were taken from (L. Hernquist, 1989,
[5]) for 1D problem, which has been extended to 2D, in this
way

ρL = 1, pL = 1, vL = 0,
ρR = 0.25, pR = 0.1795, vR = 0

where the subscripts L and R denote the fluid on the left
and right side of the barrier. Assume that both fluids satisfy
properties of an ideal gas, therefore the initial values of the
internal energy e are calculated from the equation of state.
So we have eL = 2.5 and eR = 1.795.

In the simulation 3200 particles were used. Specifi-
cally, 320 in x-direction and 10 in y-direction. The sizes of
the domain (container) are xl = 0.8 and yl = 0.025. Spac-
ing between particles is constant with dx = dy = 2.5 ·10−3.
The center of the container is placed at the origin of the co-
ordinate system (x = y = 0). The distribution of particles
is shown in figure 6, which is only illustrative due to the
large number of particles.

Boundary condition is set as the slip wall and the end
time of the simulation was set to t = 0.2 s.

4.3 Parameter settings

The shock tube problem is generally a very fast phenome-
non, therefore it can be assumed that it is very sensitive to
the parameter settings. This assumption have been demon-
strated by testing. To achieve the “correct” setting of these
parameters, much effort is usually required.

Now we show the parameter settings for the shock tube
2D problem, which has been obtained by a number of tests.

dxdx

2

x

y

yl

xl

∂Ω

Fig. 6. Initial distribution of particles

Weight function: The exponential weight function has been
used for the shock tube problem. The disadvantage of this
approach is a global discontinuity at the boundaries of the
support domains. The exponential function has derivatives
of all orders, which has a positive effect on the stability of
the solution. When testing other weight functions (cubic
spline, quintic spline), there were significant oscillations
in the solution.

Artificial viscosity: The artificial viscosity was used to re-
move the oscillations which originated in areas of discon-
tinuities. It is a component that is added to the pressure
terms of the Euler equations or Navier-Stokes equations.

Variable smoothing length: Due to the variable density of
particles, the variable smoothing length is required to pre-
serve an almost constant number of particles in particular
support domains during the approximation.

Nearest Neighboring Particle Searching (NNPS): Because
of the large number of particles and the variable smooth-
ing length, the tree method was used as a search algorithm.

Time step: To ensure the stability of the shock tube prob-
lem, a sufficiently small time step is necessary. After the
tests, the time step was set to dt = 0.0005 and for achieving
the simulation end time (t = 2), 400 steps were required.

Boundary conditions: In section 3.3, we have shown that
the SPH method in conjunction with virtual particles does
not satisfy the C1 consistency condition at the near bound-
ary area. This problem was corrected by using ghost parti-
cles as a boundary condition.

Now we show the implementation problems and their
solutions in the application of these boundary conditions.

• Virtual particles: We solved the problem how to set the
repulsive force large enough to prevent particles es-
cape out of the domain, and small enough to avoid
degradation of the solution by acting of this force. It is
therefore a compromise which could not be found for
the classical location of these particles (on the domain
boundary). We have to solve this problem by moving
the virtual particles outside of the domain as shown in
figure 7. This approach allowed us to set a repulsive
force that prevents particles from escaping out of the
domain and is small enough.
We chose this approach because it preserves the num-
ber of particles and their spacing. However, there is a
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virtual particles

dx

2

dx
dx

2

∂Ω

Fig. 7. Corrected position of virtual particles

domain extension (by dx) in each coordinate direction.
If there was a strict requirement to preserve the domain
size then it would be necessary to change the disposi-
tion of particles, i.e. the number of particles or their
spacing.

• Ghost particles: In this case, we discussed how to set
the properties and position of ghost particles that are
created in adition to particles located at the domain cor-
ners. Using [6], the position of ghost particles has been
resolved. Thus, three ghost particles are always created
to the particles at each corner of the domain, as shown
in figure 8.

∂Ω
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Fig. 8. Positions and velocities of ghost particles, which are cre-
ated to particle i situated at the domain corner

We have also solved the problem how to properly set the
mass of these ghost particles. The best variant was to choose
the same mass as particle i, which also corresponds to the
text [7].

4.4 Simulation results

The simulation was performed for both types of bound-
ary conditions, i.e. first for virtual particles only, and than
for ghost particles only. Ghost particles were implemented
into the SPH code within this work. Figures 9, 10, 11 and
12 show the progressions of axial velocity, density, pres-
sure and internal energy in the longitudinal section, i.e.
y = 0. The solid line shows the exact solution of the Euler
equations for a 1D task.

It can be seen that the solution obtained with the help
of ghost particles captures the shape of the exact solu-
tion better than a solution that uses virtual particles. We
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Fig. 9. Axial velocity, longitudinal section, t = 0.2 s
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Fig. 10. Axial density, longitudinal section, t = 0.2 s
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Fig. 11. Axial pressure, longitudinal section, t = 0.2 s

demonstrate the influence of C1 consistency of the SPH ap-
proximation at the near boundary area. Let us remind that
the use of ghost particles ensures C1 consistency, while
the use of virtual particles does not. The position of the
shock wave front observed around x = 0.3 can be deter-
mined from figures. The rarefaction wave is situated be-
tween x = −0.3 and x = 0 and the contact discontinuity is
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Fig. 13. Position of particles, t = 0.2 s
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Fig. 12. Axial internal energy, longitudinal section, t = 0.2 s

located around x = 0.13. Slight deviations from the exact
solution of both simulations, especially in the rarefaction
wave area, are probably caused by the continuity method
used for the calculation of density. The continuity method
does not preserve mass exactly, but is able to deal with the
discontinuity.

Figure 13 shows the specific location of particles at
the end of the simulation in the case of using ghost par-
ticles. We can also notice the relation between the number
of ghost particles and the density of fluid particles distri-
bution. The number of ghost particles is reduced in areas
where the fluid particles are closer. This is due to decreas-
ing smoothing length in areas with greater density of par-
ticle distribution. This is necessary in order to preserve an
almost constant number of particles in each support do-
main. Similarly, we obtain that the number of ghost par-
ticles increases in the places where the fluid particles are
closer. Figure 14 shows the detail of the contact disconti-
nuity area around x = 0.13.

5 Conclusion

This paper covers our work on the convergence problem
of the SPH method. The classical form of boundary condi-
tion, i.e. virtual particles, does not preserve C1 consistency
of the SPH approximation in the near boundary area. This
negative feature has a direct impact on convergence and
thus also on the accuracy of the method. This problem has
been solved by using ghost particles as a boundary con-
dition. This type of particles has been implemented to the
SPH code. The previously described theory was demon-
strated on the 2D shock tube example. The SPH method
with ghost particles expressed the form of the exact solu-
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Fig. 14. Position of particles, the detail of the contact discontinu-
ity area, t = 0.2 s

tion better than the SPH method with virtual particles. We
have confirme the influence of C1 consistency of the SPH
approximation on the accuracy of the method. Especially
in the near boundary area.
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